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Richard	P.	Feynman	was	one	of	this	century’s	most	brilliant	theoretical
physicists	and	original	thinkers.	Born	in	Far	Rockaway,	New	York,	in
1918,	he	studied	at	the	Massachusetts	Institute	of	Technology,	where	he
graduated	with	a	BS	in	1939.	He	went	on	to	Princeton	and	received	his
Ph.D.	in	1942.	During	the	war	years	he	worked	at	the	Los	Alamos
Scientific	Laboratory.	He	became	Professor	of	Theoretical	Physics	at
Cornell	University,	where	he	worked	with	Hans	Bethe.	He	all	but	rebuilt
the	theory	of	quantum	electrodynamics	and	it	was	for	this	work	that	he
shared	the	Nobel	Prize	in	1965.	His	simplified	rules	of	calculation
became	standard	tools	of	theoretical	analysis	in	both	quantum
electrodynamics	and	high-energy	physics.	Feynman	was	a	visiting
professor	at	the	California	Institute	of	Technology	in	1950,	where	he
later	accepted	a	permanent	faculty	appointment,	and	became	Richard
Chace	Tolman	Professor	of	Theoretical	Physics	in	1959.	He	had	an
extraordinary	ability	to	communicate	his	science	to	audiences	at	all
levels,	and	was	a	well-known	and	popular	lecturer.	Richard	Feynman
died	in	1988	after	a	long	illness.	Freeman	Dyson,	of	the	Institute	for
Advanced	Study	in	Princeton,	New	Jersey,	called	him	‘the	most	original
mind	of	his	generation’,	while	in	its	obituary	The	New	York	Times
described	him	as	‘arguably	the	most	brilliant,	iconoclastic	and	influential
of	the	postwar	generation	of	theoretical	physicists’.



A	number	of	collections	and	adaptations	of	his	lectures	have	been
published,	including	The	Feynman	Lectures	on	Physics,	QED	(Penguin,
1990),	The	Character	of	Physical	Law	(Penguin,	1992),	Six	Easy	Pieces
(Penguin,	1998),	The	Meaning	of	It	All	(Penguin,	1999),	Six	Not-So-Easy
Pieces	(Penguin,	1999),	The	Feynman	Lectures	on	Gravitation	(Penguin,
1999),	The	Feynman	Lectures	on	Computation	(Penguin,	1999)	and	The
Pleasure	of	Finding	Things	Out	(Penguin,	2001).	His	memoirs,	Surely
You’re	Joking,	Mr	Feynman,	were	published	in	1985.
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Introduction

It	is	fashionable	for	historians	of	science	to	dwell	on	the	significance	of
scientific	revolutions.	Each	revolution	comes	with	a	cluster	of	so-called
geniuses,	men	and	women	whose	skill	and	imagination	force	the
scientific	community	to	break	out	of	old	habits	of	thought	and	embrace
new	and	unfamiliar	concepts.	Genius	is	a	much	studied	phenomenon.
Less	attention	is	given	to	the	importance	of	what	might	be	called	style.
However,	changes	in	work	style	can	have	as	big	an	impact	on	scientific
progress	as	conventional	genius.
Richard	Feynman	had	both	genius	and	highly	unconventional	style.

Born	in	1918,	he	was	too	late	to	participate	in	the	Golden	Age	of
physics,	which,	in	the	first	three	decades	of	this	century,	transformed	our
world	view	with	the	twin	revolutions	of	the	theory	of	relativity	and
quantum	mechanics.	These	sweeping	developments	laid	the	foundations
of	the	edifice	we	now	call	the	New	Physics.	Feynman	started	with	those
foundations	and	helped	build	the	ground	floor	of	the	New	Physics.	His
contributions	touched	almost	every	corner	of	the	subject	and	have	had	a
deep	and	abiding	influence	over	the	way	that	physicists	think.
Feynman	initially	made	a	name	for	himself	from	his	work	in	particle

physics,	more	specifically	from	the	topic	known	as	quantum
electrodynamics,	or	QED.	The	quantum	theory	actually	began	with	this
problem.	In	1900	Max	Planck	proposed	that	light	and	other
electromagnetic	radiation,	hitherto	viewed	as	waves,	should	be	regarded
as	tiny	packets	of	energy,	or	‘quanta’,	when	interacting	with	matter.
These	particular	quanta	became	known	as	photons.	By	the	early	1930s



the	architects	of	the	new	quantum	mechanics	had	worked	out	a

mathematical	formalism	to	describe	the	emission	and	absorption	of
photons	by	electrically	charged	particles	such	as	electrons.	Although	this
early	formulation	of	QED	enjoyed	some	success,	the	theory	was	clearly
flawed,	and	it	was	to	the	problem	of	constructing	a	consistent	theory	of
QED	that	the	young	Feynman	turned	his	attention	in	the	late	1940s.
To	place	QED	on	a	sound	basis	it	was	necessary	to	make	the	theory

consistent	not	only	with	the	principles	of	quantum	mechanics	but	with
those	of	the	special	theory	of	relativity	too.	These	two	theories	come
with	their	own	distinctive	mathematical	machinery,	complicated	systems
of	equations	that	can	indeed	be	combined	and	reconciled	to	yield	a
satisfactory	description	of	QED.	This	was	the	approach	followed	by
Feynman’s	contemporaries.	Feynman	himself,	however,	thought	about
the	problem	in	a	radically	different	way	–	so	radical,	in	fact,	that	he	was
more	or	less	able	to	write	down	the	answers	straight	away	without	using
any	mathematics!
To	aid	this	extraordinary	feat	of	intuition,	Feynman	invented	a

simple	system	of	diagrams	that	still	bear	his	name.	Feynman	diagrams
are	a	symbolic	but	powerfully	obvious	way	of	picturing	what	is	going	on
when	electrons,	photons	and	other	particles	interact	with	each	other.
Today	they	are	a	routine	aid	to	calculation,	but	in	the	early	1950s	they
marked	a	startling	departure	from	the	traditional	way	of	doing	science.
The	particular	technical	problem	of	QED,	although	a	milestone	in	the

development	of	physics,	merely	serves	as	an	illustration	of	what	was	to
become	a	distinctive	Feynman	style,	a	style	that	reverberated	through
post-war	physics	and	triggered	dozens	of	important	advances.
The	Feynman	style	can	best	be	described	as	a	mixture	of	reverence



and	disrespect	for	received	wisdom.	Physics	is	an	exact	science,	and	the
existing	body	of	knowledge,	while	incomplete,	can’t	be	just	shrugged
aside.	Feynman	acquired	a	formidable	grasp	of	the	accepted	principles	of
physics	at	a	very	young	age,	and	he	chose	to	work	almost	entirely	on
conventional	problems.	He	was	not	the	sort	of	genius	to	beaver	away	in
isolation	in	a	backwater	of	the	discipline	and	to	stumble	across	the
profoundly	new.	His	special	talent	was	to	approach	essentially
mainstream	topics	in	an	idiosyncratic	way.	This	meant	eschewing
existing	formalisms	and	developing	his	own	highly	intuitive	approach.
Whereas	most	theoretical	physicists	rely	on	careful	mathematical
calculation	to	provide	a	guide	and	a	crutch	to	take	them	into	unfamiliar
territory,	Feynman’s	attitude	was	almost	cavalier.
Feynman’s	way	meant	not	only	showing	a	healthy	contempt	for

rigorous	formalisms	but	also	employing	a	genuine	informality	in	his
thinking	and	communicating.	It	is	hard	to	convey	the	depth	of	genius
that	is	necessary	to	work	in	this	style.	Theoretical	physics	is	one	of	the
hardest	of	human	endeavours,	combining	as	it	does	subtle	and	abstract
concepts	that	normally	defy	visualizations	with	a	technical	complexity
that	is	impossible	to	master	in	its	entirety.	Only	by	adopting	the	highest
standards	of	mathematical	and	conceptual	discipline	can	most	physicists
make	progress.	Yet	Feynman	appeared	to	ride	roughshod	over	this	strict
code	of	practice	and	pluck	new	results	like	ready-made	fruit	from	the
Tree	of	Knowledge.
The	Feynman	style	owed	much	to	the	personality	of	the	man.	In	his

professional	and	private	life	he	seemed	to	treat	the	world	as	a	hugely
entertaining	game.	The	physical	universe	presented	him	with	a
fascinating	series	of	puzzles	and	challenges,	and	so	did	his	social
environment.	A	lifelong	prankster,	he	treated	authority	and	the



environment.	A	lifelong	prankster,	he	treated	authority	and	the
academic	establishment	with	the	same	sort	of	disrespect	he	showed	for
stuffy	mathematical	formalism.	Never	one	to	suffer	fools	gladly,	he	broke
the	rules	whenever	he	found	them	arbitrary	or	absurd.	His
autobiographical	writings	contain	amusing	stories	of	Feynman
outwitting	the	atom-bomb	security	services	during	the	war,	Feynman
cracking	safes,	Feynman	disarming	women	with	outrageous	behaviour.
He	treated	his	Nobel	Prize,	awarded	for	his	work	on	QED,	in	a	similar
take-it-or-leave-it	manner.
Alongside	this	contempt	for	formality,	Feynman	had	a	fascination

with	the	quirky	and	obscure.	Many	will	remember	bis	obsession	with	the
long-lost	country	of	Tuva	in	Central	Asia,	captured	so	delightfully	in	a
documentary	film	made	near	to	the	time	of	his	death	in	1988.	His	other
passions	included	playing	the	bongo	drums,	painting,	frequenting	strip
clubs	and	deciphering	Mayan	texts.
It	was	undoubtedly	Feynman’s	freewheeling	approach	to	life	in

general	and	physics	in	particular	that	made	him	such	a	superb
communicator.	He	had	little	time	for	formal	lecturing	or	even	for
supervising	Ph.D	students	at	the	California	Institute	of	Technology	where
he	worked.	Nevertheless	he	could	give	brilliant	lectures	when	it	suited
him,	deploying	all	the	sparkling	wit,	penetrating	insight	and	irreverence
that	he	brought	to	bear	on	his	research	work.
In	the	mid	1960s	Feynman	was	invited	to	deliver	a	series	of	public

lectures	at	Cornell	University,	in	the	state	of	New	York,	on	the	character
of	physical	law.	The	lectures	were	recorded	for	BBC	television	and
subsequently	published	by	the	BBC	as	a	book.	I	acquired	my	copy	as	a
young	student	in	the	late	1960s	and	found	the	lectures	captivating.	What
impressed	me	most	was	the	way	that	Feynman	could	develop	far-



impressed	me	most	was	the	way	that	Feynman	could	develop	far-
reaching	physical	notions	from	the	most	modest	of	investments	in
concepts,	with	scarcely	any	mathematics	and	very	little	in	the	way	of
technical	jargon.	He	had	the	knack	of	finding	just	the	right	analogy	or
everyday	illustration	to	bring	out	the	essence	of	a	very	deep	principle
without	obscuring	it	in	incidental	or	irrelevant	details.	All	my	working
life	I	have	remembered	his	brilliant	analogy	between	the	law	of
conservation	of	energy	and	the	problem	of	trying	to	dry	yourself	with
wet	towels.
The	selection	of	topics	contained	in	these	lectures	is	not	intended	as	a

comprehensive	survey	of	modern	physics.	It	is	more	of	a	Feynman’s-eye
view	of	the	problems	and	puzzles	that	lie	at	the	heart	of	physical	theory.
All	physics	is	rooted	in	the	notion	of	law,	the	belief	that	we	live	in	an
ordered	universe	that	can	be	understood	by	the	application	of	rational
reasoning.	But	the	laws	of	physics	are	not	transparent	to	us	in	our	direct
observations	of	nature.	They	are	hidden,	subtly	encoded	in	the
phenomena	we	study.
The	best-known	law	of	physics	is	Newton’s	law	of	gravitation,

discussed	in	Feynman’s	first	lecture.	Most	other	laws	refer	to	the	various
forces	of	nature	that	describe	how	particles	of	matter	interact	with	each
other.	There	is	but	a	handful	of	these	forces,	and	Feynman	himself	holds
the	considerable	distinction	of	being	one	of	the	few	scientists	in	history
to	discover	a	new	law	of	physics,	pertaining	to	the	way	that	a	weak
nuclear	force	affects	the	behaviour	of	certain	subatomic	particles.
High-energy	particle	physics	has	dominated	Feynman’s	generation	of

physicists,	with	its	huge	and	glamorous	accelerator	machines	and
seemingly	unending	list	of	newly	discovered	subatomic	particles.
Feynman’s	research	was	directed	mostly	towards	this	enterprise.	A	great



Feynman’s	research	was	directed	mostly	towards	this	enterprise.	A	great
unifying	theme	among	particle	physicists	has	been	the	role	of	symmetry
and	conservation	law	in	bringing	order	to	the	subatomic	zoo.	Much	of
the	content	of	the	Cornell	lectures	concerns	the	status	of	these	abstract
symmetries	and	conservation	laws	in	the	subatomic	realm.	Although
particle	physics	has	advanced	dramatically	since	the	1960s,	the	lectures
remain	highly	relevant.
Contrasting	nicely	with	Feynman’s	interest	in	symmetry	is	a	lecture

on	asymmetry,	the	so-called	arrow-of-time	problem.	Feynman’s
fascination	with	this	topic	dated	from	his	Ph.D	thesis,	supervised	by
John	Wheeler	amid	the	turmoil	of	World	War	II.	The	original	problem
concerned	an	attempt	to	construct	a	theory	of	electrodynamics	in	which
past	and	future	would	enter	symmetrically	into	the	theory.	This	was
Feynman’s	first	brush	with	electrodynamics,	later	to	flower	into	his
prize-winning	QED	work.	But	the	arrow-of-time	problem	remained
essentially	unsolved	and	continues	to	exercise	the	minds	of	theoretical
physicists.	Feynman’s	masterly	exposition	of	the	nature	of	this	problem,
reproduced	here,	remains	a	classic	essay	on	this	fascinating	topic.
The	ideas	discussed	in	this	volume	must	be	considered,	by	any

standards,	to	be	deeply	philosophical.	Yet	Feynman	had	an	abiding
suspicion	of	philosophers.	I	once	had	occasion	to	tackle	him	about	the
nature	of	mathematics	and	the	laws	of	physics,	and	whether	abstract
mathematical	laws	could	be	considered	to	enjoy	an	independent	Platonic
existence.	He	gave	a	spirited	and	skilful	description	of	why	this	indeed
appears	so	but	soon	backed	off	when	I	pressed	him	to	take	a	specific
philosophical	position.	He	was	similarly	wary	when	I	attempted	to	draw
him	out	on	the	subject	of	reductionism.	With	hindsight,	I	believe	that
Feynman	was	not,	after	all,	contemptuous	of	philosophical	problems.



But,	just	as	he	was	able	to	do	fine	mathematical	physics	without
systematic	mathematics,	so	he	produced	some	fine	philosophical	insights
without	systematic	philosophy.	It	was	formalism	that	he	disliked,	not
content.
It	is	unlikely	that	the	world	will	see	another	Richard	Feynman.	He

was	very	much	a	man	of	his	time.	The	Feynman	style	worked	well	for	a
subject	that	was	in	the	process	of	consolidating	a	revolution	and
embarking	on	the	exploration	of	its	consequences.	Post-war	physics	was
secure	in	its	foundations,	mature	in	its	theoretical	structures,	yet	wide
open	for	kibitzing	exploitation.	Feynman’s	style	inspired	a	generation	of
scientists.	This	volume	remains	the	best	record	I	know	of	his	exhilarating
vision.

Paul	Davies
Adelaide,	1992



1
The	Law	of	Gravitation,	an	example	of
Physical	Law

It	is	odd,	but	on	the	infrequent	occasions	when	I	have	been	called	upon
in	a	formal	place	to	play	the	bongo	drums,	the	introducer	never	seems	to
find	it	necessary	to	mention	that	I	also	do	theoretical	physics.	I	believe
that	is	probably	because	we	respect	the	arts	more	than	the	sciences.	The
artists	of	the	Renaissance	said	that	man’s	main	concern	should	be	for
man,	and	yet	there	are	other	things	of	interest	in	the	world.	Even	the
artists	appreciate	sunsets,	and	the	ocean	waves,	and	the	march	of	the
stars	across	the	heavens.	There	is	then	some	reason	to	talk	of	other
things	sometimes.	As	we	look	into	these	things	we	get	an	aesthetic
pleasure	from	them	directly	on	observation.	There	is	also	a	rhythm	and	a
pattern	between	the	phenomena	of	nature	which	is	not	apparent	to	the
eye,	but	only	to	the	eye	of	analysis;	and	it	is	these	rhythms	and	patterns
which	we	call	Physical	Laws.	What	I	want	to	discuss	in	this	series	of
lectures	is	the	general	characteristic	of	these	Physical	Laws;	that	is
another	level,	if	you	will,	of	higher	generality	over	the	laws	themselves.
Really	what	I	am	considering	is	nature	as	seen	as	a	result	of	detailed
analysis,	but	mainly	I	wish	to	speak	about	only	the	most	overall	general
qualities	of	nature.
Now	such	a	topic	has	a	tendency	to	become	too	philosophical

because	it	becomes	so	general,	and	a	person	talks	in	such	generalities,
that	everybody	can	understand	him.	It	is	then	considered	to	be	some
deep	philosophy.	I	would	like	to	be	rather	more	special,	and	I	would	like



to	be	understood	in	an	honest	way	rather	than	in	a	vague	way.	So	in	this

first	lecture	I	am	going	to	try	to	give,	instead	of	only	the	generalities,	an
example	of	physical	law,	so	that	you	have	at	least	one	example	of	the
things	about	which	I	am	speaking	generally.	In	this	way	I	can	use	this
example	again	and	again	to	give	an	instance,	or	to	make	a	reality	out	of
something	which	will	otherwise	be	too	abstract.	I	have	chosen	for	my
special	example	of	physical	law	the	theory	of	gravitation,	the
phenomena	of	gravity.	Why	I	chose	gravity	I	do	not	know.	Actually	it
was	one	of	the	first	great	laws	to	be	discovered	and	it	has	an	interesting
history.	You	may	say,	‘Yes,	but	then	it	is	old	hat,	I	would	like	to	hear
something	about	a	more	modern	science’.	More	recent	perhaps,	but	not
more	modern.	Modern	science	is	exactly	in	the	same	tradition	as	the
discoveries	of	the	Law	of	Gravitation.	It	is	only	more	recent	discoveries
that	we	would	be	talking	about.	I	do	not	feel	at	all	bad	about	telling	you
about	the	Law	of	Gravitation	because	in	describing	its	history	and
methods,	the	character	of	its	discovery,	its	quality,	I	am	being
completely	modern.
This	law	has	been	called	‘the	greatest	generalization	achieved	by	the

human	mind’,	and	you	can	guess	already	from	my	introduction	that	I	am
interested	not	so	much	in	the	human	mind	as	in	the	marvel	of	a	nature
which	can	obey	such	an	elegant	and	simple	law	as	this	law	of
gravitation.	Therefore	our	main	concentration	will	not	be	on	how	clever
we	are	to	have	found	it	all	out,	but	on	how	clever	nature	is	to	pay
attention	to	it.
The	Law	of	Gravitation	is	that	two	bodies	exert	a	force	upon	each

other	which	varies	inversely	as	the	square	of	the	distance	between	them,
and	varies	directly	as	the	product	of	their	masses.	Mathematically	we
can	write	that	great	law	down	in	the	formula:



can	write	that	great	law	down	in	the	formula:

some	kind	of	a	constant	multiplied	by	the	product	of	the	two	masses,
divided	by	the	square	of	the	distance.	Now	if	I	add	the	remark	that	a
body	reacts	to	a	force	by	accelerating,	or	by	changing	its	velocity	every
second	to	an	extent	inversely	as	its	mass,	or	that	it	changes	its	velocity
more	if	the	mass	is	lower,	inversely	as	the	mass,	then	I	have	said
everything	about	the	Law	of	Gravitation	that	needs	to	be	said.
Everything	else	is	a	mathematical	consequence	of	those	two	things.	Now
I	know	that	you	are	not	all	mathematicians,	and	you	cannot	immediately
see	all	of	the	consequences	of	these	two	remarks,	so	what	I	would	like	to
do	here	is	to	tell	you	briefly	of	the	story	of	the	discovery,	what	some	of
the	consequences	are,	what	effect	this	discovery	had	on	the	history	of
science,	what	kind	of	mysteries	such	a	law	entails,	something	about	the
refinements	made	by	Einstein,	and	possibly	the	relation	to	the	other	laws
of	physics.
The	history	of	the	thing,	briefly,	is	this.	The	ancients	first	observed

the	way	the	planets	seemed	to	move	in	the	sky	and	concluded	that	they
all,	along	with	the	earth,	went	around	the	sun.	This	discovery	was	later
made	independently	by	Copernicus,	after	people	had	forgotten	that	it
had	already	been	made.	Now	the	next	question	that	came	up	for	study
was:	exactly	how	do	they	go	around	the	sun,	that	is,	with	exactly	what
kind	of	motion?	Do	they	go	with	the	sun	as	the	centre	of	a	circle,	or	do
they	go	in	some	other	kind	of	curve	?	How	fast	do	they	move	?	And	so
on.	This	discovery	took	longer	to	make.	The	times	after	Copernicus	were
times	in	which	there	were	great	debates	about	whether	the	planets	in



fact	went	around	the	sun	along	with	the	earth,	or	whether	the	earth	was
at	the	centre	of	the	universe	and	so	on.	Then	a	man	named	Tycho	Brahe*
evolved	a	way	of	answering	the	question.	He	thought	that	it	might
perhaps	be	a	good	idea	to	look	very	very	carefully	and	to	record	exactly
where	the	planets	appear	in	the	sky,	and	then	the	alternative	theories
might	be	distinguished	from	one	another.	This	is	the	key	of	modern
science	and	it	was	the	beginning	of	the	true	understanding	of	Nature	–
this	idea	to	look	at	the	thing,	to	record	the	details,	and	to	hope	that	in
the	information	thus	obtained	might	lie	a	clue	to	one	or	another
theoretical	interpretation.	So	Tycho,	a	rich	man	who	owned	an	island
near	Copenhagen,	outfitted	his	island	with	great	brass	circles	and	special
observing	positions,	and	recorded	night	after	night	the	position	of	the
planets.	It	is	only	through	such	hard	work	that	we	can	find	out	anything.
When	all	these	data	were	collected	they	came	into	the	hands	of

Kepler,*	who	then	tried	to	analyse	what	kind	of	motion	the	planets	made
around	the	sun.	And	he	did	this	by	a	method	of	trial	and	error.	At	one
stage	he	thought	he	had	it;	he	figured	out	that	they	went	round	the	sun
in	circles	with	the	sun	off	centre.	Then	Kepler	noticed	that	one	planet,	I
think	it	was	Mars,	was	eight	minutes	of	arc	off,	and	he	decided	this	was
too	big	for	Tycho	Brahe	to	have	made	an	error,	and	that	this	was	not	the
right	answer.	So	because	of	the	precision	of	the	experiments	he	was	able
to	proceed	to	another	trial	and	ultimately	found	out	three	things.
First,	he	found	that	the	planets	went	in	ellipses	around	the	sun	with

the	sun	as	a	focus.	An	ellipse	is	a	curve	all	artists	know	about	because	it
is	a	foreshortened	circle.	Children	also	know	because	someone	told	them
that	if	you	put	a	ring	on	a	piece	of	cord,	anchored	at	each	end,	and	then
put	a	pencil	in	the	ring,	it	will	draw	an	ellipse	(fig.	1).



Figure	1

The	two	points	A	and	B	are	the	foci.	The	orbit	of	a	planet	around	the	sun
is	an	ellipse	with	the	sun	at	one	focus.	The	next	question4s:	In	going
around	the	ellipse,	how	does	the	planet	go	?	Does	it	go	faster	when	it	is
near	the	sun	?	Does	it	go	slower	when	it	is	farther	from	the	sun?	Kepler
found	the	answer	to	this	too	(fig.	2).

Figure	2

He	found	that,	if	you	put	down	the	position	of	a	planet	at	two	times,
separated	by	some	definite	period,	let	us	say	three	weeks	–	then	in
another	place	on	its	orbit	two	positions	of	the	planet	again	separated	by
three	weeks,	and	draw	lines	(technically	called	radius	vectors)	from	the
sun	to	the	planet,	then	the	area	that	is	enclosed	in	the	orbit	of	the	planet
and	the	two	lines	that	are	separated	by	the	planet’s	position	three	weeks
apart	is	the	same,	in	any	part	of	the	orbit.	So	that	the	planet	has	to	go
faster	when	it	is	closer	to	the	sun,	and	slower	when	it	is	farther	away,	in
order	to	show	precisely	the	same	area.



order	to	show	precisely	the	same	area.
Some	several	years	later	Kepler	found	a	third	rule,	which	was	not

concerned	only	with	the	motion	of	a	single	planet	around	the	sun	but
related	various	planets	to	each	other.	It	said	that	the	time	the	planet
took	to	go	all	around	the	sun	was	related	to	the	size	of	the	orbit,	and
that	the	times	varied	as	the	square	root	of	the	cube	of	the	size	of	the
orbit	and	for	this	the	size	of	the	orbit	is	the	diameter	across	the	biggest
distance	on	the	ellipse.	Kepler	then	had	these	three	laws	which	are
summarized	by	saying	that	the	orbit	forms	an	ellipse,	and	that	equal	areas
are	swept	in	equal	times	and	that	the	time	to	go	round	varies	as	a	three	half
power	of	the	size,	that	is,	the	square	root	of	the	cube	of	the	size.	These
three	laws	of	Kepler	give	a	complete	description	of	the	motion	of	the
planets	around	the	sun.
The	next	question	was	–	what	makes	planets	go	around	the	sun?	At

the	time	of	Kepler	some	people	answered	this	problem	by	saying	that
there	were	angels	behind	them	beating	their	wings	and	pushing	the
planets	around	an	orbit.	As	you	will	see,	the	answer	is	not	very	far	from
the	truth.	The	only	difference	is	that	the	angels	sit	in	a	different
direction	and	their	wings	push	inwards.
In	the	meantime,	Galileo	was	investigating	the	laws	of	motion	of

ordinary	objects	at	hand	on	the	earth.	In	studying	these	laws,	and	doing
a	number	of	experiments	to	see	how	balls	run	down	inclined	planes,	and
how	pendulums	swing,	and	so	on,	Galileo	discovered	a	great	principle
called	the	principle	of	inertia,	which	is	this:	that	if	an	object	has	nothing
acting	on	it	and	is	going	along	at	a	certain	velocity	in	a	straight	line	it
will	go	at	the	same	velocity	in	exactly	the	same	straight	line	for	ever.
Unbelievable	as	that	may	sound	to	anybody	who	has	tried	to	make	a	ball
roll	for	ever,	if	this	idealization	were	correct,	and	there	were	no
influences	acting,	such	as	the	friction	of	the	floor	and	so	on,	the	ball



influences	acting,	such	as	the	friction	of	the	floor	and	so	on,	the	ball
would	go	at	a	uniform	speed	for	ever.
The	next	point	was	made	by	Newton,	who	discussed	the	question:

‘When	it	does	not	go	in	a	straight	line	then	what?’	And	he	answered	it
this	way:	that	a	force	is	needed	to	change	the	velocity	in	any	manner.
For	instance,	if	you	are	pushing	a	ball	in	the	direction	that	it	moves	it
will	speed	up.	If	you	find	that	it	changes	direction,	then	the	force	must
have	been	sideways.	The	force	can	be	measured	by	the	product	of	two
effects.	How	much	does	the	velocity	change	in	a	small	interval	of	time?
That’s	called	the	acceleration,	and	when	it	is	multiplied	by	the
coefficient	called	the	mass	of	an	object,	or	its	inertia	coefficient,	then
that	together	is	the	force.	One	can	measure	this.	For	instance,	if	one	has
a	stone	on	the	end	of	a	string	and	swings	it	in	a	circle	over	the	head,	one
finds	one	has	to	pull,	the	reason	is	that	although	the	speed	is	not
changing	as	it	goes	round	in	a	circle,	it	is	changing	its	direction;	there
must	be	a	perpetually	in-pulling	force,	and	this	is	proportional	to	the
mass.	So	that	if	we	were	to	take	two	different	objects,	and	swing	first
one	and	then	the	other	at	the	same	speed	around	the	head,	and	measure
the	force	in	the	second	one,	then	that	second	force	is	bigger	than	the
other	force	in	proportion	as	the	masses	are	different.	This	is	a	way	of
measuring	the	masses	by	what	force	is	necessary	to	change	the	speed.
Newton	saw	from	this	that,	to	take	a	simple	example,	if	a	planet	is	going
in	a	circle	around	the	sun,	no	force	is	needed	to	make	it	go	sideways,
tangentially;	if	there	were	no	force	at	all	then	it	would	just	keep	coasting
along.	But	actually	the	planet	does	not	keep	coasting	along,	it	finds	itself
later	not	way	out	where	it	would	go	if	there	were	no	force	at	all,	but
farther	down	towards	the	sun.



Figure	3

(fig.	3.)	In	other	words,	its	velocity,	its	motion,	has	been	deflected
towards	the	sun.	So	that	what	the	angels	have	to	do	is	to	beat	their
wings	in	towards	the	sun	all	the	time.
But	the	motion	to	keep	the	planet	going	in	a	straight	line	has	no

known	reason.	The	reason	why	things	coast	for	ever	has	never	been
found	out.	The	law	of	inertia	has	no	known	origin.	Although	the	angels
do	not	exist	the	continuation	of	the	motion	does,	but	in	order	to	obtain
the	falling	operation	we	do	need	a	force.	It	became	apparent	that	the
origin	of	the	force	was	towards	the	sun.	As	a	matter	of	fact	Newton	was
able	to	demonstrate	that	the	statement	that	equal	areas	are	swept	in
equal	times	was	a	direct	consequence	of	the	simple	idea	that	all	the
changes	in	velocity	are	directed	exactly	towards	the	sun,	even	in	the
elliptical	case,	and	in	the	next	lecture	I	shall	be	able	to	show	you	how	it
works,	in	detail.
From	this	law	Newton	confirmed	the	idea	that	the	force	is	towards

the	sun,	and	from	knowing	how	the	periods	of	the	different	planets	vary
with	the	distance	away	from	the	sun,	it	is	possible	to	determine	how	that
force	must	weaken	at	different	distances.	He	was	able	to	determine	that
the	force	must	vary	inversely	as	the	square	of	the	distance.
So	far	Newton	has	not	said	anything,	because	he	has	only	stated	two

things	which	Kepler	said	in	a	different	language.	One	is	exactly
equivalent	to	the	statement	that	the	force	is	towards	the	sun,	and	the
other	is	exactly	equivalent	to	the	statement	that	the	force	is	inversely	as



other	is	exactly	equivalent	to	the	statement	that	the	force	is	inversely	as
the	square	of	the	distance.
But	people	had	seen	in	telescopes	Jupiter’s	satellites	going	around

Jupiter,	and	it	looked	like	a	little	solar	system,	as	if	the	satellites	were
attracted	to	Jupiter.	The	moon	is	attracted	to	the	earth	and	goes	round
the	earth	and	is	attracted	in	the	same	way.	It	looks	as	though	everything
is	attracted	to	everything	else,	and	so	the	next	statement	was	to
generalize	this	and	to	say	that	every	object	attracts	every	object.	If	so,
the	earth	must	be	pulling	on	the	moon,	just	as	the	sun	pulls	on	the
planet.	But	it	is	known	that	the	earth	is	pulling	on	things	–	because	you
are	all	sitting	tightly	on	your	seats	in	spite	of	your	desire	to	float	into	the
air.	The	pull	for	objects	on	the	earth	was	well	known	in	the	phenomena
of	gravitation,	and	it	was	Newton’s	idea	that	maybe	the	gravitation	that
held	the	moon	in	orbit	was	the	same	gravitation	that	pulled	the	object
towards	the	earth.
It	is	easy	to	figure	out	how	far	the	moon	falls	in	one	second,	because

you	know	the	size	of	the	orbit,	you	know	the	moon	takes	a	month	to	go
around	the	earth,	and	if	you	figure	out	how	far	it	goes	in	one	second	you
can	figure	out	how	far	the	circle	of	the	moon’s	orbit	has	fallen	below	the
straight	line	that	it	would	have	been	in	if	it	did	not	go	the	way	it	does
go.	This	distance	is	one	twentieth	of	an	inch.	The	moon	is	sixty	times	as
far	away	from	the	earth’s	centre	as	we	are;	we	are	4,000	miles	away
from	the	centre,	and	the	moon	is	240,000	miles	away	from	the	centre,	so
if	the	law	of	inverse	square	is	right,	an	object	at	the	earth’s	surface
should	fall	in	one	second	by	 	inch	×	3,600	(the	square	of	60)	because
the	force	in	getting	out	there	to	the	moon,	has	been	weakened	by	60	×
60	by	the	inverse	square	law.	 	inch	×	3,600	is	about	16	feet,	and	it



was	known	already	from	Galileo’s	measurements	that	things	fall	in	one
second	on	the	earth’s	surface	by	16	feet.	So	this	meant	that	Newton	was
on	the	right	track,	there	was	no	going	back	now,	because	a	new	fact
which	was	completely	independent	previously,	the	period	of	the	moon’s
orbit	and	its	distance	from	the	earth,	was	connected	to	another	fact,	how
long	it	takes	something	to	fall	in	one	second	at	the	earth’s	surface.	This
was	a	dramatic	test	that	everything	is	all	right.

Figure	4

Further,	Newton	had	a	lot	of	other	predictions.	He	was	able	to
calculate	what	the	shape	of	the	orbit	should	be	if	the	law	were	the
inverse	square,	and	he	found,	indeed,	that	it	was	an	ellipse	–	so	he	got
three	for	two	as	it	were.	In	addition,	a	number	of	new	phenomena	had
obvious	explanations.	One	was	the	tides.	The	tides	were	due	to	the	pull
of	the	moon	on	the	earth	and	its	waters.	This	had	sometimes	been
thought	of	before,	with	the	difficulty	that	if	it	was	the	pull	of	the	moon
on	the	waters,	making	the	water	higher	on	the	side	where	the	moon	was,
then	there	would	only	be	one	tide	a	day	under	the	moon	(fig.	4),	but



actually	we	know	there	are	tides	roughly	every	twelve	hours,	and	that	is
two	tides	a	day.	There	was	also	another	school	of	thought	that	came	to	a
different	conclusion.	Their	theory	was	that	it	was	the	earth	pulled	by	the
moon	away	from	the	water.	Newton	was	actually	the	first	one	to	realize
what	was	going	on;	that	the	force	of	the	moon	on	the	earth	and	on	the
water	is	the	same	at	the	same	distance,	and	that	the	water	at	y	is	closer
to	the	moon	and	the	water	at	x	is	farther	from	the	moon	than	the	rigid
earth.	The	water	is	pulled	more	towards	the	moon	at	y,	and	at	x	is	less
towards	the	moon	than	the	earth,	so	there	is	a	combination	of	those	two
pictures	that	makes	a	double	tide.	Actually	the	earth	does	the	same	trick
as	the	moon,	it	goes	around	in	a	circle.	The	force	of	the	moon	on	the
earth	is	balanced,	but	by	what?	By	the	fact	that	just	as	the	moon	goes	in
a	circle	to	balance	the	earth’s	force,	the	earth	is	also	going	in	a	circle.
The	centre	of	the	circle	is	somewhere	inside	the	earth.	It	is	also	going	in
a	circle	to	balance	the	moon.	The	two	of	them	go	around	a	common
centre	so	the	forces	are	balanced	for	the	earth,	but	the	water	at	x	is
pulled	less,	and	at	y	more	by	the	moon	and	it	bulges	out	at	both	sides.	At
any	rate	tides	were	then	explained,	and	the	fact	that	there	were	two	a
day.	A	lot	of	other	things	became	clear:	how	the	earth	is	round	because
everything	gets	pulled	in,	and	how	it	is	not	round	because	it	is	spinning
and	the	outside	gets	thrown	out	a	little	bit,	and	it	balances;	how	the	sun
and	moon	are	round,	and	so	on.
As	science	developed	and	measurements	were	made	more	accurate,

the	tests	of	Newton’s	Law	became	more	stringent,	and	the	first	careful
tests	involved	the	moons	of	Jupiter.	By	accurate	observations	of	the	way
they	went	around	over	long	periods	of	time	one	could	check	that
everything	was	according	to	Newton,	and	it	turned	out	to	be	not	the



case.	The	moons	of	Jupiter	appeared	to	get	sometimes	eight	minutes
ahead	of	time	and	sometimes	eight	minutes	behind	time,	where	the	time
is	the	calculated	value	according	to	Newton’s	Laws.	It	was	noticed	that
they	were	ahead	of	schedule	when	Jupiter	was	close	to	the	earth	and
behind	schedule	when	it	was	far	away,	a	rather	odd	circumstance.	Mr
Roemer,*	having	confidence	in	the	Law	of	Gravitation,	came	to	the
interesting	conclusion	that	it	takes	light	some	time	to	travel	from	the
moons	of	Jupiter	to	the	earth,	and	what	we	are	looking	at	when	we	see
the	moons	is	not	how	they	are	now	but	how	they	were	the	time	ago	it
took	the	light	to	get	here.	When	Jupiter	is	near	us	it	takes	less	time	for
the	light	to	come,	and	when	Jupiter	is	farther	from	us	it	takes	longer
time,	so	Roemer	had	to	correct	the	observations	for	the	differences	in
time	and	by	the	fact	that	they	were	this	much	early	or	that	much	late.	In
this	way	he	was	able	to	determine	the	velocity	of	light.	This	was	the	first
demonstration	that	light	was	not	an	instantaneously	propagating
material.
I	bring	this	particular	matter	to	your	attention	because	it	illustrates

that	when	a	law	is	right	it	can	be	used	to	find	another	one.	If	we	have
confidence	in	a	law,	then	if	something	appears	to	be	wrong	it	can
suggest	to	us	another	phenomenon.	If	we	had	not	known	the	Law	of
Gravitation	we	would	have	taken	much	longer	to	find	the	speed	of	light,
because	we	would	not	have	known	what	to	expect	of	Jupiter’s	satellites.
This	process	has	developed	into	an	avalanche	of	discoveries,	each	new
discovery	permits	the	tools	for	much	more	discovery,	and	this	is	the
beginning	of	the	avalanche	which	has	gone	on	now	for	400	years	in	a
continuous	process,	and	we	are	still	avalanching	along	at	high	speed.
Another	problem	came	up	–	the	planets	should	not	really	go	in



ellipses,	because	according	to	Newton’s	Laws	they	are	not	only	attracted
by	the	sun	but	also	they	pull	on	each	other	a	little	–	only	a	little,	but	that
little	is	something,	and	will	alter	the	motion	a	little	bit.	Jupiter,	Saturn
and	Uranus	were	big	planets	that	were	known,	and	calculations	were
made	about	how	slightly	different	from	the	perfect	ellipses	of	Kepler	the
planets	ought	to	be	going	by	the	pull	of	each	on	the	others.	And	at	the
end	of	the	calculations	and	observations	it	was	noticed	that	Jupiter	and
Saturn	went	according	to	the	calculations,	but	that	Uranus	was	doing
something	funny.	Another	opportunity	for	Newton’s	Laws	to	be	found
wanting;	but	take	courage!	Two	men,	Adams	and	Leverrier,*	who	made
these	calculations	independently	and	at	almost	exactly	the	same	time,
proposed	that	the	motions	of	Uranus	were	due	to	an	unseen	planet,	and
they	wrote	letters	to	their	respective	observatories	telling	them	–	‘Turn
your	telescope	and	look	there	and	you	will	find	a	planet’.	‘How	absurd,’
said	one	of	the	observatories,	‘some	guy	sitting	with	pieces	of	paper	and
pencils	can	tell	us	where	to	look	to	find	some	new	planet.’	The	other
observatory	was	more…	well,	the	administration	was	different,	and	they
found	Neptune!
More	recently,	in	the	beginning	of	the	twentieth	century,	it	became

apparent	that	the	motion	of	the	planet	Mercury	was	not	exactly	right.
This	caused	a	lot	of	trouble	and	was	not	explained	until	it	was	shown	by
Einstein	that	Newton’s	Laws	were	slightly	off	and	that	they	had	to	be
modified.
The	question	is,	how	far	does	this	law	extend?	Does	it	extend	outside

the	solar	system?	And	so	I	show	on	Plate	1	evidence	that	the	Law	of
Gravitation	is	on	a	wider	scale	than	just	the	solar	system.	Here	is	a	series
of	three	pictures	of	a	so-called	double	star.	There	is	a	third	star



fortunately	in	the	picture	so	that	you	can	see	they	are	really	turning
around	and	that	nobody	simply	turned	the	frames	of	the	pictures	around,
which	is	easy	to	do	on	astronomical	pictures.	The	stars	are	actually
going	around,	and	you	can	see	the	orbit	that	they	make	on	figure	5.	It	is
evident	that	they	are	attracting	each	other	and	that	they	are	going
around	in	an	ellipse	according	to	the	way	expected.	These	are	a
succession	of	positions	at	various	times	going	around	clockwise.	You	will
be	happy	except	when	you	notice,	if	you	have	not	noticed	already,	that
the	centre	is	not	a	focus	of	the	ellipse	but	is	quite	a	bit	off.	So	something
is	the	matter	with	the	law?	No,	God	has	not	presented	us	with	this	orbit
face-on;	it	is	tilted	at	a	funny	angle.	If	you	take	an	ellipse	and	mark	its
focus	and	hold	the	paper	at	an	odd	angle	and	look	at	it	in	projection,
you	will	find	that	the	focus	does	not	have	to	be	at	the	focus	of	the
projected	image.	It	is	because	the	orbit	is	tilted	in	space	that	it	looks	that
way.

Figure	5



How	about	a	bigger	distance?	This	force	is	between	two	stars;	does	it
go	any	farther	than	distances	which	are	not	more	than	two	or	three
times	the	solar	system’s	diameter?	Here	is	something	in	Plate	2	that	is
100,000	times	as	big	as	the	solar	system	in	diameter;	this	is	a
tremendous	number	of	stars.	This	large	white	spot	is	not	a	solid	white
spot;	it	appears	like	that	because	of	the	failure	of	the	instruments	to
resolve	it,	but	there	are	very	very	tiny	spots	just	like	other	stars,	well
separated	from	each	other,	not	hitting	one	another,	each	one	falling
through	and	back	and	forth	in	this	great	globular	cluster.	It	is	one	of	the
most	beautiful	things	in	the	sky;	it	is	as	beautiful	as	sea	waves	and
sunsets.	The	distribution	of	this	material	is	perfectly	clear.	The	thing	that
holds	this	galaxy	together	is	the	gravitational	attraction	of	the	stars	for
each	other.	The	distribution	of	the	material	and	the	sense	of	distance
permits	one	to	find	out	roughly	what	the	law	of	force	is	between	the
stars…	and,	of	course,	it	comes	out	that	it	is	roughly	the	inverse	square.
Accuracy	in	these	calculations	and	measurements	is	not	anywhere	near
as	careful	as	in	the	solar	system.
Onward,	gravity	extends	still	farther.	That	cluster	was	just	a	little

pin-point	inside	the	big	galaxy	in	Plate	3,	which	shows	a	typical	galaxy,
and	it	is	clear	that	again	this	thing	is	held	together	by	some	force,	and
the	only	candidate	that	is	reasonable	is	gravitation.	When	we	get	to	this
size	we	have	no	way	of	checking	the	inverse	square	law,	but	there	seems
to	be	no	doubt	that	in	these	great	agglomerations	of	stars	–	these
galaxies	are	50,000	to	100,000	light	years	across,	while	the	distance
from	the	earth	to	the	sun	is	only	eight	light	minutes	–	gravity	is
extending	even	over	these	distances.	In	Plate	4	is	evidence	that	it
extends	even	farther.	This	is	what	is	called	a	cluster	of	galaxies;	they	are



all	in	one	lump	and	analogous	to	the	cluster	of	stars,	but	this	time	what
is	clustered	are	those	big	babies	shown	in	Plate	3.
This	is	as	far	as	about	one	tenth,	maybe	a	hundredth,	of	the	size	of

the	Universe,	as	far	as	we	have	any	direct	evidence	that	gravitational
forces	extend.	So	the	earth’s	gravitation	has	no	edge,	although	you	may
read	in	the	papers	that	something	gets	outside	the	field	of	gravitation.	It
becomes	weaker	and	weaker	inversely	as	the	square	of	the	distance,
divided	by	four	each	time	you	get	twice	as	far	away,	until	it	is	lost	in	the
confusion	of	the	strong	fields	of	other	stars.	Together	with	the	stars	in	its
neighbourhood	it	pulls	the	other	stars	to	form	the	galaxy,	and	all
together	they	pull	on	other	galaxies	and	make	a	pattern,	a	cluster,	of
galaxies.	So	the	earth’s	gravitational	field	never	ends,	but	peters	out	very
slowly	in	a	precise	and	careful	law,	probably	to	the	edges	of	the
Universe.
The	Law	of	Gravitation	is	different	from	many	of	the	others.	Clearly

it	is	very	important	in	the	economy,	in	the	machinery,	of	the	Universe;
there	are	many	places	where	gravity	has	its	practical	applications	as	far
as	the	Universe	is	concerned.	But	atypically	the	knowledge	of	the	Laws
of	Gravitation	has	relatively	few	practical	applications	compared	with
the	other	laws	of	physics.	This	is	one	case	where	I	have	picked	an
atypical	example.	It	is	impossible,	by	the	way,	by	picking	one	of
anything	to	pick	one	that	is	not	atypical	in	some	sense.	That	is	the
wonder	of	the	world.	The	only	applications	of	the	knowledge	of	the	law
that	I	can	think	of	are	in	geophysical	prospecting,	in	predicting	the	tides,
and	nowadays,	more	modernly,	in	working	out	the	motions	of	the
satellites	and	planet	probes	that	we	send	up,	and	so	on;	and	finally,	also
modernly,	to	calculate	the	predictions	of	the	planets’	positions,	which



have	great	utility	for	astrologists	who	publish	their	predictions	in
horoscopes	in	the	magazines.	It	is	a	strange	world	we	live	in	–	that	all
the	new	advances	in	understanding	are	used	only	to	continue	the
nonsense	which	has	existed	for	2,000	years.
I	must	mention	the	important	places	where	gravitation	does	have

some	real	effect	in	the	behaviour	of	the	Universe,	and	one	of	the
interesting	ones	is	in	the	formation	of	new	stars.	Plate	5	is	a	gaseous
nebula	inside	our	own	galaxy;	it	is	not	a	lot	of	stars;	it	is	gas.	The	black
specks	are	places	where	the	gas	has	been	compressed	or	attracted	to
itself.	Perhaps	it	starts	by	some	kind	of	shock	waves,	but	the	remainder
of	the	phenomenon	is	that	gravitation	pulls	the	gas	closer	and	closer
together	so	that	big	mobs	of	gas	and	dust	collect	and	form	balls;	and	as
they	fall	still	farther,	the	heat	generated	by	falling	lights	them	up,	and
they	become	stars.	And	we	have	in	Plate	6	some	evidence	of	the	creation
of	new	stars.
So	this	is	how	stars	are	born,	when	the	gas	collects	together	too	much

by	gravitation.	Sometimes	when	they	explode	the	stars	belch	out	dirt
and	gases,	and	the	dirt	and	gases	collect	back	again	and	make	new	stars
–	it	sounds	like	perpetual	motion.
I	have	already	shown	that	gravitation	extends	to	great	distances,	but

Newton	said	that	everything	attracted	everything	else.	Is	it	really	true
that	two	things	attract	each	other?	Can	we	make	a	direct	test	and	not
just	wait	to	see	whether	the	planets	attract	each	other?	A	direct	test	was
made	by	Cavendish*	on	equipment	which	you	see	indicated	in	figure	6.
The	idea	was	to	hang	by	a	very	very	fine	quartz	fibre	a	rod	with	two
balls,	and	then	put	two	large	lead	balls	in	the	positions	indicated	next	to
it	on	the	side.	Because	of	the	attraction	of	the	balls	there	would	be	a



slight	twist	to	the	fibre,	and	the	gravitational	force	between	ordinary
things	is	very	very	tiny	indeed.	It	was	possible	to	measure	the	force
between	the	two	balls.	Cavendish	called	his	experiment	“weighing	the
earth’.	With	pedantic	and	careful	teaching	today	we	would	not	let	our
students	say	that;	we	would	have	to	say	‘measuring	the	mass	of	the
earth’.	By	a	direct	experiment	Cavendish	was	able	to	measure	the	force,
the	two	masses	and	the	distance,	and	thus	determine	the	gravitational
constant,	G.	You	say,	‘Yes,	but	we	have	the	same	situation	here.	We
know	what	the	pull	is	and	we	know	what	the	mass	of	the	object	pulled
is,	and	we	know	how	far	away	we	are,	but	we	do	not	know	either	the
mass	of	the	earth	or	the	constant,	only	the	combination’.	By	measuring
the	constant,	and	knowing	the	facts	about	the	pull	of	the	earth,	the	mass
of	the	earth	could	be	determined.

Figure	6

Indirectly	this	experiment	was	the	first	determination	of	how	heavy
or	massive	is	the	ball	on	which	we	stand.	It	is	an	amazing	achievement
to	find	that	out,	and	I	think	that	is	why	Cavendish	named	his	experiment



‘weighing	the	earth’,	instead	of	‘determining	the	constant	in	the
gravitational	equation’.	He,	incidentally,	was	weighing	the	sun	and
everything	else	at	the	same	time,	because	the	pull	of	the	sun	is	known	in
the	same	manner.
One	other	test	of	the	law	of	gravity	is	very	interesting,	and	that	is	the

question	whether	the	pull	is	exactly	proportional	to	the	mass.	If	the	pull
is	exactly	proportional	to	the	mass,	and	the	reaction	to	force,	the
motions	induced	by	forces,	changes	in	velocity,	are	inversely
proportional	to	the	mass.	That	means	that	two	objects	of	different	mass
will	change	their	velocity	in	the	same	manner	in	a	gravitational	field;	or
two	diffeient	things	in	a	vacuum,	no	matter	what	their	mass,	will	fall	the
same	way	to	the	earth.	That	is	Galileo’s	old	experiment	from	the	leaning
tower	of	Pisa.	It	means,	for	example,	that	in	a	man-made	satellite,	an
object	inside	will	go	round	the	earth	in	the	same	kind	of	orbit	as	one	on
the	outside,	and	thus	apparently	float	in	the	middle.	The	fact	that	the
force	is	exactly	proportional	to	the	mass,	and	that	the	reactions	are
inversely	proportional	to	the	mass,	has	this	very	interesting
consequence.
How	accurate	is	it?	It	was	measured	in	an	experiment	by	a	man

named	Eötvös*	in	1909	and	very	much	more	recently	and	more
accurately	by	Dicke,†	and	is	known	to	one	part	in	10,000,000,000.	The
forces	are	exactly	proportional	to	the	mass.	How	is	it	possible	to	measure
with	that	accuracy?	Suppose	you	wanted	to	measure	whether	it	is	true
for	the	pull	of	the	sun.	You	know	the	sun	is	pulling	us	all,	it	pulls	the
earth	too,	but	suppose	you	wanted	to	know	whether	the	pull	is	exactly
proportional	to	the	inertia.	The	experiment	was	first	done	with
sandalwood	;	lead	and	copper	have	been	used,	and	now	it	is	done	with



polyethylene.	The	earth	is	going	around	the	sun,	so	the	things	are
thrown	out	by	inertia	and	they	are	thrown	out	to	the	extent	that	the	two
objects	have	inertia.	But	they	are	attracted	to	the	sun	to	the	extent	that
they	have	mass,	in	the	attraction	law.	So	if	they	are	attracted	to	the	sun
in	a	different	proportion	from	that	thrown	out	by	inertia,	one	will	be
pulled	towards	the	sun,	and	the	other	away	from	it,	and	so,	hanging
them	on	opposite	ends	of	a	rod	on	another	Cavendish	quartz	fibre,	the
thing	will	twist	towards	the	sun.	It	does	not	twist	at	this	accuracy,	so	we
know	that	the	sun’s	attraction	to	the	two	objects	is	exactly	proportional
to	the	centrifugal	effect,	which	is	inertia;	therefore,	the	force	of
attraction	on	an	object	is	exactly	proportional	to	its	coefficient	of	inertia;
in	other	words,	its	mass.
One	thing	is	particularly	interesting.	The	inverse	square	law	appears

again	–	in	the	electrical	laws,	for	instance.	Electricity	also	exerts	forces
inversely	as	the	square	of	the	distance,	this	time	between	charges,	and
one	thinks	perhaps	that	the	inverse	square	of	the	distance	has	some	deep
significance.	No	one	has	ever	succeeded	in	making	electricity	and	gravity
different	aspects	of	the	same	thing.	Today	our	theories	of	physics,	the
laws	of	physics,	are	a	multitude	of	different	parts	and	pieces	that	do	not
fit	together	very	well.	We	do	not	have	one	structure	from	which	all	is
deduced;	we	have	several	pieces	that	do	not	quite	fit	exactly	yet.	That	is
the	reason	why	in	these	lectures	instead	of	having	the	ability	to	tell	you
what	the	law	of	physics	is,	I	have	to	talk	about	the	things	that	are
common	to	the	various	laws;	we	do	not	understand	the	connection
between	them.	But	what	is	very	strange	is	that	there	are	certain	things
which	are	the	same	in	both.	Now	let	us	look	again	at	the	law	of
electricity.



The	force	goes	inversely	as	the	square	of	the	distance,	but	the	thing
that	is	remarkable	is	the	tremendous	difference	in	the	strength	of	the
electrical	and	gravitational	forces.	People	who	want	to	make	electricity
and	gravitation	out	of	the	same	thing	will	find	that	electricity	is	so	much
more	powerful	than	gravity,	it	is	hard	to	believe	they	could	both	have
the	same	origin.	How	can	I	say	one	thing	is	more	powerful	than	another?
It	depends	upon	how	much	charge	you	have,	and	how	much	mass	you
have.	You	cannot	talk	about	how	strong	gravity	is	by	saying:	‘I	take	a
lump	of	such	a	size’,	because	you	chose	the	size.	If	we	try	to	get
something	that	Nature	produces	–	her	own	pure	number	that	has
nothing	to	do	with	inches	or	years	or	anything	to	do	with	our	own
dimensions	–	we	can	do	it	this	way.	If	we	take	a	fundamental	particle
such	as	an	electron	–	any	different	one	will	give	a	different	number,	but
to	give	an	idea	say	electrons	–	two	electrons	are	two	fundamental
particles,	and	they	repel	each	other	inversely	as	the	square	of	the
distance	due	to	electricity,	and	they	attract	each	other	inversely	as	the
square	of	the	distance	due	to	gravitation.
Question:	What	is	the	ratio	of	the	gravitational	force	to	the	electrical

force	?	That	is	illustrated	in	figure	7.	The	ratio	of	the	gravitational
attraction	to	electrical	repulsion	is	given	by	a	number	with	42	digits
tailing	off.	Now	therein	lies	a	very	deep	mystery.	Where	could	such	a
tremendous	number	come	from?	If	you	ever	had	a	theory	from	which
both	of	these	things	are	to	come,	how	could	they	come	in	such
disproportion?	What	equation	has	a	solution	which	has	for	two	kinds	of
forces	an	attraction	and	repulsion	with	that	fantastic	ratio	?



Figure	7

People	have	looked	for	such	a	large	ratio	in	other	places.	They	hope,
for	example,	that	there	is	another	large	number,	and	if	you	want	a	large
number	why	not	take	the	diameter	of	the	Universe	to	the	diameter	of	a
proton	–	amazingly	enough	it	also	is	a	number	with	42	digits.	And	so	an
interesting	proposal	is	made	that	this	ratio	is	the	same	as	the	ratio	of	the
size	of	the	Universe	to	the	diameter	of	a	proton.	But	the	Universe	is
expanding	with	time	and	that	means	that	the	gravitational	constant	is
changing	with	time,	and	although	that	is	a	possibility	there	is	no
evidence	to	indicate	that	it	is	a	fact.	There	are	several	partial	indications
that	the	gravitational	constant	has	not	changed	in	that	way.	So	this
tremendous	number	remains	a	mystery.
To	finish	about	the	theory	of	gravitation,	I	must	say	two	more	things.

One	is	that	Einstein	had	to	modify	the	Laws	of	Gravitation	in	accordance
with	his	principles	of	relativity.	The	first	of	the	principles	was	that	‘x’
cannot	occur	instantaneously,	while	Newton’s	theory	said	that	the	force
was	instantaneous.	He	had	to	modify	Newton’s	laws.	They	have	very
small	effects,	these	modifications.	One	of	them	is	that	all	masses	fall,



small	effects,	these	modifications.	One	of	them	is	that	all	masses	fall,
light	has	energy	and	energy	is	equivalent	to	mass.	So	light	falls	and	it
means	that	light	going	near	the	sun	is	deflected;	it	is.	Also	the	force	of
gravitation	is	slightly	modified	in	Einstein’s	theory,	so	that	the	law	has
changed	very	very	slightly,	and	it	is	just	the	right	amount	to	account	for
the	slight	discrepancy	that	was	found	in	the	movement	of	Mercury.
Finally,	in	connection	with	the	laws	of	physics	on	a	small	scale,	we

have	found	that	the	behaviour	of	matter	on	a	small	scale	obeys	laws	very
different	from	things	on	a	large	scale.	So	the	question	is,	how	does
gravity	look	on	a	small	scale	?	That	is	called	the	Quantum	Theory	of
Gravity.	There	is	no	Quantum	Theory	of	Gravity	today.	People	have	not
succeeded	completely	in	making	a	theory	which	is	consistent	with	the
uncertainty	principles	and	the	quantum	mechanical	principles.
You	will	say	to	me,	‘Yes,	you	told	us	what	happens,	but	what	is

gravity?	Where	does	it	come	from?	What	is	it?	Do	you	mean	to	tell	me
that	a	planet	looks	at	the	sun,	sees	how	far	it	is,	calculates	the	inverse
square	of	the	distance	and	then	decides	to	move	in	accordance	with	that
law?’	In	other	words,	although	I	have	stated	the	mathematical	law,	I
have	given	no	clue	about	the	mechanism.	I	will	discuss	the	possibility	of
doing	this	in	the	next	lecture,	‘The	relation	of	mathematics	to	physics’.
In	this	lecture	I	would	like	to	emphasize,	just	at	the	end,	some

characteristics	that	gravity	has	in	common	with	the	other	laws	that	we
mentioned	as	we	passed	along.	First,	it	is	mathematical	in	its	expression;
the	others	are	that	way	too.	Second,	it	is	not	exact;	Einstein	had	to
modify	it,	and	we	know	it	is	not	quite	right	yet,	because	we	have	still	to
put	the	quantum	theory	in.	That	is	the	same	with	all	our	other	laws	–
they	are	not	exact.	There	is	always	an	edge	of	mystery,	always	a	place
where	we	have	some	fiddling	around	to	do	yet.	This	may	or	may	not	be



where	we	have	some	fiddling	around	to	do	yet.	This	may	or	may	not	be
a	property	of	Nature,	but	it	certainly	is	common	to	all	the	laws	as	we
know	them	today.	It	may	be	only	a	lack	of	knowledge.
But	the	most	impressive	fact	is	that	gravity	is	simple.	It	is	simple	to

state	the	principles	completely	and	not	have	left	any	vagueness	for
anybody	to	change	the	ideas	of	the	law.	It	is	simple,	and	therefore	it	is
beautiful.	It	is	simple	in	its	pattern.	I	do	not	mean	it	is	simple	in	its
action	–	the	motions	of	the	various	planets	and	the	perturbations	of	one
on	the	other	can	be	quite	complicated	to	work	out,	and	to	follow	how	all
those	stars	in	a	globular	cluster	move	is	quite	beyond	our	ability.	It	is
complicated	in	its	actions,	but	the	basic	pattern	or	the	system	beneath
the	whole	thing	is	simple.	This	is	common	to	all	our	laws;	they	all	turn
out	to	be	simple	things,	although	complex	in	their	actual	actions.
Finally	comes	the	universality	of	the	gravitational	law,	and	the	fact

that	it	extends	over	such	enormous	distances	that	Newton,	in	his	mind,
worrying	about	the	solar	system,	was	able	to	predict	what	would	happen
in	an	experiment	of	Cavendish,	where	Cavendish’s	little	model	of	the
solar	system,	two	balls	attracting,	has	to	be	expanded	ten	million	million
times	to	become	the	solar	system.	Then	ten	million	million	times	larger
again	we	find	galaxies	attracting	each	other	by	exactly	the	same	law.
Nature	uses	only	the	longest	threads	to	weave	her	patterns,	so	each	small
piece	of	her	fabric	reveals	the	organization	of	the	entire	tapestry.



2
The	Relation	of	Mathematics	to	Physics

In	thinking	out	the	applications	of	mathematics	and	physics,	it	is
perfectly	natural	that	the	mathematics	will	be	useful	when	large
numbers	are	involved	in	complex	situations.	In	biology,	for	example,	the
action	of	a	virus	on	a	bacterium	is	unmathematical.	If	you	watch	it
under	a	microscope,	a	jiggling	little	virus	finds	some	spot	on	the	odd
shaped	bacterium	–	they	are	all	different	shapes	–	and	maybe	it	pushes
its	DNA	in	and	maybe	it	does	not.	Yet	if	we	do	the	experiment	with
millions	and	millions	of	bacteria	and	viruses,	then	we	can	learn	a	great
deal	about	the	viruses	by	taking	averages.	We	can	use	mathematics	in
the	averaging,	to	see	whether	the	viruses	develop	in	the	bacteria,	what
new	strains	and	what	percentage;	and	so	we	can	study	the	genetics,	the
mutations	and	so	forth.
To	take	another	more	trivial	example,	imagine	an	enormous	board,	a

chequerboard	to	play	chequers	or	draughts.	The	actual	operation	of	any
one	step	is	not	mathematical	–	or	it	is	very	simple	in	its	mathematics.
But	you	could	imagine	that	on	an	enormous	board,	with	lots	and	lots	of
pieces,	some	analysis	of	the	best	moves,	or	the	good	moves	or	bad
moves,	might	be	made	by	a	deep	kind	of	reasoning	which	would	involve
somebody	having	gone	off	first	and	thought	about	it	in	great	depth.	That
then	becomes	mathematics,	involving	abstract	reasoning.	Another
example	is	switching	in	computers.	If	you	have	one	switch,	which	is
either	on	or	off,	there	is	nothing	very	mathematical	about	that,	although
mathematicians	like	to	start	there	with	their	mathematics.	But	with	all
the	interconnections	and	wires,	to	figure	out	what	a	very	large	system



the	interconnections	and	wires,	to	figure	out	what	a	very	large	system
will	do	requires	mathematics.
I	would	like	to	say	immediately	that	mathematics	has	a	tremendous

application	in	physics	in	the	discussion	of	the	detailed	phenomena	in
complicated	situations,	granting	the	fundamental	rules	of	the	game.	That
is	something	which	I	would	spend	most	of	my	time	discussing	if	I	were
talking	only	about	the	relation	of	mathematics	and	physics.	But	since
this	is	part	of	a	series	of	lectures	on	the	character	of	physical	law	I	do
not	have	time	to	discuss	what	happens	in	complicated	situations,	but
will	go	immediately	to	another	question,	which	is	the	character	of	the
fundamental	laws.
If	we	go	back	to	our	chequer	game,	the	fundamental	laws	are	the

rules	by	which	the	chequers	move.	Mathematics	may	be	applied	in	the
complex	situation	to	figure	out	what	in	given	circumstances	is	a	good
move	to	make.	But	very	little	mathematics	is	needed	for	the	simple
fundamental	character	of	the	basic	laws.	They	can	be	simply	stated	in
English	for	chequers.
The	strange	thing	about	physics	is	that	for	the	fundamental	laws	we

still	need	mathematics.	I	will	give	two	examples,	one	in	which	we	really
do	not,	and	one	in	which	we	do.	First,	there	is	a	law	in	physics	called
Faraday’s	law,	which	says	that	in	electrolysis	the	amount	of	material
which	is	deposited	is	proportional	to	the	current	and	to	the	time	that	the
current	is	acting.	That	means	that	the	amount	of	material	deposited	is
proportional	to	the	charge	which	goes	through	the	system.	It	sounds
very	mathematical,	but	what	is	actually	happening	is	that	the	electrons
going	through	the	wire	each	carry	one	charge.	To	take	a	particular
example,	maybe	to	deposit	one	atom	requires	one	electron	to	come,	so
the	number	of	atoms	that	are	deposited	is	necessarily	equal	to	the



the	number	of	atoms	that	are	deposited	is	necessarily	equal	to	the
number	of	electrons	that	flow,	and	thus	proportional	to	the	charge	that
goes	through	the	wire.	So	that	mathematically-appearing	law	has	as	its
basis	nothing	very	deep,	requiring	no	real	knowledge	of	mathematics.
That	one	electron	is	needed	for	each	atom	in	order	for	it	to	deposit	itself
is	mathematics,	I	suppose,	but	it	is	not	the	kind	of	mathematics	that	I	am
talking	about	here.
On	the	other	hand,	take	Newton’s	law	for	gravitation,	which	has	the

aspects	I	discussed	last	time.	I	gave	you	the	equation:

just	to	impress	you	with	the	speed	with	which	mathematical	symbols	can
convey	information.	I	said	that	the	force	was	proportional	to	the	product
of	the	masses	of	two	objects,	and	inversely	as	the	square	of	the	distance
between	them,	and	also	that	bodies	react	to	forces	by	changing	their
speeds,	or	changing	their	motions,	in	the	direction	of	the	force	by
amounts	proportional	to	the	force	and	inversely	proportional	to	their
masses.	Those	are	words	all	right,	and	I	did	not	necessarily	have	to	write
the	equation.	Nevertheless	it	is	kind	of	mathematical,	and	we	wonder
how	this	can	be	a	fundamental	law.	What	does	the	planet	do?	Does	it
look	at	the	sun,	see	how	far	away	it	is,	and	decide	to	calculate	on	its
internal	adding	machine	the	inverse	of	the	square	of	the	distance,	which
tells	it	how	much	to	move?	This	is	certainly	no	explanation	of	the
machinery	of	gravitation!	You	might	want	to	look	further,	and	various
people	have	tried	to	look	further.	Newton	was	originally	asked	about	his
theory	–	‘But	it	doesn’t	mean	anything	–	it	doesn’t	tell	us	anything’.	He
said,	‘It	tells	you	how	it	moves.	That	should	be	enough.	I	have	told	you
how	it	moves,	not	why.’	But	people	often	are	unsatisfied	without	a



mechanism,	and	I	would	like	to	describe	one	theory	which	has	been

invented,	among	others,	of	the	type	you	might	want.	This	theory
suggests	that	this	effect	is	the	result	of	large	numbers	of	actions,	which
would	explain	why	it	is	mathematical.
Suppose	that	in	the	world	everywhere	there	are	a	lot	of	particles,

flying	through	us	at	very	high	speed.	They	come	equally	in	all	directions
–	just	shooting	by	–	and	once	in	a	while	they	hit	us	in	a	bombardment.
We,	and	the	sun,	are	practically	transparent	for	them,	practically	but	not
completely,	and	some	of	them	hit.	Look,	then,	at	what	would	happen
(fig.	8).

Figure	8

S	is	the	sun,	and	E	the	earth.	If	the	sun	were	not	there,	particles	would
be	bombarding	the	earth	from	all	sides,	giving	little	impulses	by	the
rattle,	bang,	bang	of	the	few	that	hit.	This	will	not	shake	the	earth	in	any
particular	direction,	because	there	are	as	many	coming	from	one	side	as
from	the	other,	from	top	as	from	bottom.	However,	when	the	sun	is
there	the	particles	which	are	coming	from	that	direction	are	partly
absorbed	by	the	sun,	because	some	of	them	hit	the	sun	and	do	not	go
through.	Therefore	the	number	coming	from	the	sun’s	direction	towards
the	earth	is	less	than	the	number	coming	from	the	other	sides,	because
they	meet	an	obstacle,	the	sun.	It	is	easy	to	see	that	the	farther	the	sun	is
away,	of	all	the	possible	directions	in	which	particles	can	come,	a



away,	of	all	the	possible	directions	in	which	particles	can	come,	a
smaller	proportion	of	the	particles	are	being	taken	out.	The	sun	will
appear	smaller	–	in	fact	inversely	as	the	square	of	the	distance.	Therefore
there	will	be	an	impulse	on	the	earth	towards	the	sun	that	varies
inversely	as	the	square	of	the	distance.	And	this	will	be	a	result	of	large
numbers	of	very	simple	operations,	just	hits,	one	after	the	other,	from	all
directions.	Therefore	the	strangeness	of	the	mathematical	relation	will
be	very	much	reduced,	because	the	fundamental	operation	is	much
simpler	than	calculating	the	inverse	of	the	square	of	the	distance.	This
design,	with	the	particles	bouncing,	does	the	calculation.
The	only	trouble	with	this	scheme	is	that	it	does	not	work,	for	other

reasons.	Every	theory	that	you	make	up	has	to	be	analysed	against	all
possible	consequences,	to	see	if	it	predicts	anything	else.	And	this	does
predict	something	else.	If	the	earth	is	moving,	more	particles	will	hit	it
from	in	front	than	from	behind.	(If	you	are	running	in	the	rain,	more
rain	hits	you	in	the	front	of	the	face	than	in	the	back	of	the	head,
because	you	are	running	into	the	rain.)	So,	if	the	earth	is	moving	it	is
running	into	the	particles	coming	towards	it	and	away	from	the	ones
that	are	chasing	it	from	behind.	So	more	particles	will	hit	it	from	the
front	than	from	the	back,	and	there	will	be	a	force	opposing	any	motion.
This	force	would	slow	the	earth	up	in	its	orbit,	and	it	certainly	would
not	have	lasted	the	three	or	four	billion	years	(at	least)	that	it	has	been
going	around	the	sun.	So	that	is	the	end	of	that	theory.	‘Well,’	you	say,
‘it	was	a	good	one,	and	I	got	rid	of	the	mathematics	for	a	while.	Maybe	I
could	invent	a	better	one.’	Maybe	you	can,	because	nobody	knows	the
ultimate.	But	up	to	today,	from	the	time	of	Newton,	no	one	has	invented
another	theoretical	description	of	the	mathematical	machinery	behind



this	law	which	does	not	either	say	the	same	thing	over	again,	or	make
the	mathematics	harder,	or	predict	some	wrong	phenomena.	So	there	is
no	model	of	the	theory	of	gravitation	today,	other	than	the	mathematical
form.
If	this	were	the	only	law	of	this	character	it	would	be	interesting	and

rather	annoying.	But	what	turns	out	to	be	true	is	that	the	more	we
investigate,	the	more	laws	we	find,	and	the	deeper	we	penetrate	nature,
the	more	this	disease	persists.	Every	one	of	our	laws	is	a	purely
mathematical	statement	in	rather	complex	and	abstruse	mathematics.
Newton’s	statement	of	the	law	of	gravitation	is	relatively	simple
mathematics.	It	gets	more	and	more	abstruse	and	more	and	more
difficult	as	we	go	on.	Why?	I	have	not	the	slightest	idea.	It	is	only	my
purpose	here	to	tell	you	about	this	fact.	The	burden	of	the	lecture	is	just
to	emphasize	he	fact	that	it	is	impossible	to	explain	honestly	the	beauties
of	the	laws	of	nature	in	a	way	that	people	can	feel,	without	their	having
some	deep	understanding	of	mathematics.	I	am	sorry,	but	this	seems	to
be	the	case.
You	might	say,	‘All	right,	then	if	there	is	no	explanation	the	of	law,	at

least	tell	me	what	the	law	is.	Why	not	tell	me	in	words	instead	of	in
symbols?	Mathematics	is	just	a	language,	and	I	want	to	be	able	to
translate	the	language’.	In	fact	I	can,	with	patience,	and	I	think	I	partly
did.	I	could	go	a	little	further	and	explain	in	more	detail	that	the
equation	means	that	if	the	distance	is	twice	as	far	the	force	is	one	fourth
as	much,	and	so	on.	I	could	convert	all	the	symbols	into	words.	In	other
words	I	could	be	kind	to	the	laymen	as	they	all	sit	hopefully	waiting	for
me	to	explain	something.	Different	people	get	different	reputations	for
their	skill	at	explaining	to	the	layman	in	layman’s	language	these



difficult	and	abstruse	subjects.	The	layman	then	searches	for	book	after
book	in	the	hope	that	he	will	avoid	the	complexities	which	ultimately	set
in,	even	with	the	best	expositor	of	this	type.	He	finds	as	he	reads	a
generally	increasing	confusion,	one	complicated	statement	after	another,
one	difficult-to-understand	thing	after	another,	all	apparently
disconnected	from	one	another.	It	becomes	obscure,	and	he	hopes	that
maybe	in	some	other	book	there	is	some	explanation….	The	author
almost	made	it	–	maybe	another	fellow	will	make	it	right.
But	I	do	not	think	it	is	possible,	because	mathematics	is	not	just

another	language.	Mathematics	is	a	language	plus	reasoning;	it	is	like	a
language	plus	logic.	Mathematics	is	a	tool	for	reasoning.	It	is	in	fact	a
big	collection	of	the	results	of	some	person’s	careful	thought	and
reasoning.	By	mathematics	it	is	possible	to	connect	one	statement	to
another.	For	instance,	I	can	say	that	the	force	is	directed	towards	the
sun.	I	can	also	tell	you,	as	I	did,	that	the	planet	moves	so	that	if	I	draw	a
line	from	the	sun	to	the	planet,	and	draw	another	line	at	some	definite
period,	like	three	weeks,	later,	then	the	area	that	is	swung	out	by	the
planet	is	exactly	the	same	as	it	will	be	in	the	next	three	weeks,	and	the
next	three	weeks,	and	so	on	as	it	goes	around	the	sun.	I	can	explain	both
of	those	statements	carefully,	but	I	cannot	explain	why	they	are	both	the
same.	The	apparent	enormous	complexities	of	nature,	with	all	its	funny
laws	and	rules,	each	of	which	has	been	carefully	explained	to	you,	are
really	very	closely	interwoven.	However,	if	you	do	not	appreciate	the
mathematics,	you	cannot	see,	among	the	great	variety	of	facts,	that	logic
permits	you	to	go	from	one	to	the	other.
It	may	be	unbelievable	that	I	can	demonstrate	that	equal	areas	will

be	swept	out	in	equal	times	if	the	forces	are	directed	towards	the	sun.	So
if	I	may,	I	will	do	one	demonstration	to	show	you	that	those	two	things



if	I	may,	I	will	do	one	demonstration	to	show	you	that	those	two	things
really	are	equivalent,	so	that	you	can	appreciate	more	than	the	mere
statement	of	the	two	laws.	I	will	show	that	the	two	laws	are	connected
so	that	reasoning	alone	will	bring	you	from	one	to	the	other,	and	that
mathematics	is	just	organized	reasoning.	Then	you	will	appreciate	the
beauty	of	the	relationship	of	the	statements.	I	am	going	to	prove	the
relationship	that	if	the	forces	are	directed	towards	the	sun	equal	areas
are	swept	out	in	equal	times.

Figure	9

We	start	with	a	sun	and	a	planet	(fig.	9),	and	we	imagine	that	at	a
certain	time	the	planet	is	at	position	1.	It	is	moving	in	such	a	way	that,
say,	one	second	later	it	has	moved	to	position	2.	If	the	sun	did	not	exert
a	force	on	the	planet,	then,	by	Galileo’s	principle	of	inertia,	it	would
keep	right	on	going	in	a	straight	line.	So	after	the	same	interval	of	time,
the	next	second,	it	would	have	moved	exactly	the	same	distance	in	the
same	straight	line,	to	the	position	3.	First	we	are	going	to	show	that	if
there	is	no	force,	then	equal	areas	are	swept	out	in	equal	times.	I	remind
you	that	the	area	of	a	triangle	is	half	the	base	times	the	altitude,	and



that	the	altitude	is	the	vertical	distance	to	the	base.	If	the	triangle	is
obtuse	(fig.	10),	then	the	altitude	is	the	vertical	height	AD	and	the	base
is	BC.	Now	let	us	compare	the	areas	which	would	be	swept	out	if	the	sun
exerted	no	force	whatsoever	(fig.	9).

Figure	10

The	two	distances	1–2	and	2–3	are	equal,	remember.	The	question	is,	are
the	two	areas	equal?	Consider	the	triangle	made	from	the	sun	and	the
two	points	1	and	2.	What	is	its	area?	It	is	the	base	1–2,	multiplied	by
half	the	perpendicular	height	from	the	baseline	to	S.	What	about	the
other	triangle,	the	triangle	in	the	motion	from	2	to	3	?	Its	area	is	the
base	2–3,	times	half	the	perpendicular	height	to	S.	The	two	triangles
have	the	same	altitude,	and,	as	I	indicated,	the	same	base,	and	therefore
they	have	the	same	area.	So	far	so	good.	If	there	were	no	force	from	the
sun,	equal	areas	would	be	swept	out	in	equal	times.	But	there	is	a	force
from	the	sun.	During	the	interval	1–2–3	the	sun	is	pulling	and	changing
the	motion	in	various	directions	towards	itself.	To	get	a	good
approximation	we	will	take	the	central	position,	or	average	position,	at
2,	and	say	that	the	whole	effect	during	the	interval	1-3	was	to	change
the	motion	by	some	amount	in	the	direction	of	the	line	2-S	(fig.	11).



Figure	11

This	means	that	though	the	particles	were	moving	on	the	line	1–2,
and	would,	were	there	no	force,	have	continued	to	move	on	the	same
line	in	the	next	second,	because	of	the	influence	of	the	sun	the	motion	is
altered	by	an	amount	that	is	poking	in	a	direction	parallel	to	the	line	2–
S.	The	next	motion	is	therefore	a	compound	of	what	the	planet	wanted
to	do	and	the	change	that	has	been	induced	by	the	action	of	the	sun.	So
the	planet	does	not	really	end	up	at	position	3,	but	rather	at	position	4.
Now	we	would	like	to	compare	the	areas	of	the	triangles	23S	and	24S,
and	I	will	show	you	that	those	are	equal.	They	have	the	same	base,	S–2.
Do	they	have	the	same	altitude?	Sure,	because	they	are	included
between	parallel	lines.	The	distance	from	4	to	the	line	S–2	is	equal	to	the
distance	from	3	to	line	S–2	(extended).	Thus	the	area	of	the	triangle	S24
is	the	same	as	S23.	I	proved	earlier	that	S12	and	S23	were	equal	in	area,
so	we	now	know	S12	=	S24.	So,	in	the	actual	orbital	motion	of	the
planet	the	areas	swept	out	in	the	first	second	and	the	second	second	are
equal.	Therefore,	by	reasoning,	we	can	see	a	connection	between	the	fact
that	the	force	is	towards	the	sun,	and	the	fact	that	the	areas	are	equal.
Isn’t	that	ingenious?	I	borrowed	it	straight	from	Newton.	It	comes	right
out	of	the	Principia,	diagram	and	all.	Only	the	letters	are	different,
because	he	wrote	in	Latin	and	these	are	Arabic	numerals.



Newton	made	all	the	proofs	in	his	book	geometrical.	Today	we	do
not	use	that	kind	of	reasoning.	We	use	a	kind	of	analytic	reasoning	with
symbols.	It	requires	ingenuity	to	draw	the	correct	triangles,	to	notice
about	the	areas,	and	to	figure	out	how	to	do	this.	But	there	have	been
improvements	in	the	methods	of	analysis,	which	are	faster	and	more
efficient.	I	want	to	show	what	this	looks	like	in	the	notation	of	the	more
modern	mathematics,	where	you	do	nothing	but	write	a	lot	of	symbols
to	figure	it	out.
We	want	to	talk	about	how	fast	the	area	changes,	and	we	represent

that	by	A.	The	area	changes	when	the	radius	is	swinging,	and	it	is	the
component	of	velocity	at	right	angles	to	the	radius,	times	the	radius,	that
tells	us	how	fast	the	area	changes.	So	this	is	the	component	of	the	radial
distance	multiplied	by	the	velocity,	or	rate	of	change	of	the	distance.

The	question	now	is	whether	the	rate	of	change	of	area	itself	changes.
The	principle	is	that	the	rate	of	change	of	the	area	is	not	supposed	to
change.	So	we	differentiate	this	again,	and	this	means	some	little	trick
about	putting	dots	in	the	right	place,	that	is	all.	You	have	to	learn	the
tricks;	it	is	just	a	series	of	rules	that	people	have	found	out	that	are	very
useful	for	such	a	thing.	We	write:

This	first	term	says	to	take	the	component	of	the	velocity	at	right	angles
to	the	velocity.	It	is	zero;	the	velocity	is	in	the	same	direction	as	itself.
The	acceleration,	which	is	the	second	derivative,	r	with	two	dots,	or	the
derivative	of	the	velocity,	is	the	force	divided	by	the	mass.



This	says	therefore	that	the	rate	of	change	of	the	rate	of	change	of
the	area	is	the	component	of	force	at	right	angles	to	the	radius,	but	if	the
force	is	in	the	direction	of	the	radius,	as	Newton	said,	then	there	is	no
force	at	right	angles	to	the	radius,	and	that	means	that	the	rate	of	change
of	area	does	not	change.	This	merely	illustrates	the	power	of	analysis
with	different	kinds	of	notation.	Newton	knew	how	to	do	this,	more	or
less,	with	slightly	different	notations;	but	he	wrote	everything	in	the
geometrical	form,	because	he	tried	to	make	it	possible	for	people	to	read
his	papers.	He	invented	the	calculus,	which	is	the	kind	of	mathematics	I
have	just	shown.

This	is	a	good	illustration	of	the	relation	of	mathematics	to	physics.
When	the	problems	in	physics	become	difficult	we	may	often	look	to	the
mathematicians,	who	may	already	have	studied	such	things	and	have
prepared	a	line	of	reasoning	for	us	to	follow.	On	the	other	hand	they
may	not	have,	in	which	case	we	have	to	invent	our	own	line	of
reasoning,	which	we	then	pass	back	to	the	mathematicians.	Everybody
who	reasons	carefully	about	anything	is	making	a	contribution	to	the
knowledge	of	what	happens	when	you	think	about	something,	and	if	you
abstract	it	away	and	send	it	to	the	Department	of	Mathematics	they	put
it	in	books	as	a	branch	of	mathematics.	Mathematics,	then,	is	a	way	of
going	from	one	set	of	statements	to	another.	It	is	evidently	useful	in
physics,	because	we	have	these	different	ways	in	which	we	can	speak	of
things,	and	mathematics	permits	us	to	develop	consequences,	to	analyse
the	situations,	and	to	change	the	laws	in	different	ways	to	connect	the
various	statements.	In	fact	the	total	amount	that	a	physicist	knows	is
very	little.	He	has	only	to	remember	the	rules	to	get	him	from	one	place



very	little.	He	has	only	to	remember	the	rules	to	get	him	from	one	place
to	another	and	he	is	all	right,	because	all	the	various	statements	about
equal	times,	the	force	being	in	the	direction	of	the	radius,	and	so	on,	are
all	interconnected	by	reasoning.
Now	an	interesting	question	comes	up.	Is	there	a	place	to	begin	to

deduce	the	whole	works?	Is	there	some	particular	pattern	or	order	in
nature	by	which	we	can	understand	that	one	set	of	statements	is	more
fundamental	and	one	set	of	statements	more	consequential?	There	are
two	kinds	of	ways	of	looking	at	mathematics,	which	for	the	purpose	of
this	lecture	I	will	call	the	Babylonian	tradition	and	the	Greek	tradition.
In	Babylonian	schools	in	mathematics	the	student	would	learn	something
by	doing	a	large	number	of	examples	until	he	caught	on	to	the	general
rule.	Also	he	would	know	a	large	amount	of	geometry,	a	lot	of	the
properties	of	circles,	the	theorem	of	Pythagoras,	formulae	for	the	areas
of	cubes	and	triangles;	in	addition,	some	degree	of	argument	was
available	to	go	from	one	thing	to	another.	Tables	of	numerical	quantities
were	available	so	that	they	could	solve	elaborate	equations.	Everything
was	prepared	for	calculating	things	out.	But	Euclid	discovered	that	there
was	a	way	in	which	all	of	the	theorems	of	geometry	could	be	ordered
from	a	set	of	axioms	that	were	particularly	simple.	The	Babylonian
attitude	–	or	what	I	call	Babylonian	mathematics	–	is	that	you	know	all
of	the	various	theorems	and	many	of	the	connections	in	between,	but
you	have	never	fully	realized	that	it	could	all	come	up	from	a	bunch	of
axioms.	The	most	modern	mathematics	concentrates	on	axioms	and
demonstrations	within	a	very	definite	framework	of	conventions	of	what
is	acceptable	and	what	is	not	acceptable	as	axioms.	Modern	geometry
takes	something	like	Euclid’s	axioms,	modified	to	be	more	perfect,	and



then	shows	the	deduction	of	the	system.	For	instance,	it	would	not	be
expected	that	a	theorem	like	Pythagoras’s	(that	the	sum	of	the	areas	of
squares	put	on	two	sides	of	a	right-angled	triangle	is	equal	to	the	area	of
the	square	on	the	hypotenuse)	should	be	an	axiom.	On	the	other	hand,
from	another	point	of	view	of	geometry,	that	of	Descartes,	the
Pythagorean	theorem	is	an	axiom.
So	the	first	thing	we	have	to	accept	is	that	even	in	mathematics	you

can	start	in	different	places.	If	all	these	various	theorems	are
interconnected	by	reasoning	there	is	no	real	way	to	say	‘These	are	the
most	fundamental	axioms’,	because	if	you	were	told	something	different
instead	you	could	also	run	the	reasoning	the	other	way.	It	is	like	a	bridge
with	lots	of	members,	and	it	is	over-connected;	if	pieces	have	dropped
out	you	can	reconnect	it	another	way.	The	mathematical	tradition	of
today	is	to	start	with	some	particular	ideas	which	are	chosen	by	some
kind	of	convention	to	be	axioms,	and	then	to	build	up	the	structure	from
there.	What	I	have	called	the	Babylonian	idea	is	to	say,	‘I	happen	to
know	this,	and	I	happen	to	know	that,	and	maybe	I	know	that;	and	I
work	everything	out	from	there.	Tomorrow	I	may	forget	that	this	is	true,
but	remember	that	something	else	is	true,	so	I	can	reconstruct	it	all
again.	I	am	never	quite	sure	of	where	I	am	supposed	to	begin	or	where	I
am	supposed	to	end.	I	just	remember	enough	all	the	time	so	that	as	the
memory	fades	and	some	of	the	pieces	fall	out	I	can	put	the	thing	back
together	again	every	day’.
The	method	of	always	starting	from	the	axioms	is	not	very	efficient	in

obtaining	theorems.	In	working	something	out	in	geometry	you	are	not
very	efficient	if	each	time	you	have	to	start	back	at	the	axioms.	If	you
have	to	remember	a	few	things	in	geometry	you	can	always	get
somewhere	else,	but	it	is	much	more	efficient	to	do	it	the	other	way.	To



somewhere	else,	but	it	is	much	more	efficient	to	do	it	the	other	way.	To
decide	which	are	the	best	axioms	is	not	necessarily	the	most	efficient
way	of	getting	around	in	the	territory.	In	physics	we	need	the
Babylonian	method,	and	not	the	Euclidian	or	Greek	method.	I	would	like
to	explain	why.
The	problem	in	the	Euclidian	method	is	to	make	something	about	the

axioms	a	little	more	interesting	or	important.	But	in	the	case	of
gravitation,	for	example,	the	question	we	are	asking	is:	is	it	more
important,	more	basic,	or	is	it	a	better	axiom,	to	say	that	the	force	is
towards	the	sun,	or	to	say	that	equal	areas	are	swept	out	in	equal	times?
From	one	point	of	view	the	force	statement	is	better.	If	I	state	what	the
forces	are	I	can	deal	with	a	system	with	many	particles	in	which	the
orbits	are	no	longer	ellipses,	because	the	force	statement	tells	me	about
the	pull	of	one	on	the	other.	In	this	case	the	theorem	about	equal	areas
fails.	Therefore	I	think	that	the	force	law	ought	to	be	an	axiom	instead	of
the	other.	On	the	other	hand,	the	principle	of	equal	areas	can	be
generalized,	in	a	system	of	a	large	number	of	particles,	to	another
theorem.	It	is	rather	complicated	to	say,	and	not	quite	as	pretty	as	the
original	statement	about	equal	areas,	but	it	is	obviously	its	offspring.
Take	a	system	with	a	large	number	of	particles,	perhaps	Jupiter,	Saturn,
the	Sun,	and	lots	of	stars,	all	interacting	with	each	other,	and	look	at	it
from	far	away	projected	on	a	plane	(fig.	12).	The	particles	are	all	moving
in	various	directions,	and	we	take	any	point	and	calculate	how	much
area	is	being	swept	out	by	the	radius	from	this	point	to	each	of	the
particles.	In	this	calculation	the	masses	which	are	heavier	count	more
strongly;	if	one	particle	is	twice	as	heavy	as	another	its	area	will	count
twice	as	much.	So	we	count	each	of	the	areas	swept	out	in	proportion	to



the	mass	that	is	doing	the	sweeping,	add	them	all	together,	and	the
resulting	total	is	not	changing	in	time.	That	total	is	called	the	angular
momentum,	and	this	is	called	the	law	of	conservation	of	angular
momentum.	Conservation	just	means	that	it	does	not	change.

Figure	12

One	of	the	consequences	of	this	is	as	follows.	Imagine	a	lot	of	stars
falling	together	to	form	a	nebula,	or	galaxy.	At	first	they	are	very	far	out,
on	long	radii	from	the	centre,	moving	slowly	and	allowing	a	small
amount	of	area	to	be	generated.	As	they	come	closer	the	distances	to	the
centre	will	shorten,	and	when	they	are	very	far	in	the	radii	will	be	very
small,	so	in	order	to	produce	the	same	area	per	second	they	will	have	to
move	a	great	deal	faster.	You	will	see	then	that	as	the	stars	come	in	they
will	swing	and	swirl	around	faster	and	faster,	and	thus	we	can	roughly
understand	the	qualitative	shape	of	the	spiral	nebulae.	In	the	same	way
we	can	understand	how	a	skater	spins.	He	starts	with	his	leg	out,	moving
slowly,	and	as	he	pulls	his	leg	in	he	spins	faster.	When	the	leg	is	out	it	is
contributing	a	certain	amount	of	area	per	second,	and	then	when	he
brings	his	leg	in	he	has	to	spin	much	faster	to	produce	the	same	amount
of	area.	But	I	did	not	prove	it	for	the	skater:	the	skater	uses	muscle	force,
and	gravity	is	a	different	force.	Yet	it	is	true	for	the	skater.
Now	we	have	a	problem.	We	can	deduce	often	from	one	part	of

physics,	like	the	Law	of	Gravitation,	a	principle	which	turns	out	to	be



much	more	valid	than	the	derivation.	This	does	not	happen	in
mathematics;	theorems	do	not	come	out	in	places	where	they	are	not
supposed	to	be.	In	other	words,	if	we	were	to	say	that	the	postulate	of
physics	was	the	equal	area	law	of	gravitation,	then	we	could	deduce	the
conservation	of	angular	momentum,	but	only	for	gravitation.	Yet	we
discover	experimentally	that	the	conservation	of	angular	momentum	is	a
much	wider	thing.	Newton	had	other	postulates	by	which	he	could	get
the	more	general	conservation	law	of	angular	momentum.	But	these
Newtonian	laws	were	wrong.	There	are	no	forces,	it	is	all	a	lot	of
boloney,	the	particles	do	not	have	orbits,	and	so	on.	Yet	the	analogue,
the	exact	transformation	of	this	principle	about	the	areas	and	the
conservation	of	angular	momentum,	is	true.	It	works	for	atomic	motions
in	quantum	mechanics,	and,	as	far	as	we	can	tell,	it	is	still	exact	today.
We	have	these	wide	principles	which	sweep	across	the	different	laws,
and	if	we	take	the	derivation	too	seriously,	and	feel	that	one	is	only
valid	because	another	is	valid,	then	we	cannot	understand	the
interconnections	of	the	different	branches	of	physics.	Some	day,	when
physics	is	complete	and	we	know	all	the	laws,	we	may	be	able	to	start
with	some	axioms,	and	no	doubt	somebody	will	figure	out	a	particular
way	of	doing	it	so	that	everything	else	can	be	deduced.	But	while	we	do
not	know	all	the	laws,	we	can	use	some	to	make	guesses	at	theorems
which	extend	beyond	the	proof.	In	order	to	understand	physics	one	must
always	have	a	neat	balance,	and	contain	in	one’s	head	all	of	the	various
propositions	and	their	interrelationships,	because	the	laws	often	extend
beyond	the	range	of	their	deductions.	This	will	only	have	no	importance
when	all	the	laws	are	known.
Another	thing,	a	very	strange	one,	that	is	interesting	in	the	relation	of

mathematics	to	physics	is	the	fact	that	by	mathematical	arguments	you



mathematics	to	physics	is	the	fact	that	by	mathematical	arguments	you
can	show	that	it	is	possible	to	start	from	many	apparently	different
starting	points,	and	yet	come	to	the	same	thing.	That	is	pretty	clear.	If
you	have	axioms,	you	can	instead	use	some	of	the	theorems;	but	actually
the	physical	laws	are	so	delicately	constructed	that	the	different	but
equivalent	statements	of	them	have	such	qualitatively	different
characters,	and	this	makes	them	very	interesting.	To	illustrate	this	I	am
going	to	state	the	law	of	gravitation	in	three	different	ways,	all	of	which
are	exactly	equivalent	but	sound	completely	different.
The	first	statement	is	that	there	are	forces	between	objects,	according

to	the	equation	which	I	have	given	you	before.

Each	object,	when	it	sees	the	force	on	it,	accelerates	or	changes	its
motion,	at	a	certain	amount	per	second.	It	is	the	regular	way	of	stating
the	law,	I	call	it	Newton’s	law.	This	statement	of	the	law	says	that	the
force	depends	on	something	at	a	finite	distance	away.	It	has	what	we	call
an	unlocal	quality.	The	force	on	one	object	depends	on	where	another
one	is	some	distance	away.
You	may	not	like	the	idea	of	action	at	a	distance.	How	can	this	object

know	what	is	going	on	over	there?	So	there	is	another	way	of	stating	the
laws,	which	is	very	strange,	called	the	field	way.	It	is	hard	to	explain,
but	I	want	to	give	you	some	rough	idea	of	what	it	is	like.	It	says	a
completely	different	thing.	There	is	a	number	at	every	point	in	space	(I
know	it	is	a	number,	not	a	mechanism:	that	is	the	trouble	with	physics,
it	must	be	mathematical),	and	the	numbers	change	when	you	go	from
place	to	place.	If	an	object	is	placed	at	a	point	in	space,	the	force	on	it	is



in	the	direction	in	which	that	number	changes	most	rapidly	(I	will	give	it
its	usual	name,	the	potential,	the	force	is	in	the	direction	in	which	the
potential	changes).	Further,	the	force	is	proportional	to	how	fast	the
potential	changes	as	you	move.	That	is	one	part	of	the	statement,	but	it
is	not	enough,	because	I	have	yet	to	tell	you	how	to	determine	the	way
in	which	the	potential	varies.	I	could	say	the	potential	varies	inversely	as
the	distance	from	each	object,	but	that	is	back	to	the	reaction-at-a-
distance	idea.	You	can	state	the	law	in	another	way,	which	says	that	you
do	not	have	to	know	what	is	going	on	anywhere	outside	a	little	ball.	If
you	want	to	know	what	the	potential	is	at	the	centre	of	the	ball,	you
need	only	tell	me	what	it	is	on	the	surface	of	the	ball,	however	small.
You	do	not	have	to	look	outside,	you	just	tell	me	what	it	is	in	the
neighbourhood,	and	how	much	mass	there	is	in	the	ball.	The	rule	is	this.
The	potential	at	the	centre	is	equal	to	the	average	of	the	potential	on	the
surface	of	the	ball,	minus	the	same	constant,	G,	as	we	had	in	the	other
equation,	divided	by	twice	the	radius	of	the	ball	(which	we	will	call	a),
and	then	multiplied	by	the	mass	inside	the	ball,	if	the	ball	is	small
enough.

You	see	that	this	law	is	different	from	the	other,	because	it	tells	what
happens	at	one	point	in	terms	of	what	happens	very	close	by.	Newton’s
law	tells	what	happens	at	one	time	in	terms	of	what	happens	at	another
instant.	It	gives	from	instant	to	instant	how	to	work	it	out,	but	in	space
leaps	from	place	to	place.	The	second	statement	is	both	local	in	time	and
local	in	space,	because	it	depends	only	on	what	is	in	the	neighbourhood.
But	both	statements	are	exactly	equivalent	mathematically.



There	is	another	completely	different	way	of	stating	this,	different	in
the	philosophy	and	the	qualitative	ideas	involved.	If	you	do	not	like
action	at	a	distance	I	have	shown	you	can	get	away	without	it.	Now	I
want	to	show	you	a	statement	which	is	philosophically	the	exact
opposite.	In	this	there	is	no	discussion	at	all	about	how	the	thing	works
its	way	from	place	to	place;	the	whole	is	contained	in	an	overall
statement,	as	follows.	When	you	have	a	number	of	particles,	and	you
want	to	know	how	one	moves	from	one	place	to	another,	you	do	it	by
inventing	a	possible	motion	that	gets	from	one	place	to	the	other	in	a
given	amount	of	time	(fig.	13).	Say	the	particle	wants	to	go	from	X	to	Y
in	an	hour,	and	you	want	to	know	by	what	route	it	can	go.	What	you	do
is	to	invent	various	curves,	and	calculate	on	each	curve	a	certain
quantity.	(I	do	not	want	to	tell	you	what	the	quantity	is,	but	for	those
who	have	heard	of	these	terms	the	quantity	on	each	route	is	the	average
of	the	difference	between	the	kinetic	and	the	potential	energy.)	If	you
calculate	this	quantity	for	one	route,	and	then	for	another,	you	will	get	a
different	number	for	each	route.	There	is	one	route	which	gives	the	least
possible	number,	however,	and	that	is	the	route	that	the	particle	in
nature	actually	takes!	We	are	now	describing	the	actual	motion,	the
ellipse,	by	saying	something	about	the	whole	curve.	We	have	lost	the
idea	of	causality,	that	the	particle	feels	the	pull	and	moves	in	accordance
with	it.	Instead	of	that,	in	some	grand	fashion	it	smells	all	the	curves,	all
the	possibilities,	and	decides	which	one	to	take	(by	choosing	that	for
which	our	quantity	is	least).



Figure	13

This	is	an	example	of	the	wide	range	of	beautiful	ways	of	describing
nature.	When	people	say	that	nature	must	have	causality,	you	can	use
Newton’s	law;	or	if	they	say	that	nature	must	be	stated	in	terms	of	a
minimum	principle,	you	talk	about	it	this	last	way;	or	if	they	insist	that
nature	must	have	a	local	field	–	sure,	you	can	do	that.	The	question	is:
which	one	is	right?	If	these	various	alternatives	are	not	exactly
equivalent	mathematically,	if	for	certain	ones	there	will	be	different
consequences	than	for	others,	then	all	we	have	to	do	is	to	experiment	to
find	out	which	way	nature	actually	chooses	to	do	it.	People	may	come
along	and	argue	philosophically	that	they	like	one	better	than	another;
but	we	have	learned	from	much	experience	that	all	philosophical
intuitions	about	what	nature	is	going	to	do	fail.	One	just	has	to	work	out
all	the	possibilities,	and	try	all	the	alternatives.	But	in	the	particular	case
I	am	talking	about	the	theories	are	exactly	equivalent.	Mathematically
each	of	the	three	different	formulations,	Newton’s	law,	the	local	field
method	and	the	minimum	principle,	gives	exactly	the	same
consequences.	What	do	we	do	then?	You	will	read	in	all	the	books	that
we	cannot	decide	scientifically	on	one	or	the	other.	That	is	true.	They
are	equivalent	scientifically.	It	is	impossible	to	make	a	decision,	because
there	is	no	experimental	way	to	distinguish	between	them	if	all	the



consequences	are	the	same.	But	psychologically	they	are	very	different
in	two	ways.	First,	philosophically	you	like	them	or	do	not	like	them;
and	training	is	the	only	way	to	beat	that	disease.	Second,	psychologically
they	are	different	because	they	are	completely	unequivalent	when	you
are	trying	to	guess	new	laws.
As	long	as	physics	is	incomplete,	and	we	are	trying	to	understand	the

other	laws,	then	the	different	possible	formulations	may	give	clues	about
what	might	happen	in	other	circumstances.	In	that	case	they	are	no
longer	equivalent,	psychologically,	in	suggesting	to	us	guesses	about
what	the	laws	may	look	like	in	a	wider	situation.	To	give	an	example,
Einstein	realized	that	electrical	signals	could	not	propagate	faster	than
the	speed	of	light.	He	guessed	that	it	was	a	general	principle.	(This	is	the
same	guessing	game	as	taking	the	angular	momentum	and	extending	it
from	one	case	where	you	have	proved	it,	to	the	rest	of	the	phenomena	of
the	universe.)	He	guessed	that	it	was	true	of	everything,	and	he	guessed
that	it	would	be	true	of	gravitation.	If	signals	cannot	go	any	faster	than
the	speed	of	light,	then	it	turns	out	that	the	method	of	describing	the
forces	instantaneously	is	very	poor.	So	in	Einstein’s	generalization	of
gravitation	Newton’s	method	of	describing	physics	is	hopelessly
inadequate	and	enormously	complicated,	whereas	the	field	method	is
neat	and	simple,	and	so	is	the	minimum	principle.	We	have	not	decided
between	the	last	two	yet.
In	fact	it	turns	out	that	in	quantum	mechanics	neither	is	right	in

exactly	the	way	I	have	stated	them,	but	the	fact	that	a	minimum
principle	exists	turns	out	to	be	a	consequence	of	the	fact	that	on	a	small
scale	particles	obey	quantum	mechanics.	The	best	law,	as	at	present
understood,	is	really	a	combination	of	the	two	in	which	we	use
minimum	principles	plus	local	laws.	At	present	we	believe	that	the	laws



minimum	principles	plus	local	laws.	At	present	we	believe	that	the	laws
of	physics	have	to	have	the	local	character	and	also	the	minimum
principle,	but	we	do	not	really	know.	If	you	have	a	structure	that	is	only
partly	accurate,	and	something	is	going	to	fail,	then	if	you	write	it	with
just	the	right	axioms	maybe	only	one	axiom	fails	and	the	rest	remain,
you	need	only	change	one	little	thing.	But	if	you	write	it	with	another
set	of	axioms	they	may	all	collapse,	because	they	all	lean	on	that	one
thing	that	fails.	We	cannot	tell	ahead	of	time,	without	some	intuition,
which	is	the	best	way	to	write	it	so	that	we	can	find	out	the	new
situation.	We	must	always	keep	all	the	alternative	ways	of	looking	at	a
thing	in	our	heads;	so	physicists	do	Babylonian	mathematics,	and	pay
but	little	attention	to	the	precise	reasoning	from	fixed	axioms.
One	of	the	amazing	characteristics	of	nature	is	the	variety	of

interpretational	schemes	which	is	possible.	It	turns	out	that	it	is	only
possible	because	the	laws	are	just	so,	special	and	delicate.	For	instance,
that	the	law	is	the	inverse	square	is	what	permits	it	to	become	local;	if	it
were	the	inverse	cube	it	could	not	be	done	that	way.	At	the	other	end	of
the	equation,	the	fact	that	the	force	is	related	to	the	rate	of	change	of
velocity	is	what	permits	the	minimum	principle	way	of	writing	the	laws.
If,	for	instance,	the	force	were	proportional	to	the	rate	of	change	of
position	instead	of	velocity,	then	you	could	not	write	it	in	that	way.	If
you	modify	the	laws	much	you	find	that	you	can	only	write	them	in
fewer	ways.	I	always	find	that	mysterious,	and	I	do	not	understand	the
reason	why	it	is	that	the	correct	laws	of	physics	seem	to	be	expressible	in
such	a	tremendous	variety	of	ways.	They	seem	to	be	able	to	get	through
several	wickets	at	the	same	time.
I	should	like	to	say	a	few	things	on	the	relation	of	mathematics	and



physics	which	are	a	little	more	general.	Mathematicians	are	only	dealing
with	the	structure	of	reasoning,	and	they	do	not	really	care	what	they
are	talking	about.	They	do	not	even	need	to	know	what	they	are	talking
about,	or,	as	they	themselves	say,	whether	what	they	say	is	true.	I	will
explain	that.	You	state	the	axioms,	such-and-such	is	so,	and	such-and-
such	is	so.	What	then?	The	logic	can	be	carried	out	without	knowing
what	the	such-and-such	words	mean.	If	the	statements	about	the	axioms
are	carefully	formulated	and	complete	enough,	it	is	not	necessary	for	the
man	who	is	doing	the	reasoning	to	have	any	knowledge	of	the	meaning
of	the	words	in	order	to	deduce	new	conclusions	in	the	same	language.	If
I	use	the	word	triangle	in	one	of	the	axioms	there	will	be	a	statement
about	triangles	in	the	conclusion,	whereas	the	man	who	is	doing	the
reasoning	may	not	know	what	a	triangle	is.	But	I	can	read	his	reasoning
back	and	say,	‘Triangle,	that	is	just	a	three-sided	what-have-you,	which
is	so-and-so’,	and	then	I	know	his	new	facts.	In	other	words,
mathematicians	prepare	abstract	reasoning	ready	to	be	used	if	you	have
a	set	of	axioms	about	the	real	world.	But	the	physicist	has	meaning	to	all
his	phrases.	That	is	a	very	important	thing	that	a	lot	of	people	who	come
to	physics	by	way	of	mathematics	do	not	appreciate.	Physics	is	not
mathematics,	and	mathematics	is	not	physics.	One	helps	the	other.	But
in	physics	you	have	to	have	an	understanding	of	the	connection	of	words
with	the	real	world.	It	is	necessary	at	the	end	to	translate	what	you	have
figured	out	into	English,	into	the	world,	into	the	blocks	of	copper	and
glass	that	you	are	going	to	do	the	experiments	with.	Only	in	that	way
can	you	find	out	whether	the	consequences	are	true.	This	is	a	problem
which	is	not	a	problem	of	mathematics	at	all.
Of	course	it	is	obvious	that	the	mathematical	reasonings	which	have

been	developed	are	of	great	power	and	use	for	physicists.	On	the	other



been	developed	are	of	great	power	and	use	for	physicists.	On	the	other
hand,	sometimes	the	physicists’	reasoning	is	useful	for	mathematicians.
Mathematicians	like	to	make	their	reasoning	as	general	as	possible.	If

I	say	to	them,	‘I	want	to	talk	about	ordinary	three	dimensional	space’,
they	say	‘If	you	have	a	space	of	n	dimensions,	then	here	are	the
theorems’.	‘But	I	only	want	the	case	3’,	‘Well,	substitute	n	=	3.’!	So	it
turns	out	that	many	of	the	complicated	theorems	they	have	are	much
simpler	when	adapted	to	a	special	case.	The	physicist	is	always
interested	in	the	special	case;	he	is	never	interested	in	the	general	case.
He	is	talking	about	something;	he	is	not	talking	abstractly	about
anything.	He	wants	to	discuss	the	gravity	law	in	three	dimensions;	he
never	wants	the	arbitrary	force	case	in	n	dimensions.	So	a	certain
amount	of	reducing	is	necessary,	because	the	mathematicians	have
prepared	these	things	for	a	wide	range	of	problems.	This	is	very	useful,
and	later	on	it	always	turns	out	that	the	poor	physicist	has	to	come	back
and	say,	‘Excuse	me,	when	you	wanted	to	tell	me	about	four
dimensions…’
When	you	know	what	it	is	you	are	talking	about,	that	some	symbols

represent	forces,	others	masses,	inertia,	and	so	on,	then	you	can	use	a	lot
of	commonsense,	seat-of-the-pants	feeling	about	the	world.	You	have
seen	various	things,	and	you	know	more	or	less	how	the	phenomenon	is
going	to	behave.	But	the	poor	mathematician	translates	it	into	equations,
and	as	the	symbols	do	not	mean	anything	to	him	he	has	no	guide	but
precise	mathematical	rigour	and	care	in	the	argument.	The	physicist,
who	knows	more	or	less	how	the	answer	is	going	to	come	out,	can	sort
of	guess	part	way,	and	so	go	along	rather	rapidly.	The	mathematical
rigour	of	great	precision	is	not	very	useful	in	physics.	But	one	should	not



criticize	the	mathematicians	on	this	score.	It	is	not	necessary	that	just
because	something	would	be	useful	to	physics	they	have	to	do	it	that
way.	They	are	doing	their	own	job.	If	you	want	something	else,	then	you
work	it	out	for	yourself.
The	next	question	is	whether,	when	trying	to	guess	a	new	law,	we

should	use	the	seat-of-the-pants	feeling	and	philosophical	principles	–	‘I
don’t	like	the	minimum	principle’,	or	‘I	do	like	the	minimum	principle’,
‘I	don’t	like	action	at	a	distance’,	or	‘I	do	like	action	at	a	distance’.	To
what	extent	do	models	help?	It	is	interesting	that	very	often	models	do
help,	and	most	physics	teachers	try	to	teach	how	to	use	models	and	to
get	a	good	physical	feel	for	how	things	are	going	to	work	out.	But	it
always	turns	out	that	the	greatest	discoveries	abstract	away	from	the
model	and	the	model	never	does	any	good.	Maxwell’s	discovery	of
electrodynamics	was	first	made	with	a	lot	of	imaginary	wheels	and	idlers
in	space.	But	when	you	get	rid	of	all	the	idlers	and	things	in	space	the
thing	is	O.K.	Dirac*	discovered	the	correct	laws	for	relativity	quantum
mechanics	simply	by	guessing	the	equation.	The	method	of	guessing	the
equation	seems	to	be	a	pretty	effective	way	of	guessing	new	laws.	This
shows	again	that	mathematics	is	a	deep	way	of	expressing	nature,	and
any	attempt	to	express	nature	in	philosophical	principles,	or	in	seat-of-
the-pants	mechanical	feelings,	is	not	an	efficient	way.
It	always	bothers	me	that,	according	to	the	laws	as	we	understand

them	today,	it	takes	a	computing	machine	an	infinite	number	of	logical
operations	to	figure	out	what	goes	on	in	no	matter	how	tiny	a	region	of
space,	and	no	matter	how	tiny	a	region	of	time.	How	can	all	that	be
going	on	in	that	tiny	space	?	Why	should	it	take	an	infinite	amount	of
logic	to	figure	out	what	one	tiny	piece	of	space/time	is	going	to	do?	So	I



have	often	made	the	hypothesis	that	ultimately	physics	will	not	require	a
mathematical	statement,	that	in	the	end	the	machinery	will	be	revealed,
and	the	laws	will	turn	out	to	be	simple,	like	the	chequer	board	with	all
its	apparent	complexities.	But	this	speculation	is	of	the	same	nature	as
those	other	people	make	–	‘I	like	it’,	‘I	don’t	like	it’,	–	and	it	is	not	good
to	be	too	prejudiced	about	these	things.
To	summarize,	I	would	use	the	words	of	Jeans,	who	said	that	‘the

Great	Architect	seems	to	be	a	mathematician’.	To	those	who	do	not
know	mathematics	it	is	difficult	to	get	across	a	real	feeling	as	to	the
beauty,	the	deepest	beauty,	of	nature.	C.	P.	Snow	talked	about	two
cultures.	I	really	think	that	those	two	cultures	separate	people	who	have
and	people	who	have	not	had	this	experience	of	understanding
mathematics	well	enough	to	appreciate	nature	once.
It	is	too	bad	that	it	has	to	be	mathematics,	and	that	mathematics	is

hard	for	some	people.	It	is	reputed	–	I	do	not	know	if	it	is	true	–	that
when	one	of	the	kings	was	trying	to	learn	geometry	from	Euclid	he
complained	that	it	was	difficult.	And	Euclid	said,	‘There	is	no	royal	road
to	geometry’.	And	there	is	no	royal	road.	Physicists	cannot	make	a
conversion	to	any	other	language.	If	you	want	to	learn	about	nature,	to
appreciate	nature,	it	is	necessary	to	understand	the	language	that	she
speaks	in.	She	offers	her	information	only	in	one	form;	we	are	not	so
unhumble	as	to	demand	that	she	change	before	we	pay	any	attention.
All	the	intellectual	arguments	that	you	can	make	will	not

communicate	to	deaf	ears	what	the	experience	of	music	really	is.	In	the
same	way	all	the	intellectual	arguments	in	the	world	will	not	convey	an
understanding	of	nature	to	those	of	‘the	other	culture’.	Philosophers	may
try	to	teach	you	by	telling	you	qualitatively	about	nature.	I	am	trying	to
describe	her.	But	it	is	not	getting	across	because	it	is	impossible.	Perhaps



describe	her.	But	it	is	not	getting	across	because	it	is	impossible.	Perhaps
it	is	because	their	horizons	are	limited	in	this	way	that	some	people	are
able	to	imagine	that	the	centre	of	the	universe	is	man.



3
The	Great	Conservation	Principles

When	learning	about	the	laws	of	physics	you	find	that	there	are	a	large
number	of	complicated	and	detailed	laws,	laws	of	gravitation,	of
electricity	and	magnetism,	nuclear	interactions,	and	so	on,	but	across	the
variety	of	these	detailed	laws	there	sweep	great	general	principles	which
all	the	laws	seem	to	follow.	Examples	of	these	are	the	principles	of
conservation,	certain	qualities	of	symmetry,	the	general	form	of
quantum	mechanical	principles,	and	unhappily,	or	happily,	as	we
considered	last	time,	the	fact	that	all	the	laws	are	mathematical.	In	this
lecture	I	want	to	talk	about	the	conservation	principles.
The	physicist	uses	ordinary	words	in	a	peculiar	manner.	To	him	a

conservation	law	means	that	there	is	a	number	which	you	can	calculate
at	one	moment,	then	as	nature	undergoes	its	multitude	of	changes,	if	you
calculate	this	quantity	again	at	a	later	time	it	will	be	the	same	as	it	was
before,	the	number	does	not	change.	An	example	is	the	conservation	of
energy.	There	is	a	quantity	that	you	can	calculate	according	to	a	certain
rule,	and	it	comes	out	the	same	answer	always,	no	matter	what	happens.
Now	you	can	see	that	such	a	thing	is	possibly	useful.	Suppose	that

physics,	or	rather	nature,	is	considered	analogous	to	a	great	chess	game
with	millions	of	pieces	in	it,	and	we	are	trying	to	discover	the	laws	by
which	the	pieces	move.	The	great	gods	who	play	this	chess	play	it	very
rapidly,	and	it	is	hard	to	watch	and	difficult	to	see.	However,	we	are
catching	on	to	some	of	the	rules,	and	there	are	some	rules	which	we	can
work	out	which	do	not	require	that	we	watch	every	move.	For	instance,



suppose	there	is	one	bishop	only,	a	red	bishop,	on	the	board,	then	since

the	bishop	moves	diagonally	and	therefore	never	changes	the	colour	of
its	square,	if	we	look	away	for	a	moment	while	the	gods	play	and	then
look	back	again,	we	can	expect	that	there	will	be	still	a	red	bishop	on
the	board,	maybe	in	a	different	place,	but	on	the	same	colour	square.
This	is	in	the	nature	of	a	conservation	law.	We	do	not	need	to	watch	the
insides	to	know	at	least	something	about	the	game.
It	is	true	that	in	chess	this	particular	law	is	not	necessarily	perfectly

valid.	If	we	looked	away	long	enough	it	could	happen	that	the	bishop
was	captured,	a	pawn	went	down	to	queen,	and	the	god	decided	that	it
was	better	to	hold	a	bishop	instead	of	a	queen	in	the	place	of	that	pawn,
which	happened	to	be	on	a	black	square.	Unfortunately	it	may	well	turn
out	that	some	of	the	laws	which	we	see	today	may	not	be	exactly
perfect,	but	I	will	tell	you	about	them	as	we	see	them	at	present.
I	have	said	that	we	use	ordinary	words	in	a	technical	fashion,	and

another	word	in	the	title	of	this	lecture	is	‘great’,	‘The	Great
Conservation	Principles’.	This	is	not	a	technical	word:	it	was	merely	put
in	to	make	the	title	sound	more	dramatic,	and	I	could	just	as	well	have
called	it	‘The	Conservation	Laws’.	There	are	a	few	conservation	laws	that
do	not	work;	they	are	only	approximately	right,	but	are	sometimes
useful,	and	we	might	call	those	the	‘little’	conservation	laws.	I	will
mention	later	one	or	two	of	those	that	do	not	work,	but	the	principal
ones	that	I	am	going	to	discuss	are,	as	far	as	we	can	tell	today,
absolutely	accurate.
I	will	start	with	the	easiest	one	to	understand,	and	that	is	the

conservation	of	electric	charge.	There	is	a	number,	the	total	electric
charge	in	the	world,	which,	no	matter	what	happens,	does	not	change.	If



you	lose	it	in	one	place	you	will	find	it	in	another.	The	conservation	is	of
the	total	of	all	electric	charge.	This	was	discovered	experimentally	by
Faraday.*	The	experiment	consisted	of	getting	inside	a	great	globe	of
metal,	on	the	outside	of	which	was	a	very	delicate	galvanometer,	to	look
for	the	charge	on	the	globe,	because	a	small	amount	of	charge	would
make	a	big	effect.	Inside	the	globe	Faraday	built	all	kinds	of	weird
electrical	equipment.	He	made	charges	by	rubbing	glass	rods	with	cat’s
fur,	and	he	made	big	electrostatic	machines	so	that	the	inside	of	this
globe	looked	like	those	horror	movie	laboratories.	But	during	all	these
experiments	no	charge	developed	on	the	surface;	there	was	no	net
charge	made.	Although	the	glass	rod	may	have	been	positive	after	it	was
charged	up	by	rubbing	on	the	cat’s	fur,	then	the	fur	would	be	the	same
amount	negative,	and	the	total	charge	was	always	nothing,	because	if
there	were	any	charge	developed	on	the	inside	of	the	globe	it	would
have	appeared	as	an	effect	in	the	galvanometer	on	the	outside.	So	the
total	charge	is	conserved.
This	is	easy	to	understand,	because	a	very	simple	model,	which	is	not

mathematical	at	all,	will	explain	it.	Suppose	the	world	is	made	of	only
two	kinds	of	particles,	electrons	and	protons	–	there	was	a	time	when	it
looked	as	if	it	was	going	to	be	as	easy	as	that	–	and	suppose	that	the
electrons	carry	a	negative	charge	and	the	protons	a	positive	charge,	so
that	we	can	separate	them.	We	can	take	a	piece	of	matter	and	put	on
more	electrons,	or	take	some	off;	but	supposing	that	electrons	are
permanent	and	never	disintegrate	or	disappear	–	that	is	a	simple
proposition,	not	even	mathematical	–	then	the	total	number	of	protons,
less	the	total	number	of	electrons,	will	not	change.	In	fact	in	this
particular	model	the	total	number	of	protons	will	not	change,	nor	the



number	of	electrons.	But	we	are	concentrating	now	on	the	charge.	The
contribution	of	the	protons	is	positive	and	that	of	the	electrons	negative,
and	if	these	objects	are	never	created	or	destroyed	alone	then	the	total
charge	will	be	conserved.	I	want	to	list	as	I	go	on	the	number	of
properties	that	conserve	quantities,	and	I	will	start	with	charge	(fig.	14).
Against	the	question	whether	charge	is	conserved	I	write	‘yes’.

NB	This	is	the	completed	table	which	Professor	Feynman	added	to
throughout	his	lecture.

Figure	14

This	theoretical	interpretation	is	very	simple,	but	it	was	later
discovered	that	electrons	and	protons	are	not	permanent;	for	example,	a
particle	called	the	neutron	can	disintegrate	into	a	proton	and	an	electron
–	plus	something	else	which	we	will	come	to.	But	the	neutron,	it	turns
out,	is	electrically	neutral.	So	although	protons	are	not	permanent,	nor
are	electrons	permanent,	in	the	sense	that	they	can	be	created	from	a
neutron,	the	charge	still	checks	out;	starting	before,	we	had	zero	charge,
and	afterwards	we	had	plus	one	and	minus	one	which	when	added
together	become	zero	charge.
An	example	of	a	similar	fact	is	that	there	exists	another	particle,

besides	the	proton,	which	is	positively	charged.	It	is	called	a	positron,
which	is	a	kind	of	image	of	an	electron.	It	is	just	like	the	electron	in	most



respects,	except	that	it	has	the	opposite	sign	of	charge,	and,	more
important,	it	is	called	an	anti-particle	because	when	it	meets	with	an
electron	the	two	of	them	can	annihilate	each	other	and	disintegrate,	and
nothing	but	light	comes	out.	So	electrons	are	not	permanent	even	by
themselves.	An	electron	plus	a	positron	will	just	make	light.	Actually	the
‘light’	is	invisible	to	the	eye;	it	is	gamma	rays;	but	this	is	the	same	thing
for	a	physicist,	only	the	wavelength	is	different.	So	a	particle	and	its
anti-particle	can	annihilate.	The	light	has	no	electric	charge,	but	we
remove	one	positive	and	one	negative	charge,	so	we	have	not	changed
the	total	charge.	The	theory	of	conservation	of	charge	is	therefore
slightly	more	complicated	but	still	very	unmathematical.	You	simply	add
together	the	number	of	positrons	you	have	and	the	number	of	protons,
take	away	the	number	of	electrons	–	there	are	additional	particles	you
have	to	check,	for	example	anti-protons	which	contribute	negatively,	pi-
plus	mesons	which	are	positive,	in	fact	each	fundamental	particle	in
nature	has	a	charge	(possibly	zero).	All	we	have	to	do	is	add	up	the	total
number,	and	whatever	happens	in	any	reaction	the	total	amount	of
charge	on	one	side	has	to	balance	with	the	amount	on	the	other	side.
That	is	one	aspect	of	the	conservation	of	charge.	Now	comes	an

interesting	question.	Is	it	sufficient	to	say	only	that	charge	is	conserved,
or	do	we	have	to	say	more?	If	charge	were	conserved	because	it	was	a
real	particle	which	moved	around	it	would	have	a	very	special	property.
The	total	amount	of	charge	in	a	box	might	stay	the	same	in	two	ways.	It
may	be	that	the	charge	moves	from	one	place	to	another	within	the	box.
But	another	possibility	is	that	the	charge	in	one	place	disappears,	and
simultaneously	charge	arises	in	another	place,	instantaneously	related,
and	in	such	a	manner	that	the	total	charge	is	never	changing.	This



second	possibility	for	the	conservation	is	of	a	different	kind	from	the
first,	in	which	if	a	charge	disappears	in	one	place	and	turns	up	in
another	something	has	to	travel	through	the	space	in	between.	The
second	form	of	charge	conservation	is	called	local	charge	conservation,
and	is	far	more	detailed	than	the	simple	remark	that	the	total	charge
does	not	change.	So	you	see	we	are	improving	our	law,	if	it	is	true	that
charge	is	locally	conserved.	In	fact	it	is	true.	I	have	tried	to	show	you
from	time	to	time	some	of	the	possibilities	of	reasoning,	of
interconnecting	one	idea	with	another,	and	I	would	now	like	to	describe
to	you	an	argument,	fundamentally	due	to	Einstein,	which	indicates	that
if	anything	is	conserved	–	and	in	this	case	I	apply	it	to	charge	–	it	must
be	conserved	locally.	This	argument	relies	on	one	thing,	that	if	two
fellows	are	passing	each	other	in	space	ships,	the	question	of	which	guy
is	doing	the	moving	and	which	one	standing	still	cannot	be	resolved	by
any	experiment.	That	is	called	the	principle	of	relativity,	that	uniform
motion	in	a	straight	line	is	relative,	and	that	we	can	look	at	any
phenomenon	from	either	point	of	view	and	cannot	say	which	one	is
standing	still	and	which	one	is	moving.

Figure	15

Suppose	I	have	two	space	ships,	A	and	B	(fig.	15).	I	am	going	to	take



the	point	of	view	that	A	is	the	one	that	is	moving	past	B.	Remember	that
is	just	an	opinion,	you	can	also	look	it	at	the	other	way	and	you	will	get
the	same	phenomena	of	nature.	Now	suppose	that	the	man	who	is
standing	still	wants	to	argue	whether	or	not	he	has	seen	a	charge	at	one
end	of	his	ship	disappear	and	a	charge	at	the	other	end	appear	at	the
same	time.	In	order	to	make	sure	it	is	the	same	time	he	cannot	sit	in	the
front	of	the	ship,	because	he	will	see	one	before	he	sees	the	other
because	of	the	travel	time	of	light;	so	let	us	suppose	that	he	is	very
careful	and	sits	dead	centre	in	the	middle	of	the	ship.	We	have	another
man	doing	the	same	kind	of	observation	in	the	other	ship.	Now	a
lightning	bolt	strikes,	and	charge	is	created	at	point	x,	and	at	the	same
instant	at	point	y	at	the	other	end	of	the	ship	the	charge	is	annihilated,	it
disappears.	At	the	same	instant,	note,	and	perfectly	consistent	with	our
idea	that	charge	is	conserved.	If	we	lose	one	electron	in	one	place	we	get
another	elsewhere,	but	nothing	passes	in	between.	Let	us	suppose	that
when	the	charge	disappears	there	is	a	flash,	and	when	it	is	created	there
is	a	flash,	so	that	we	can	see	what	happens.	B	says	they	both	happen	at
the	same	time,	since	he	knows	he	is	in	the	middle	of	the	ship	and	the
light	from	the	bolt	which	creates	x	reaches	him	at	the	same	time	as	the
light	from	the	flash	of	disappearance	at	y.	Then	B	will	say,	‘Yes,	when
one	disappeared	the	other	was	created’.	But	what	happens	to	our	friend
in	the	other	ship?	He	says,	‘No,	you	are	wrong	my	friend.	I	saw	x	created
before	y’.	This	is	because	he	is	moving	towards	x,	so	the	light	from	x	will
have	a	shorter	distance	to	travel	than	the	light	from	y,	since	he	is
moving	away	from	y.	He	could	say,	‘No,	x	was	created	first	and	then	y
disappeared,	so	for	a	short	time	after	x	was	created	and	before	y
disappeared	I	got	some	charge.	That	is	not	the	conservation	of	charge.	It



is	against	the	law’.	But	the	first	fellow	says,	‘Yes,	but	you	are	moving’.
Then	he	says,	‘How	do	you	know	?	I	think	you	are	moving’,	and	so	on.	If
we	are	unable,	by	any	experiment,	to	see	a	difference	in	the	physical
laws	whether	we	are	moving	or	not,	then	if	the	conservation	of	charge
were	not	local	only	a	certain	kind	of	man	would	see	it	work	right,
namely	the	guy	who	is	standing	still,	in	an	absolute	sense.	But	such	a
thing	is	impossible	according	to	Einstein’s	relativity	principle,	and
therefore	it	is	impossible	to	have	non-local	conservation	of	charge.	The
locality	of	the	conservation	of	charge	is	consonant	with	the	theory	of
relativity,	and	it	turns	out	that	this	is	true	of	all	the	conservation	laws.
You	can	appreciate	that	if	anything	is	conserved	the	same	principle
applies.
There	is	another	interesting	thing	about	charge,	a	very	strange	thing

for	which	we	have	no	real	explanation	today.	It	has	nothing	to	do	with
the	conservation	law	and	is	independent	of	it.	Charge	always	comes	in
units.	When	we	have	a	charged	particle	it	has	one	charge	or	two	charges,
or	minus	one	or	minus	two.	Returning	to	our	table,	although	this	has
nothing	to	do	with	the	conservation	of	charge,	I	must	write	down	that
the	thing	that	is	conserved	comes	in	units.	It	is	very	nice	that	it	comes	in
units,	because	that	makes	the	theory	of	conservation	of	charge	very	easy
to	understand.	It	is	just	a	thing	we	can	count,	which	goes	from	place	to
place.	Finally	it	turns	out	technically	that	the	total	charge	of	a	thing	is
easy	to	determine	electrically	because	the	charge	has	a	very	important
characteristic;	it	is	the	source	of	the	electric	and	magnetic	field.	Charge
is	a	measure	of	the	interaction	of	an	object	with	electricity,	with	an
electric	field.	So	another	item	which	we	should	add	to	the	list	is	that
charge	is	the	source	of	a	field;	in	other	words,	electricity	is	related	to



charge.	Thus	the	particular	quantity	which	is	conserved	here	has	two
other	aspects	which	are	not	connected	with	the	conservation	directly,
but	are	interesting	anyway.	One	is	that	it	comes	in	units,	and	the	other
that	it	is	the	source	of	a	field.
There	are	many	conservation	laws,	and	I	will	give	some	more

examples	of	laws	of	the	same	type	as	the	conservation	of	charge,	in	the
sense	that	it	is	merely	a	matter	of	counting.	There	is	a	conservation	law
called	the	conservation	of	baryons.	A	neutron	can	go	into	a	proton.	If	we
count	each	of	these	as	one	unit,	or	baryon,	then	we	do	not	lose	the
number	of	baryons.	The	neutron	carries	one	baryonic	charge	unit,	or
represents	one	baryon,	a	proton	represents	one	baryon	–	all	we	are	doing
is	counting	and	making	big	words!	–	so	if	the	reaction	I	am	speaking	of
occurs,	in	which	a	neutron	decays	into	a	proton,	an	electron	and	an	anti-
neutrino,	the	total	number	of	baryons	does	not	change.	However	there
are	other	reactions	in	nature.	A	proton	plus	a	proton	can	produce	a	great
variety	of	strange	objects,	for	example	a	lambda,	a	proton	and	a	K	plus.
Lambda	and	K	plus	are	names	for	peculiar	particles.

In	this	reaction	we	know	we	put	two	baryons	in,	but	we	see	only	one

come	out,	so	possibly	either	lambda	or	K+	has	a	baryon.	If	we	study	the
lambda	later	we	discover	that	very	slowly	it	disintegrates	into	a	proton
and	a	pi,	and	ultimately	the	pi	disintegrates	into	electrons	and	what-not.

What	we	have	here	is	the	baryon	coming	out	again	in	the	proton,	so	we

think	the	lambda	has	a	baryon	number	of	1,	but	the	K+	does	not,	the	K+



has	zero.
On	our	chart	of	conservation	laws	(fig.	14),	then,	we	have	charge	and

now	we	have	a	similar	situation	with	baryons,	with	a	special	rule	that
the	baryon	number	is	the	number	of	protons,	plus	the	number	of
neutrons,	plus	the	number	of	lambdas,	minus	the	number	of	anti-
protons,	minus	the	number	of	anti-neutrons,	and	so	on;	it	is	just	a
counting	proposition.	It	is	conserved,	it	comes	in	units,	and	nobody
knows	but	everybody	wants	to	think,	by	analogy,	that	it	is	the	source	of
a	field.	The	reason	we	make	these	tables	is	that	we	are	trying	to	guess	at
the	laws	of	nuclear	interaction,	and	this	is	one	of	the	quick	ways	of
guessing	at	nature.	If	charge	is	the	source	of	a	field,	and	baryon	does	the
same	things	in	other	respects	it	ought	to	be	the	source	of	a	field	too.	Too
bad	that	so	far	it	does	not	seem	to	be,	it	is	possible,	but	we	do	not	know
enough	to	be	sure.
There	are	one	or	two	more	of	these	counting	propositions,	for

example	Lepton	numbers,	and	so	on,	but	the	idea	is	the	same	as	with
baryons.	There	is	one,	however,	which	is	slightly	different.	There	are	in
nature	among	these	strange	particles	characteristic	rates	of	reaction,
some	of	which	are	very	fast	and	easy,	and	others	which	are	very	slow
and	hard.	I	do	not	mean	easy	and	hard	in	a	technical	sense,	in	actually
doing	the	experiment.	It	concerns	the	rates	at	which	the	reactions	occur
when	the	particles	are	present.	There	is	a	clear	distinction	between	the
two	kinds	of	reaction	which	I	have	mentioned	above,	the	decay	of	a	pair
of	protons,	and	the	much	slower	decay	of	the	lambda.	It	turns	out	that	if
you	take	only	the	fast	and	easy	reactions	there	is	one	more	counting	law,
in	which	the	lambda	gets	a	minus	1,	and	the	K	plus	gets	a	plus	1,	and	the
proton	gets	zero.	This	is	called	the	strangeness	number,	or	hyperon



charge,	and	it	appears	that	the	rule	that	it	is	conserved	is	right	for	every
easy	reaction,	but	wrong	for	the	slow	reactions.	On	our	chart	(fig.	14)
we	must	therefore	add	the	conservation	law	called	the	conservation	of
strangeness,	or	the	conservation	of	hyperon	number,	which	is	nearly
right.	This	is	very	peculiar;	we	see	why	this	quantity	has	been	called
strangeness.	It	is	nearly	true	that	it	is	conserved,	and	true	that	it	comes
in	units.	In	trying	to	understand	the	strong	interactions	which	are
involved	in	nuclear	forces,	the	fact	that	in	strong	interactions	the	thing	is
conserved	has	made	people	propose	that	for	strong	interactions	it	is	also
the	source	of	a	field,	but	again	we	do	not	know.	I	bring	these	matters	up
to	show	you	how	conservation	laws	can	be	used	to	guess	new	laws.
There	are	other	conservation	laws	that	have	been	proposed	from	time

to	time,	of	the	same	nature	as	counting.	For	example,	chemists	once
thought	that	no	matter	what	happened	the	number	of	sodium	atoms
stayed	the	same.	But	sodium	atoms	are	not	permanent.	It	is	possible	to
transmute	atoms	from	one	element	to	another	so	that	the	original
element	has	completely	disappeared.	Another	law	which	was	for	a	while
believed	to	be	true	was	that	the	total	mass	of	an	object	stays	the	same.
This	depends	on	how	you	define	mass,	and	whether	you	get	mixed	up
with	energy.	The	mass	conservation	law	is	contained	in	the	next	one
which	I	am	going	to	discuss,	the	law	of	conservation	of	energy.	Of	all	the
conservation	laws,	that	dealing	with	energy	is	the	most	difficult	and
abstract,	and	yet	the	most	useful.	It	is	more	difficult	to	understand	than
those	I	have	described	so	far,	because	in	the	case	of	charge,	and	the
others,	the	mechanism	is	clear,	it	is	more	or	less	the	conservation	of
objects.	This	is	not	absolutely	the	case,	because	of	the	problem	that	we
get	new	things	from	old	things,	but	it	is	really	a	matter	of	simply
counting.



counting.
The	conservation	of	energy	is	a	little	more	difficult,	because	this	time

we	have	a	number	which	is	not	changed	in	time,	but	this	number	does
not	represent	any	particular	thing.	I	would	like	to	make	a	kind	of	silly
analogy	to	explain	a	little	about	it.
I	want	you	to	imagine	that	a	mother	has	a	child	whom	she	leaves

alone	in	a	room	with	28	absolutely	indestructible	blocks.	The	child	plays
with	the	blocks	all	day,	and	when	the	mother	comes	back	she	discovers
that	there	are	indeed	28	blocks;	she	checks	all	the	time	the	conservation
of	blocks!	This	goes	on	for	a	few	days,	and	then	one	day	when	she	comes
in	there	are	only	27	blocks.	However,	she	finds	one	block	lying	outside
the	window,	the	child	had	thrown	it	out.	The	first	thing	you	must
appreciate	about	conservation	laws	is	that	you	must	watch	that	the	stuff
you	are	trying	to	check	does	not	go	out	through	the	wall.	The	same	thing
could	happen	the	other	way,	if	a	boy	came	in	to	play	with	the	child,
bringing	some	blocks	with	him.	Obviously	these	are	matters	you	have	to
consider	when	you	talk	about	conservation	laws.	Suppose	one	day	when
the	mother	comes	to	count	the	blocks	she	finds	that	there	are	only	25
blocks,	but	suspects	that	the	child	has	hidden	the	other	three	blocks	in	a
little	toy	box.	So	she	says,	‘I	am	going	to	open	the	box’.	‘No,’	he	says,
‘you	cannot	open	the	box.’	Being	a	very	clever	mother	she	would	say,	‘I
know	that	when	the	box	is	empty	it	weighs	16	ounces,	and	each	block
weighs	3	ounces,	so	what	I	am	going	to	do	is	to	weigh	the	box’.	So,
totalling	up	the	number	of	blocks,	she	would	get	–

and	that	adds	up	to	28.	This	works	all	right	for	a	while,	and	then	one



day	the	sum	does	not	check	up	properly.	However,	she	notices	that	the
dirty	water	in	the	sink	is	changing	its	level.	She	knows	that	the	water	is
6	inches	deep	when	there	is	no	block	in	it,	and	that	it	would	rise	 	inch
if	a	block	was	in	the	water,	so	she	adds	another	term,	and	now	she	has	–

and	once	again	it	adds	up	to	28.	As	the	boy	becomes	more	ingenious,
and	the	mother	continues	to	be	equally	ingenious,	more	and	more	terms
must	be	added,	all	of	which	represent	blocks,	but	from	the	mathematical
standpoint	are	abstract	calculations,	because	the	blocks	are	not	seen.
Now	I	would	like	to	draw	my	analogy,	and	tell	you	what	is	common

between	this	and	the	conservation	of	energy,	and	what	is	different.	First
suppose	that	in	all	of	the	situations	you	never	saw	any	blocks.	The	term
‘No.	of	blocks	seen’	is	never	included.	Then	the	mother	would	always	be
calculating	a	whole	lot	of	terms	like	‘blocks	in	the	box’,	‘blocks	in	the
water’,	and	so	on.	With	energy	there	is	this	difference,	that	there	are	no
blocks,	so	far	as	we	can	tell.	Also,	unlike	the	case	of	the	blocks,	for
energy	the	numbers	that	come	out	are	not	integers.	I	suppose	it	might
happen	to	the	poor	mother	that	when	she	calculates	one	term	it	comes

out	6	 	blocks,	and	when	she	calculates	another	it	comes	out	 of	a
block,	and	the	others	give	21,	which	still	totals	28.	That	is	how	it	looks
with	energy.
What	we	have	discovered	about	energy	is	that	we	have	a	scheme

with	a	sequence	of	rules.	From	each	different	set	of	rules	we	can
calculate	a	number	for	each	different	kind	of	energy.	When	we	add	all
the	numbers	together,	from	all	the	different	forms	of	energy,	it	always



the	numbers	together,	from	all	the	different	forms	of	energy,	it	always
gives	the	same	total.	But	as	far	as	we	know	there	are	no	real	units,	no
little	ballbearings.	It	is	abstract,	purely	mathematical,	that	there	is	a
number	such	that	whenever	you	calculate	it	it	does	not	change.	I	cannot
interpret	it	any	better	than	that.
This	energy	has	all	kinds	of	forms,	analogous	to	the	blocks	in	the	box,

blocks	in	the	water,	and	so	on.	There	is	energy	due	to	motion	called
kinetic	energy,	energy	due	to	gravitational	interaction	(gravitational
potential	energy,	it	is	called),	thermal	energy,	electrical	energy,	light
energy,	elastic	energy	in	springs	and	so	on,	chemical	energy,	nuclear
energy	-	and	there	is	also	an	energy	that	a	particle	has	from	its	mere
existence,	an	energy	that	depends	directly	on	its	mass.	The	last	is	the

contribution	of	Einstein,	as	you	undoubtedly	know.	E	=	mc2	is	the
famous	equation	of	the	law	I	am	talking	about.
Although	I	have	mentioned	a	large	number	of	energies,	I	would	like

to	explain	that	we	are	not	completely	ignorant	about	this,	and	we	do
understand	the	relationship	of	some	of	them	to	others.	For	instance,
what	we	call	thermal	energy	is	to	a	large	extent	merely	the	kinetic
energy	of	the	motion	of	the	particles	inside	an	object.	Elastic	energy	and
chemical	energy	both	have	the	same	origin,	namely	the	forces	between
the	atoms.	When	the	atoms	rearrange	themselves	in	a	new	pattern	some
energy	is	changed,	and	if	that	quantity	changes	it	means	that	some	other
quantity	also	has	to	change.	For	example,	if	you	are	burning	something
the	chemical	energy	changes,	and	you	find	heat	where	you	did	not	have
heat	before,	because	it	all	has	to	add	up	right.	Elastic	energy	and
chemical	energy	are	both	interactions	of	atoms,	and	we	now	understand
these	interactions	to	be	a	combination	of	two	things,	one	electrical
energy	and	the	other	kinetic	energy	again,	only	this	time	the	formula	for
it	is	quantum	mechanical.	Light	energy	is	nothing	but	electrical	energy,



it	is	quantum	mechanical.	Light	energy	is	nothing	but	electrical	energy,
because	light	has	now	been	interpreted	as	an	electric	and	magnetic
wave.	Nuclear	energy	is	not	represented	in	terms	of	the	others;	at	the
moment	I	cannot	say	more	than	that	it	is	the	result	of	nuclear	forces.	I
am	not	just	talking	here	about	the	energy	released.	In	the	uranium
nucleus	there	is	a	certain	amount	of	energy,	and	when	the	thing
disintegrates	the	amount	of	energy	remaining	in	the	nucleus	changes,
but	the	total	amount	of	energy	in	the	world	does	not	change,	so	a	lot	of
heat	and	stuff	is	generated	in	the	process,	in	order	to	balance	up.
This	conservation	law	is	very	useful	in	many	technical	ways.	I	will

give	you	some	very	simple	examples	to	show	how,	knowing	the	law	of
conservation	of	energy	and	the	formulae	for	calculating	energy,	we	can
understand	other	laws.	In	other	words	many	other	laws	are	not
independent,	but	are	simply	secret	ways	of	talking	about	the
conservation	of	energy.	The	simplest	is	the	law	of	the	lever	(fig.	16).

Figure	16

We	have	a	lever	on	a	pivot.	The	length	of	one	arm	is	1	foot	and	the	other
4	feet.	First	I	must	give	the	law	for	gravity	energy,	which	is	that	if	you
have	a	number	of	weights,	you	take	the	weight	of	each	and	multiply	it
by	its	height	above	the	ground,	add	this	together	for	all	the	weights,	and
that	gives	the	total	of	gravity	energy.	Suppose	I	have	a	2	lb	weight	on
the	long	arm,	and	an	unknown	mystic	weight	on	the	other	side–X	is
always	the	unknown,	so	let	us	call	it	W	to	make	it	seem	that	we	have



advanced	above	the	usual!	Now	the	question	is,	how	much	must	W	be	so
that	it	just	balances	and	swings	quietly	back	and	forth	without	any
trouble	?	If	it	swings	quietly	back	and	forth,	that	means	that	the	energy
is	the	same	whether	the	balance	is	parallel	to	the	ground	or	tilted	so	that
the	2	lb	weight	is,	say,	1	inch	above	the	ground.	If	the	energy	is	the
same	then	it	does	not	care	much	which	way,	and	it	does	not	fall	over.	If
the	2	lb	weight	goes	up	1	inch	how	far	down	does	W	go	?	From	the
diagram	you	can	see	(fig.	3)	that	if	AO	is	1	foot	and	OB	is	4	feet,	then
when	BB’	is	1	inch	AA’	will	be	 	inch.	Now	apply	the	law	for	gravity
energy.	Before	anything	happened	all	the	heights	were	zero,	so	the	total
energy	was	zero.	After	the	move	has	happened	to	get	the	gravity	energy
we	multiply	the	weight	2	lb	by	the	height	1	inch	and	add	it	to	the
unknown	weight	W	times	the	height–	 	inch.	The	sum	of	this	must	give
the	same	energy	as	before–zero.	So	–

This	is	one	way	we	can	understand	the	easy	law,	which	you	already
knew	of	course,	the	law	of	the	lever.	But	it	is	interesting	that	not	only
this	but	hundreds	of	other	physical	laws	can	be	closely	related	to	various
forms	of	energy.	I	showed	you	this	example	only	to	illustrate	how	useful
it	is.
The	only	trouble	is,	of	course,	that	in	practice	it	does	not	really	work

because	of	friction	in	the	fulcrum.	If	I	have	something	moving,	for
example	a	ball	rolling	along	at	a	constant	height,	then	it	will	stop	on
account	of	friction.	What	happened	to	the	kinetic	energy	of	the	ball	?
The	answer	is	that	the	energy	of	the	motion	of	the	ball	has	gone	into	the
energy	of	the	jiggling	of	the	atoms	in	the	floor	and	in	the	ball.	The	world
that	we	see	on	a	large	scale	looks	like	a	nice	round	ball	when	we	polish



that	we	see	on	a	large	scale	looks	like	a	nice	round	ball	when	we	polish
it,	but	it	is	really	quite	complicated	when	looked	at	on	a	little	scale;
billions	of	tiny	atoms,	with	all	kinds	of	irregular	shapes.	It	is	like	a	very
rough	boulder	when	looked	at	finely	enough,	because	it	is	made	out	of
these	little	balls.	The	floor	is	the	same,	a	bumpy	business	made	out	of
balls.	When	you	roll	this	monster	boulder	over	the	magnified	floor	you
can	see	that	the	little	atoms	are	going	to	go	snap-jiggle,	snap-jiggle.	After
the	thing	has	rolled	across,	the	ones	that	are	left	behind	are	still	shaking
a	little	from	the	pushing	and	snapping	that	they	went	through;	so	there
is	left	in	the	floor	a	jiggling	motion,	or	thermal	energy.	At	first	it	appears
as	if	the	law	of	conservation	is	false,	but	energy	has	the	tendency	to	hide
from	us	and	we	need	thermometers	and	other	instruments	to	make	sure
that	it	is	still	there.	We	find	that	energy	is	conserved	no	matter	how
complex	the	process,	even	when	we	do	not	know	the	detailed	laws.
The	first	demonstration	of	the	law	of	conservation	of	energy	was	not

by	a	physicist	but	by	a	medical	man.	He	demonstrated	with	rats.	If	you
burn	food	you	can	find	out	how	much	heat	is	generated.	If	you	then	feed
the	same	amount	of	food	to	rats	it	is	converted,	with	oxygen,	into	carbon
dioxide,	in	the	same	way	as	in	burning.	When	you	measure	the	energy	in
each	case	you	find	out	that	living	creatures	do	exactly	the	same	as	non-
living	creatures.	The	law	for	conservation	of	energy	is	as	true	for	life	as
for	other	phenomena.	Incidentally,	it	is	interesting	that	every	law	or
principle	that	we	know	for	‘dead’	things,	and	that	we	can	test	on	the
great	phenomenon	of	life,	works	just	as	well	there.	There	is	no	evidence
yet	that	what	goes	on	in	living	creatures	is	necessarily	different,	so	far	as
the	physical	laws	are	concerned,	from	what	goes	on	in	non-living	things,
although	the	living	things	may	be	much	more	complicated.



The	amount	of	energy	in	food,	which	will	tell	you	how	much	heat,
mechanical	work,	etc.,	it	can	generate,	is	measured	in	calories.	When
you	hear	of	calories	you	are	not	eating	something	called	calories,	that	is
simply	the	measure	of	the	amount	of	heat	energy	that	is	in	the	food.
Physicists	sometimes	feel	so	superior	and	smart	that	other	people	would
like	to	catch	them	out	once	on	something.	I	will	give	you	something	to
get	them	on.	They	should	be	utterly	ashamed	of	the	way	they	take
energy	and	measure	it	in	a	host	of	different	ways,	with	different	names.
It	is	absurd	that	energy	can	be	measured	in	calories,	in	ergs,	in	electron
volts,	in	foot	pounds,	in	B.T.U.s,	in	horsepower	hours,	in	kilowatt	hours–
all	measuring	exactly	the	same	thing.	It	is	like	having	money	in	dollars,
pounds,	and	so	on;	but	unlike	the	economic	situation	where	the	ratio	can
change,	these	dopey	things	are	in	absolutely	guaranteed	proportion.	If
anything	is	analogous,	it	is	like	shillings	and	pounds–there	are	always	20
shillings	to	a	pound.	But	one	complication	that	the	physicist	allows	is
that	instead	of	having	a	number	like	20	he	has	irrational	ratios	like	1-
6183178	shillings	to	a	pound.	You	would	think	that	at	least	the	more
modern	high-class	theoretical	physicists	would	use	a	common	unit,	but
you	find	papers	with	degrees	Kelvin	for	measuring	energy,	megacycles,
and	now	inverse	Fermis,	the	latest	invention.	For	those	who	want	some
proof	that	physicists	are	human,	the	proof	is	in	the	idiocy	of	all	the
different	units	which	they	use	for	measuring	energy.
There	are	a	number	of	interesting	phenomena	in	nature	which

present	us	with	curious	problems	concerning	energy.	There	has	been	a
recent	discovery	of	things	called	quasars,	which	are	enormously	far
away,	and	they	radiate	so	much	energy	in	the	form	of	light	and	radio
waves	that	the	question	is	where	does	it	come	from	?	If	the	conservation
of	energy	is	right,	the	condition	of	the	quasar	after	it	has	radiated	this



of	energy	is	right,	the	condition	of	the	quasar	after	it	has	radiated	this
enormous	amount	of	energy	must	be	different	from	its	condition	before.
The	question	is,	is	it	coming	from	gravitation	energy–is	the	thing
collapsed	gravitationally,	in	a	different	condition	gravitationally?	Or	is
this	big	emission	coming	from	nuclear	energy?	Nobody	knows.	You
might	propose	that	perhaps	the	law	of	conservation	of	energy	is	not
right.	Well,	when	a	thing	is	investigated	as	incompletely	as	the	quasar–
quasars	are	so	distant	that	the	astronomers	cannot	see	them	too	easily–
then	if	such	a	thing	seems	to	conflict	with	the	fundamental	laws,	it	very
rarely	is	that	the	fundamental	laws	are	wrong,	it	usually	is	just	that	the
details	are	unknown.
Another	interesting	example	of	the	use	of	the	law	of	conservation	of

energy	is	in	the	reaction	when	a	neutron	disintegrates	into	a	proton,	an
electron,	and	an	anti-neutrino.	It	was	first	thought	that	a	neutron	turned
into	a	proton	plus	an	electron.	But	the	energy	of	all	the	particles	could
be	measured,	and	a	proton	and	an	electron	together	did	not	add	up	to	a
neutron.	Two	possibilities	existed.	It	might	have	been	that	the	law	of
energy	conservation	was	not	right;	in	fact	it	was	proposed	by	Bohr*	for	a
while	that	perhaps	the	conservation	law	worked	only	statistically,	on	the
average.	But	it	turns	out	now	that	the	other	possibility	is	the	correct	one,
that	the	fact	that	the	energy	does	not	check	out	is	because	there	is
something	else	coming	out,	something	which	we	now	call	an	anti-
neutrino.	The	anti-neutrino	which	comes	out	takes	up	the	energy.	You
might	say	that	the	only	reason	for	the	anti-neutrino	is	to	make	the
conservation	of	energy	right.	But	it	makes	a	lot	of	other	things	right,	like
the	conservation	of	momentum	and	other	conservation	laws,	and	very
recently	it	has	been	directly	demonstrated	that	such	neutrinos	do	indeed



exist.
This	example	illustrates	a	point.	How	is	it	possible	that	we	can

extend	our	laws	into	regions	we	are	not	sure	about?	Why	are	we	so
confident	that,	because	we	have	checked	the	energy	conservation	here,
when	we	get	a	new	phenomenon	we	can	say	it	has	to	satisfy	the	law	of
conservation	of	energy	?	Every	once	in	a	while	you	read	in	the	papei
that	physicists	have	discovered	that	one	of	their	favourite	laws	is	wrong.
Is	it	then	a	mistake	to	say	that	a	law	is	true	in	a	region	where	you	have
not	yet	looked?	If	you	will	never	say	that	a	law	is	true	in	a	region	where
you	have	not	already	looked	you	do	not	know	anything.	If	the	only	laws
that	you	find	are	those	which	you	have	just	finished	observing	then	you
can	never	make	any	predictions.	Yet	the	only	utility	of	science	is	to	go
on	and	to	try	to	make	guesses.	So	what	we	always	do	is	to	stick	our
necks	out,	and	in	the	case	of	energy	the	most	likely	thing	is	that	it	is
conserved	in	other	places.
Of	course	this	means	that	science	is	uncertain;	the	moment	that	you

make	a	proposition	about	a	region	of	experience	that	you	have	not
directly	seen	then	you	must	be	uncertain.	But	we	always	must	make
statements	about	the	regions	that	we	have	not	seen,	or	the	whole
business	is	no	use.	For	instance,	the	mass	of	an	object	changes	when	it
moves,	because	of	the	conservation	of	energy.	Because	of	the	relation	of
mass	and	energy	the	energy	associated	with	the	motion	appears	as	an
extra	mass,	so	things	get	heavier	when	they	move.	Newton	believed	that
this	was	not	the	case,	and	that	the	masses	stayed	constant.	When	it	was
discovered	that	the	Newtonian	idea	was	false	everyone	kept	saying	what
a	terrible	thing	it	was	that	physicists	had	found	out	that	they	were
wrong.	Why	did	they	think	they	were	right?	The	effect	is	very	small,	and



only	shows	when	you	get	near	the	speed	of	light.	If	you	spin	a	top	it
weighs	the	same	as	if	you	do	not	spin	it,	to	within	a	very	very	fine
fraction.	Should	they	then	have	said,‘If	you	do	not	move	any	faster	than
so-and-so,	then	the	mass	does	not	change’?	That	would	then	be	certain.
No,	because	if	the	experiment	happened	to	have	been	done	only	with
tops	of	wood,	copper	and	steel,	they	would	have	had	to	say	‘Tops	made
out	of	copper,	wood	and	steel,	when	not	moving	any	faster	than	so	and
so…’.	You	see,	we	do	not	know	all	the	conditions	that	we	need	for	an
experiment.	It	is	not	known	whether	a	radioactive	top	would	have	a
mass	that	is	conserved.	So	we	have	to	make	guesses	in	order	to	give	any
utility	at	all	to	science.	In	order	to	avoid	simply	describing	experiments
that	have	been	done,	we	have	to	propose	laws	beyond	their	observed
range.	There	is	nothing	wrong	with	that,	despite	the	fact	that	it	makes
science	uncertain.	If	you	thought	before	that	science	was	certain–well,
that	is	just	an	error	on	your	part.
To	return	then,	to	our	list	of	conservation	laws	(fig.	14),	we	can	add

energy.	It	is	conserved	perfectly,	as	far	as	we	know.	It	does	not	come	in
units.	Now	the	question	is,	is	it	the	source	of	a	field?	The	answer	is	yes.
Einstein	understood	gravitation	as	being	generated	by	energy.	Energy
and	mass	are	equivalent,	and	so	Newton’s	interpretation	that	the	mass	is
what	produces	gravity	has	been	modified	to	the	statement	that	the
energy	produces	the	gravity.
There	are	other	laws	similar	to	the	conservation	of	energy,	in	the

sense	that	they	are	numbers.	One	of	them	is	momentum.	If	you	take	all
the	masses	of	an	object,	multiply	them	by	the	velocities,	and	add	them
all	together,	the	sum	is	the	momentum	of	the	particles;	and	the	total
amount	of	momentum	is	conserved.	Energy	and	momentum	are	now
understood	to	be	very	closely	related,	so	I	have	put	them	in	the	same



understood	to	be	very	closely	related,	so	I	have	put	them	in	the	same
column	of	our	table.
Another	example	of	a	conserved	quantity	is	angular	momentum,	an

item	which	we	discussed	before.	The	angular	momentum	is	the	area
generated	per	second	by	objects	moving	about.	For	example,	if	we	have
a	moving	object,	and	we	take	any	centre	whatsoever,	then	the	speed	at
which	the	area	(fig.	17)	swept	out	by	a	line	from	centre	to	object,
increases,	multiplied	by	the	mass	of	the	object,	and	added	together	for
all	the	objects,	is	called	the	angular	momentum.	And	that	quantity	does
not	change.	So	we	have	conservation	of	angular	momentum.
Incidentally,	at	first	sight,	if	you	know	too	much	physics,	you	might
think	that	the	angular	momentum	is	not	conserved.	Like	the	energy	it
appears	in	different	forms.	Although	most	people	think	it	only	appears	in
motion	it	does	appear	in	other	forms,	as	I	will	illustrate.	If	you	have	a
wire,	and	move	a	magnet	up	into	it,	increasing	the	magnetic	field
through	the	flux	through	the	wire,	there	will	be	an	electric	current–that
is	how	electric	generators	work.	Imagine	that	instead	of	a	wire	I	have	a
disc,	on	which	there	are	electric	charges	analogous	to	the	electrons	in
the	wire	(fig.	18).	Now	I	bring	a	magnet	dead	centre	along	the	axis	from
far	away,	very	rapidly	up	to	the	disc,	so	that	now	there	is	a	flux	change.
Then,	just	as	in	the	wire,	the	charges	will	start	to	go	around,	and	if	the
disc	were	on	a	wheel	it	would	be	spinning	by	the	time	I	had	brought	the
magnet	up.	That	does	not	look	like	conservation	of	angular	momentum,
because	when	the	magnet	is	away	from	the	disc	nothing	is	turning,	and
when	they	are	close	together	it	is	spinning.	We	have	got	turning	for
nothing,	and	that	is	against	the	rules.	‘Oh	yes,’	you	say,	‘I	know,	there
must	be	some	other	kind	of	interaction	that	makes	the	magnet	spin	the



opposite	way.’	That	is	not	the	case.	There	is	no	electrical	force	on	the
magnet	tending	to	twist	it	the	opposite	way.	The	explanation	is	that
angular	momentum	appears	in	two	forms	:	one	of	them	is	angular
momentum	of	motion,	and	the	other	is	angular	momentum	in	electric
and	magnetic	fields.	There	is	angular	momentum	in	the	field	around	the
magnet,	although	it	does	not	appear	as	motion,	and	this	has	the	opposite
sign	to	the	spin.	If	we	take	the	opposite	case	it	is	even	clearer	(fig.	19).

Figure	17

Figure	18

Figure	19

If	we	have	just	the	particles,	and	the	magnet,	close	together,	and
everything	is	standing	still,	I	say	there	is	angular	momentum	in	the	field,
a	hidden	form	of	angular	momentum	which	does	not	appear	as	actual



rotation.	When	you	pull	the	magnet	down	and	take	the	instrument	apart,
then	all	the	fields	separate	and	the	angular	momentum	now	has	to
appear	and	the	disc	will	start	to	spin.	The	law	that	makes	it	spin	is	the
law	of	induction	of	electricity.
Whether	angular	momentum	comes	in	units	is	very	difficult	for	me	to

answer.	At	first	sight	it	appears	that	it	is	absolutely	impossible	that
angular	momentum	comes	in	units,	because	angular	momentum	depends
upon	the	direction	at	which	you	project	the	picture.	You	are	looking	at
an	area	change,	and	obviously	this	will	be	different	depending	on
whether	it	is	looked	at	from	an	angle,	or	straight	on.	If	angular
momentum	came	in	units,	and	say	you	looked	at	something	and	it
showed	8	units,	then	if	you	looked	at	it	from	a	very	slightly	different
angle,	the	number	of	units	would	be	very	slightly	different,	perhaps	a
tiny	bit	less	than	8.	But	7	is	not	a	little	bit	less	than	8;	it	is	a	definite
amount	less	than	eight.	So	it	cannot	possibly	come	in	units.	However
this	proof	is	evaded	by	the	subtleties	and	peculiarities	of	quantum
mechanics,	and	if	we	measure	the	angular	momentum	about	any	axis,
amazingly	enough	it	is	always	a	number	of	units.	It	is	not	the	kind	of
unit,	like	an	electric	charge,	that	you	can	count.	The	angular	momentum
does	come	in	units	in	the	mathematical	sense	that	the	number	we	get	in
any	measurement	is	a	definite	integer	times	a	unit.	But	we	cannot
interpret	this	in	the	same	way	as	with	units	of	electric	charge,
imaginable	units	that	we	can	count–one,	then	another,	then	another.	In
the	case	of	angular	momentum	we	cannot	imagine	them	as	separate
units,	but	it	comes	out	always	as	an	integer…	which	is	very	peculiar.
There	are	other	conservation	laws.	They	are	not	as	interesting	as

those	I	have	described,	and	do	not	deal	exactly	with	the	conservation	of



numbers.	Suppose	we	had	some	kind	of	device	with	particles	moving
with	a	certain	definite	symmetry,	and	suppose	their	movements	were
bilaterally	symmetrical	(fig.	20).	Then,	following	the	laws	of	physics,
with	all	the	movements	and	collisions,	you	could	expect,	and	rightly,
that	if	you	look	at	the	same	picture	later	on	it	will	still	be	bilaterally
symmetrical.	So	there	is	a	kind	of	conservation,	the	conservation	of	the
symmetry	character.	This	should	be	in	the	table,	but	it	is	not	like	a
number	that	you	measure,	and	we	will	discuss	it	in	much	more	detail	in
the	next	lecture.	The	reason	this	is	not	very	interesting	in	classical
physics	is	because	the	times	when	there	are	such	nicely	symmetrical
initial	conditions	are	very	rare,	and	it	is	therefore	a	not	very	important
or	practical	conservation	law.	But	in	quantum	mechanics,	when	we	deal
with	very	simple	systems	like	atoms,	their	internal	constitution	often	has
a	kind	of	symmetry,	like	bilateral	symmetry,	and	then	the	symmetry
character	is	maintained.	This	is	therefore	an	important	law	for
understanding	quantum	phenomena.

Figure	20

One	interesting	question	is	whether	there	is	a	deeper	basis	for	these
conservation	laws,	or	whether	we	have	to	take	them	as	they	are.	I	will
discuss	that	question	in	the	next	lecture,	but	there	is	one	point	I	should
like	to	make	now.	In	discussing	these	ideas	on	a	popular	level,	there
seem	to	be	a	lot	of	unrelated	concepts;	but	with	a	more	profound
understanding	of	the	various	principles	there	appear	deep



understanding	of	the	various	principles	there	appear	deep
interconnections	between	the	concepts,	each	one	implying	others	in
some	way.	One	example	is	the	relation	between	relativity	and	the
necessity	for	local	conservation.	If	I	had	stated	this	without	a
demonstration,	it	might	appear	to	be	some	kind	of	miracle	that	if	you
cannot	tell	how	fast	you	are	moving	this	implies	that	if	something	is
conserved	it	must	be	done	not	by	jumping	from	one	place	to	another.
At	this	point	I	would	like	to	indicate	how	the	conservation	of	angular

momentum,	the	conservation	of	momentum,	and	a	few	other	things	are
to	some	extent	related.	The	conservation	of	angular	momentum	has	to
do	with	the	area	swept	by	particles	moving.	If	you	have	a	lot	of	particles
(fig.	21),	and	take	your	centre	(x)	very	far	away,	then	the	distances	are
almost	the	same	for	every	object.	In	this	case	the	only	thing	that	counts
in	the	area	sweeping,	or	in	the	conservation	of	angular	momentum,	is
the	component	of	motion,	which	in	figure	21	is	vertical.	What	we
discover	then	is	that	the	total	of	the	masses,	each	multiplied	by	its
velocity	vertically,	must	be	a	constant,	because	the	angular	momentum
is	a	constant	about	any	point,	and	if	the	chosen	point	is	far	enough	away
only	the	masses	and	velocities	are	relevant.	In	this	way	the	conservation
of	angular	momentum	implies	the	conservation	of	momentum.	This	in
turn	implies	something	else,	the	conservation	of	another	item	which	is	so
closely	connected	that	I	did	not	bother	to	put	it	in	the	table.	This	is	a
principle	about	the	centre	of	gravity	(fig.	22).

Figure	21



Figure	22

A	mass,	in	a	box,	cannot	just	disappear	from	one	position	and	move
over	to	another	position	all	by	itself.	That	is	nothing	to	do	with
conservation	of	the	mass;	you	still	have	the	mass,	just	moved	from	one
place	to	another.	Charge	could	do	this,	but	not	a	mass.	Let	me	explain
why.	The	laws	of	physics	are	not	affected	by	motion,	so	we	can	suppose
that	this	box	is	drifting	slowly	upwards.	Now	we	take	the	angular
momentum	from	a	point	not	far	away,	x.	As	the	box	is	drifting	upwards,
if	the	mass	is	lying	quiet	in	the	box,	at	position	1,	it	will	be	producing	an
area	at	a	given	rate.	After	the	mass	has	moved	over	to	position	2,	the
area	will	be	increasing	at	a	greater	rate,	because	although	the	altitude
will	be	the	same	because	the	box	is	still	drifting	upwards,	the	distance
from	x	to	the	mass	has	increased.	By	the	conservation	of	angular
momentum	you	cannot	change	the	rate	at	which	the	area	is	changing,
and	therefore	you	simply	cannot	move	one	mass	from	one	place	to
another	unless	you	push	on	something	else	to	balance	up	the	angular
momentum.	That	is	the	reason	why	rockets	in	empty	space	cannot	go…
but	they	do	go.	If	you	figure	it	out	with	a	lot	of	masses,	then	if	you	move
one	forward	you	must	move	others	back,	so	that	the	total	motion	back
and	forward	of	all	the	masses	is	nothing.	This	is	how	a	rocket	works.	At
first	it	is	standing	still,	say,	in	empty	space,	and	then	it	shoots	some	gas
out	of	the	back,	and	the	rocket	goes	forward.	The	point	is	that	of	all	the
stuff	in	the	world,	the	centre	of	mass,	the	average	of	all	the	mass,	is	still
right	where	it	was	before.	The	interesting	part	has	moved	on,	and	an



uninteresting	part	that	we	do	not	care	about	has	moved	back.	There	is
no	theorem	that	says	that	the	interesting	things	in	the	world	are
conserved–only	the	total	of	everything.
Discovering	the	laws	of	physics	is	like	trying	to	put	together	the

pieces	of	a	jigsaw	puzzle.	We	have	all	these	different	pieces,	and	today
they	are	proliferating	rapidly.	Many	of	them	are	lying	about	and	cannot
be	fitted	with	the	other	ones.	How	do	we	know	that	they	belong
together?	How	do	we	know	that	they	are	really	all	part	of	one	as	yet
incomplete	picture?	We	are	not	sure,	and	it	worries	us	to	some	extent,
but	we	get	encouragement	from	the	common	characteristics	of	several
pieces.	They	all	show	blue	sky,	or	they	are	all	made	out	of	the	same	kind
of	wood.	All	the	various	physical	laws	obey	the	same	conservation
principles.



4
Symmetry	in	Physical	Law

Symmetry	seems	to	be	absolutely	fascinating	to	the	human	mind.	We
like	to	look	at	symmetrical	things	in	nature,	such	as	perfectly
symmetrical	spheres	like	planets	and	the	sun,	or	symmetrical	crystals
like	snowflakes,	or	flowers	which	are	nearly	symmetrical.	However,	it	is
not	the	symmetry	of	the	objects	in	nature	that	I	want	to	discuss	here;	it
is	rather	the	symmetry	of	the	physical	laws	themselves.	It	is	easy	to
understand	how	an	object	can	be	symmetrical,	but	how	can	a	physical
law	have	a	symmetry?	Of	course	it	cannot,	but	physicists	delight
themselves	by	using	ordinary	words	for	something	else.	In	this	case	they
have	a	feeling	about	the	physical	laws	which	is	very	close	to	the	feeling
of	symmetry	of	objects,	and	they	call	it	the	symmetry	of	the	laws.	That	is
what	I	am	going	to	discuss.
What	is	symmetry?	If	you	look	at	me	I	am	symmetrical,	right	and

left–apparently	externally,	at	least.	A	vase	can	be	symmetrical	in	the
same	way	or	in	other	ways.	How	can	you	define	it?	The	fact	that	I	am
left	and	right	symmetric	means	that	if	you	put	everything	that	is	on	one
side	on	the	other	side,	and	vice	versa–if	you	just	exchange	the	two	sides–
I	shall	look	exactly	the	same.	A	square	has	a	symmetry	of	a	special	kind,
because	if	I	turn	it	around	through	90	degrees	it	still	looks	exactly	the
same.	Professor	Weyl,*	the	mathematician,	gave	an	excellent	definition
of	symmetry,	which	is	that	a	thing	is	symmetrical	if	there	is	something
that	you	can	do	to	it	so	that	after	you	have	finished	doing	it	it	looks	the
same	as	it	did	before.	That	is	the	sense	in	which	we	say	that	the	laws	of



physics	are	symmetrical;	that	there	are	things	we	can	do	to	the	physical

laws,	or	to	our	way	of	representing	the	physical	laws,	which	make	no
difference,	and	leave	everything	unchanged	in	its	effects.	It	is	this	aspect
of	physical	laws	that	is	going	to	concern	us	in	this	lecture.
The	simplest	example	of	this	kind	of	symmetry–you	will	see	that	it	is

not	the	same	as	you	might	have	thought,	left	and	right	symmetric,	or
anything	like	that–is	a	symmetry	called	translation	in	space.	This	has	the
following	meaning	:	if	you	build	any	kind	of	apparatus,	or	do	any	kind	of
experiment	with	some	things,	and	then	go	and	build	the	same	apparatus
to	do	the	same	kind	of	experiment,	with	similar	things	but	put	them	here
instead	of	there,	merely	translated	from	one	place	to	another	in	space,
then	the	same	thing	will	happen	in	the	translated	experiment	as	would
have	happened	in	the	original	experiment.	It	is	not	true	here	actually.	If
I	actually	built	such	an	apparatus,	and	then	displaced	it	20	feet	to	the
left	of	where	I	am	now	it	would	get	into	the	wall,	and	there	would	be
difficulties.	It	is	necessary,	in	defining	this	idea,	to	take	into	account
everything	that	might	affect	the	situation,	so	that	when	you	move	the
thing	you	move	everything.	For	example,	if	the	system	involved	a
pendulum,	and	I	moved	it	20,000	miles	to	the	right,	it	would	not	work
properly	any	more	because	the	pendulum	involves	the	attraction	of	the
earth.	However,	if	I	imagine	that	I	move	the	earth	as	well	as	the
equipment	then	it	would	behave	in	the	same	way.	The	problem	in	this
situation	is	that	you	must	translate	everything	which	may	have	any
influence	on	the	situation.	That	sounds	a	little	dopey,	because	it	sounds
as	if	you	can	just	translate	an	experiment,	and	if	it	does	not	work	you
can	just	presume	that	you	did	not	translate	enough	stuff–so	you	are
bound	to	win.	Actually	this	is	not	so,	because	it	is	not	self-evident	that
you	are	bound	to	win.	The	remarkable	thing	about	nature	is	that	it	is



you	are	bound	to	win.	The	remarkable	thing	about	nature	is	that	it	is
possible	to	translate	enough	stuff	so	that	it	does	behave	the	same	way.
That	is	a	positive	statement.
I	would	like	to	illustrate	that	such	a	thing	is	true.	Let	us	take	as	an

example	the	law	of	gravitation,	which	says	that	the	force	between
objects	varies	inversely	as	the	square	of	the	distance	between	them;	and
I	would	remind	you	that	a	thing	responds	to	a	force	by	changing	its
velocity,	with	time,	in	the	direction	of	the	force.	If	I	have	a	pair	of
objects,	like	a	planet	going	around	a	sun,	and	I	move	the	whole	pair
over,	then	the	distance	between	the	objects	of	course	does	not	change,
and	so	the	forces	do	not	change.	Further,	when	they	are	in	the	moved-
over	situation	they	will	go	at	the	same	speed,	and	all	the	changes	will
remain	in	proportion	and	everything	go	around	in	the	two	systems	in
exactly	the	same	way.	The	fact	that	the	law	says	‘the	distance	between
two	objects’,	rather	than	some	absolute	distance	from	the	central	eye	of
the	universe,	means	that	the	laws	are	translatable	in	space.
That,	then,	is	the	first	symmetry	–	translation	in	space.	The	next	one

could	be	called	translation	in	time,	but,	better,	let	us	say	that	delay	in
time	makes	no	difference.	We	start	a	planet	going	around	the	sun	in	a
certain	direction;	if	we	could	start	it	all	over	again,	two	hours	later,	or
two	years	later,	with	another	beginning,	but	starting	with	the	planet	and
the	sun	going	in	exactly	the	same	way,	then	it	would	behave	in	exactly
the	same	way,	because	again	the	law	of	gravitation	talks	about	the
velocity,	and	never	about	the	absolute	time	when	you	were	supposed	to
start	measuring	things.	In	this	particular	example,	in	fact,	we	are	not
really	sure.	When	we	discussed	gravitation,	we	talked	about	the
possibility	that	the	force	of	gravity	changed	with	time.	This	would	mean
that	translation	in	time	is	not	a	valid	proposition,	because	if	the	constant



that	translation	in	time	is	not	a	valid	proposition,	because	if	the	constant
of	gravitation	will	be	weaker	a	billion	years	hence	than	it	is	now,	then	it
is	not	true	that	the	motion	would	be	exactly	the	same	for	our
experimental	sun	and	planet	a	billion	years	from	now	as	it	is	now.	As	far
as	we	know	today	(I	have	only	discussed	the	laws	as	we	know	them
today.	–	I	only	wish	I	could	discuss	the	laws	as	we	shall	know	them
tomorrow!)	as	far	as	we	know,	a	delay	in	time	makes	no	difference.
We	know	that	in	one	respect	this	is	not	really	true.	It	is	true	for	what

we	now	call	physical	laws;	but	one	of	the	facts	of	the	world	(which	may
be	very	different)	is	that	it	looks	as	if	the	universe	had	a	definite	time	of
beginning,	and	that	everything	is	exploding	apart.	You	might	call	that	a
condition	of	geography,	analogous	to	the	situation	that	when	I	translate
in	space	I	must	translate	everything.	In	the	same	sense	you	might	say
that	the	laws	for	time	are	the	same	and	we	must	move	the	expansion	of
the	universe	with	everything	else.	We	could	have	made	another	analysis
in	which	we	started	the	universe	later;	but	we	do	not	start	the	universe,
and	we	have	no	control	over	the	situation	and	no	way	to	define	that	idea
experimentally.	Therefore	as	far	as	science	is	concerned	there	really	is	no
way	to	tell.	The	fact	of	the	matter	is	that	the	conditions	of	the	world
appear	to	be	changing	in	time,	the	galaxies	separating	from	one	another,
so	if	you	were	to	awake	in	some	science-fiction	story	at	an	unknown
time,	by	measuring	the	average	distances	to	the	galaxies	you	could	tell
when	it	was.	That	means	that	the	world	will	not	look	the	same	if	delayed
in	time.
Now	it	is	conventional	today	to	separate	the	physical	laws,	which	tell

how	things	will	move	if	you	start	them	in	a	given	condition,	from	the
statement	of	how	the	world	actually	began,	because	we	know	so	little
about	that.	It	is	usually	considered	that	astronomical	history,	or



about	that.	It	is	usually	considered	that	astronomical	history,	or
cosmological	history,	is	a	little	different	from	physical	law.	Yet	if	put	to
a	test	of	how	to	define	the	difference	I	would	be	hard	pressed.	The	best
characteristic	of	physical	law	is	its	universality,	and	if	anything	is
universal	it	is	the	expansion	of	all	the	nebulae.	I	have	therefore	no	way
of	defining	the	difference.	However,	if	I	restrict	myself	to	disregard	the
origin	of	the	universe	and	take	only	the	physical	laws	that	are	known,
then	a	delay	in	time	makes	no	difference.
Let	us	take	some	other	examples	of	symmetry	laws.	One	is	a	rotation

in	space,	a	fixed	rotation.	If	I	do	some	experiments	with	a	piece	of
equipment	built	in	one	place,	and	then	take	another	one	(possibly
translated	so	that	it	does	not	get	in	the	way)	exactly	the	same,	but
turned	so	that	all	the	axes	are	in	a	different	direction,	it	will	work	the
same	way.	Again	we	have	to	turn	everything	that	is	relevant.	If	the	thing
is	a	grandfather	clock,	and	you	turn	it	horizontal,	then	the	pendulum
will	just	sit	up	against	the	wall	of	the	cabinet	and	not	work.	But	if	you
turn	the	earth	too	(which	is	happening	all	the	time)	the	clock	still	keeps
working.
The	mathematical	description	of	this	possibility	of	turning	is	a	rather

interesting	one.	To	describe	what	goes	on	in	a	situation	we	use	numbers
to	tell	where	something	is.	They	are	called	the	co-ordinates	of	a	point,
and	we	sometimes	use	three	numbers,	to	describe	how	high	the	point	is
above	some	plane,	how	far	it	is	in	front,	say,	or	behind	in	negative
numbers,	and	how	far	to	the	left.	In	this	case	I	am	not	going	to	worry
about	up	and	down	because	for	rotations	I	just	have	to	use	two	of	these
three	co-ordinates.	Let	us	call	the	distance	in	front	of	me	x,	and	y	can	be
the	distance	to	the	left.	Then	I	can	locate	any	body	by	telling	how	far	it
is	in	front	and	how	far	to	the	left.	Those	who	come	from	New	York	City
will	know	that	the	street	numbers	work	that	way	very	neatly	–	or	they



will	know	that	the	street	numbers	work	that	way	very	neatly	–	or	they
did	until	they	began	to	change	the	name	of	Sixth	Avenue!	The
mathematical	idea	about	the	turning	is	this:	if	I	locate	a	point	as	I	have
described,	by	giving	its	x	and	y	co-ordinates	and	someone	else,	facing	a
different	way,	locates	the	same	point	in	the	same	way,	but	calculating
the	x′	and	y′	in	relation	to	his	own	position,	then	you	can	see	that	my	x
co-ordinate	is	a	mixture	of	the	two	co-ordinates	calculated	by	the	other
man.	The	connexion	of	the	transformation	is	that	x	gets	mixed	into	x′
and	y′	and	y	into	y′	and	x′.	The	laws	of	nature	should	so	be	written	that
if	you	make	such	a	mixture,	and	resubstitute	in	the	equations,	then	the
equations	will	not	change	their	form.	That	is	the	way	in	which	the
symmetry	appears	in	mathematical	form.	You	write	the	equations	with
certain	letters,	then	there	is	a	way	of	changing	the	letters	from	x	and	y	to
a	different	x,	x′,	and	a	different	y,	y′,	which	is	a	formula	in	terms	of	the
old	x	and	y,	and	the	equations	look	the	same,	only	they	have	primes	all
over	them.	This	just	means	that	the	other	man	will	see	the	thing
behaving	in	his	apparatus	the	same	way	as	I	see	it	in	mine,	which	is
turned	the	other	way.
I	will	give	another,	very	interesting,	example	of	a	symmetry	law.	It	is

a	question	of	uniform	velocity	in	a	straight	line.	It	is	believed	that	the
laws	of	physics	are	unchanged	under	a	uniform	velocity	in	a	straight
line.	This	is	called	the	principle	of	relativity.	If	we	have	a	space	ship,	and
we	have	a	bit	of	equipment	in	it	that	is	doing	something,	and	we	have
another	similar	equipment	down	here	on	the	ground,	then,	if	the	space
ship	is	going	along	at	a	uniform	speed,	somebody	inside,	watching	what
is	going	on	on	his	apparatus,	can	see	nothing	different	from	the	effects	I,
who	am	standing	still,	can	see	on	my	apparatus.	Of	course	if	he	looks
outside,	or	if	he	bumps	into	an	outside	wall,	or	something	like	that,	that



outside,	or	if	he	bumps	into	an	outside	wall,	or	something	like	that,	that
is	another	matter;	but	in	so	far	as	he	is	moving	at	a	uniform	velocity	in	a
straight	line,	the	laws	of	physics	look	the	same	to	him	as	they	do	to	me.
Since	that	is	the	case,	I	cannot	say	who	is	moving.

Relation	of	point	P	to	me	is	described	by	two	numbers	x,	y;	x	is	how
far	P	is	in	front	of	me	and	y	is	how	far	to	the	left.

The	same	point	P	is	described	by	two	new	numbers	x′,	y′	if	I	am	in
the	same	place	but	simply	turned.

Figure	23

I	must	emphasize	here,	before	we	go	any	further,	that	in	all	of	these
transformations,	and	all	of	these	symmetries,	we	are	not	talking	about
moving	a	whole	universe.	In	the	case	of	time	I	am	saying	nothing	if	I
imagine	that	I	move	all	the	times	in	the	whole	universe.	So	also	there



would	be	no	content	in	the	statement	that	if	I	took	everything	in	the
whole	universe,	and	moved	it	over	in	space,	it	would	behave	the	same
way.	The	remarkable	thing	is	that	if	I	take	a	piece	of	apparatus	and
move	it	over,	then	if	I	make	sure	about	a	lot	of	conditions,	and	include
enough	apparatus,	I	can	get	a	piece	of	the	world	and	move	it	relative	to
the	average	of	all	the	rest	of	the	stars,	and	this	still	does	not	make	any
difference.	In	the	relativity	case	it	means	that	someone	coasting	at	a
uniform	velocity	in	a	straight	line,	relative	to	the	average	of	the	rest	of
the	nebulae,	sees	no	effect.	Put	another	way,	it	is	impossible	to
determine	by	any	effects	from	the	experiments	inside	a	car,	without
looking	out,	whether	you	are	moving	relative	to	all	the	stars.
This	proposition	was	first	stated	by	Newton.	Let	us	take	his	law	of

gravitation.	It	says	that	the	forces	are	inversely	as	the	squares	of	the
distances,	and	that	a	force	produces	a	change	in	velocity.	Now	suppose	I
have	worked	out	what	happens	when	a	planet	goes	around	a	fixed	sun,
and	now	I	want	to	work	out	what	happens	when	a	planet	is	going
around	a	drifting	sun.	Then	all	of	the	velocities	that	I	had	in	the	first
case	are	different	in	the	second	case;	I	have	to	add	on	a	constant
velocity.	But	the	law	is	stated	in	terms	of	changes	in	velocity,	so	that
what	happens	is	that	the	force	on	the	planet	with	the	fixed	sun	is	the
same	as	the	force	on	the	planet	with	the	drifting	sun,	and	therefore	the
changes	in	velocity	of	the	two	planets	will	also	be	identical.	So	any	extra
velocity	I	started	with	on	the	second	planet	just	keeps	on	going,	and	all
the	changes	are	accumulated	on	top	of	that.	The	net	result	of	the
mathematics	is	that	if	you	add	a	constant	speed	the	laws	will	be	exactly
the	same,	so	that	we	cannot,	by	studying	the	solar	system	and	the	way
the	planets	go	around	the	sun,	figure	out	whether	the	sun	is	itself



drifting	through	space.	According	to	Newton’s	law	there	is	no	effect	of
such	a	drift	through	space	on	the	motions	of	the	planets	around	the	sun;
so	Newton	added	that	‘The	motion	of	bodies	among	themselves	is	the
same	in	a	space,	whether	that	space	is	itself	at	rest	relative	to	the	fixed
stars,	or	moving	at	a	uniform	velocity	in	a	straight	line’.
As	time	went	on,	new	laws	were	discovered	after	Newton,	among

them	the	laws	of	electricity	discovered	by	Maxwell.*	One	of	the
consequences	of	the	laws	of	electricity	was	that	there	should	be	waves,
electromagnetic	waves	–	light	is	an	example	–	which	should	go	at
186,000	miles	a	second,	flat.	I	mean	by	that	186,000	miles	a	second,
come	what	may.	So	then	it	was	easy	to	tell	where	rest	was,	because	the
law	that	light	goes	at	186,000	miles	a	second	is	certainly	not	(at	first
sight)	one	which	will	permit	one	to	move	without	some	effect.	It	is
evident,	is	it	not,	that	if	you	are	in	a	space	ship	going	at	100,000	miles	a
second	in	some	direction,	while	I	am	standing	still,	and	I	shoot	a	light
beam	at	186,000	miles	a	second	through	a	little	hole	in	your	ship,	then,
as	it	goes	through	your	ship,	since	you	are	going	at	100,000	miles	per
second	and	the	light	is	going	at	186,000,	the	light	is	only	going	to	look
to	you	as	if	it	is	passing	at	86,000	miles	a	second.	But	it	turns	out	that	if
you	do	this	experiment	it	looks	to	you	as	if	it	is	going	at	186,000	miles	a
second	past	you,	and	to	me	as	if	it	is	going	186,000	miles	a	second	past
me!
The	facts	of	nature	are	not	so	easy	to	understand,	and	the	fact	of	the

experiment	was	so	obviously	counter	to	commonsense,	that	there	are
some	people	who	still	do	not	believe	the	result!	But	time	after	time
experiments	indicated	that	the	speed	is	186,000	miles	a	second	no
matter	how	fast	you	are	moving.	The	question	now	is	how	that	could	be.



Einstein	realized,	and	Poincaré*	too,	that	the	only	possible	way	in	which
a	person	moving	and	a	person	standing	still	could	measure	the	speed	to
be	the	same	was	that	their	sense	of	time	and	their	sense	of	space	are	not
the	same,	that	the	clocks	inside	the	space	ship	are	ticking	at	a	different
speed	from	those	on	the	ground,	and	so	forth.	You	might	say,	‘Ah,	but	if
the	clock	is	ticking	and	I	look	at	the	clock	in	the	space	ship,	then	I	can
see	that	it	is	going	slow’.	No,	your	brain	is	going	slow	too!	So	by	making
sure	that	everything	went	just	so	inside	the	space	ship,	it	was	possible	to
cook	up	a	system	by	which	in	the	space	ship	it	would	look	like	186,000
space-ship	miles	per	space-ship	second,	whereas	here	it	would	look	like
186,000	my	miles	per	my	second.	That	is	a	very	ingenious	thing	to	be
able	to	do,	and	it	turns	out,	remarkably	enough,	to	be	possible.
I	have	mentioned	already	one	of	the	consequences	of	this	principle	of

relativity,	that	you	cannot	tell	how	fast	you	are	moving	in	a	straight	line;
you	remember	in	the	last	lecture	the	case	in	which	we	had	two	cars,	A
and	B	(fig.	24).	There	was	an	event,	which	happened	at	each	end	of	car
B.	A	man	was	standing	in	the	middle	of	the	car,	and	the	events	(x	and	y)
happened	at	each	end	of	his	car	at	a	certain	instant,	which	he	claimed
was	the	same	time	for	each	event,	because,	standing	in	the	middle	of	the
car,	he	saw	the	light	from	both	of	these	things	at	the	same	time.	But	the
man	in	car	A,	who	happened	to	be	moving	with	a	constant	velocity
relative	to	B,	saw	the	same	two	events,	not	at	the	same	time,	but	in	fact
he	saw	x	first,	because	the	light	reached	him	before	the	light	from	y,
because	he	was	moving	forward.	You	see	that	one	of	the	consequences	of
the	principle	of	symmetry	for	uniform	velocity	in	a	straight	line	–	that
word	symmetry	means	that	you	cannot	tell	who’s	view	is	correct	–	is	that
when	I	talk	about	everything	that	is	happening	in	the	world	‘now’,	that



does	not	mean	anything.	If	you	are	moving	along	at	a	uniform	velocity
in	a	straight	line,	then	the	things	that	happen	that	appear	to	you	as
simultaneous	are	not	the	same	events	as	appear	simultaneous	to	me,
even	though	we	are	passing	each	other	on	the	instant	when	I	consider
the	simultaneous	event	to	have	happened.	We	cannot	agree	what	‘now’
means	at	a	distance.	This	means	a	profound	transformation	of	our	ideas
of	space	and	time,	in	order	to	maintain	this	principle	that	uniform
velocity	in	a	straight	line	cannot	be	detected.	Actually	what	is	happening
here	is	that	two	things	which	appear	from	one	point	of	view	to	be
simultaneous,	seem	from	another	point	of	view	to	be	not	at	the	same
time,	provided	they	are	not	at	the	same	place,	but	are	far	apart	in
distance.

Figure	24

You	can	see	that	this	is	very	much	like	the	x	and	y	business	in	space.
If	I	stand	facing	an	audience,	then	the	two	sides	of	the	stage	on	which	I
stand	are	on	a	level	with	me.	They	have	the	same	x,	but	different	y.	But
if	I	turn	round	through	90°,	and	look	at	the	same	pair	of	walls,	but	from
a	different	point	of	view,	then	one	is	in	front	of	me	and	one	is	behind,
they	have	different	x′.	So	it	is	that	the	two	events	which	from	one	point
of	view	seem	to	be	at	the	same	time	(same	t),	from	another	point	of	view



can	seem	to	be	at	different	times	(different	t’).	A	generalization	of	the
two-dimensional	rotation	that	I	spoke	about	was	therefore	made	into
space	and	time,	so	that	time	was	added	to	space	to	make	a	four-
dimensional	world.	It	is	not	merely	an	artificial	addition,	like	the
explanation	given	in	most	of	the	popular	books,	which	say	‘We	add	time
to	space,	because	you	cannot	only	locate	a	point,	you	also	have	to	say
when’.	That	is	true,	but	that	would	not	make	it	real	four-dimensional
space-time;	that	just	puts	the	two	things	together.	Real	space	has,	in	a
sense,	the	characteristic	that	its	existence	is	independent	of	the
particular	point	of	view,	and	that	looked	at	from	different	points	of	view
a	certain	amount	of	‘forward-backward’	can	get	mixed	up	with	‘left-
right’.	In	an	analogous	way	a	certain	amount	of	time	‘future-past’	can	get
mixed	up	with	a	certain	amount	of	space.	Space	and	time	must	be
completely	interlocked;	after	this	discovery	Minkowski	said	that	‘Space
of	itself	and	time	of	itself	shall	sink	into	mere	shadows,	and	only	a	kind
of	union	between	them	shall	survive’.
I	bring	this	particular	example	up	in	such	detail	because	it	is	really

the	beginning	of	the	study	of	symmetries	in	physical	laws.	It	was
Poincaré’s	suggestion	to	make	this	analysis	of	what	you	can	do	to	the
equations	and	leave	them	alone.	It	was	Poincaré’s	attitude	to	pay
attention	to	the	symmetries	of	physical	laws.	The	symmetries	of
translation	in	space,	delay	in	time,	and	so	on,	were	not	very	deep;	but
the	symmetry	of	uniform	velocity	in	a	straight	line	is	very	interesting,
and	has	all	kinds	of	consequences.	Furthermore,	these	consequences	are
extendable	into	laws	that	we	do	not	know.	For	example,	by	guessing	that
this	principle	is	true	for	the	disintegration	of	a	mu	meson,	we	can	state
that	we	cannot	use	mu	mesons	to	tell	how	fast	we	are	going	in	a	space
ship	either;	and	thus	we	know	something	at	least	about	mu	meson



ship	either;	and	thus	we	know	something	at	least	about	mu	meson
disintegration,	even	though	we	do	not	know	why	the	mu	meson
disintegrates	in	the	first	place.
There	are	many	other	symmetries,	some	of	them	of	a	very	different

kind.	I	will	just	mention	a	few.	One	is	that	you	can	replace	one	atom	by
another	of	the	same	kind	and	it	makes	no	difference	to	any
phenomenon.	Now	you	may	ask	‘What	do	you	mean	by	the	same	kind	?’
I	can	only	answer	that	I	mean	one	which,	when	replaced	by	the	other
one,	does	not	make	any	difference!	It	looks	as	if	physicists	are	always
talking	nonsense	in	a	way,	doesn’t	it?	There	are	many	different	kinds	of
atoms,	and	if	you	replace	one	by	one	of	a	different	kind	it	makes	a
difference,	but	if	you	replace	one	by	the	same	kind	it	makes	no
difference,	which	looks	like	a	circular	definition.	But	the	real	meaning	of
the	thing	is	that	there	are	atoms	of	the	same	kind;	that	it	is	possible	to
find	groups,	classes	of	atoms,	so	that	you	can	replace	one	by	another	of
the	same	kind	and	it	makes	no	difference.	Since	the	number	of	atoms	in
any	tiny	little	piece	of	material	is	1	followed	by	23	noughts	or	so,	it	is
very	important	that	they	are	the	same,	that	they	are	not	all	different.	It
is	really	very	interesting	that	we	can	classify	them	into	a	limited	number
of	a	few	hundred	different	types	of	atom,	so	the	statement	that	we	can
replace	one	atom	by	another	of	the	same	kind	has	a	great	amount	of
content.	It	has	the	greatest	amount	of	content	in	quantum	mechanics,
but	it	is	impossible	for	me	to	explain	this	here,	partly,	but	only	partly,
because	this	lecture	is	addressed	to	an	audience	that	is	mathematically
untrained;	it	is	quite	subtle	anyway.	In	quantum	mechanics	the
proposition	that	you	can	replace	one	atom	by	another	of	the	same	kind
has	marvellous	consequences.	It	produces	peculiar	phenomena	in	liquid



helium,	the	liquid	that	flows	through	pipes	without	any	resistance,	just
coasts	on	for	ever.	In	fact	it	is	the	origin	of	the	whole	periodic	table	of
the	elements,	and	of	the	force	that	keeps	me	from	going	through	the
floor.	I	cannot	go	into	all	this	in	detail,	but	I	want	to	emphasize	the
importance	of	looking	at	these	principles.
By	this	time	you	are	probably	convinced	that	all	the	laws	of	physics

are	symmetrical	under	any	kind	of	change	whatsoever,	so	now	I	will	give
a	few	that	do	not	work.	The	first	one	is	change	of	scale.	It	is	not	true	that
if	you	build	an	apparatus,	and	then	build	another	one,	with	every	part
made	exactly	the	same,	of	the	same	kind	of	stuff,	but	twice	as	big,	that	it
will	work	in	exactly	the	same	way.	You	who	are	familiar	with	atoms	are
aware	of	this	fact,	because	if	I	made	the	apparatus	ten	billion	times
smaller	I	would	only	have	five	atoms	in	it,	and	I	cannot	make,	for
instance,	a	machine	tool	out	of	only	five	atoms.	It	is	perfectly	obvious	if
we	go	that	far	that	we	cannot	change	the	scale,	but	even	before	the
complete	awareness	of	the	atomic	picture	was	developed	it	became
apparent	that	this	law	is	not	right.	You	have	probably	seen	in	the
newspapers	from	time	to	time	that	somebody	has	made	a	cathedral	with
matchsticks	–	several	floors,	and	everything	more	Gothic	than	any
Gothic	cathedral	has	ever	been,	and	more	delicate.	Why	do	we	never
build	big	cathedrals	like	that,	with	great	logs,	with	the	same	degree	of
‘ginger	cake’,	the	same	enormous	degree	of	detail?	The	answer	is	that	if
we	did	build	one	it	would	be	so	high	and	so	heavy	that	it	would
collapse.	Ah!	But	you	forgot	that	when	you	are	comparing	two	things
you	must	change	everything	that	is	in	the	system.	The	little	cathedral
made	with	matchsticks	is	attracted	to	the	earth,	so	to	make	a	comparison
the	big	cathedral	should	be	attracted	to	an	even	bigger	earth.	Too	bad.	A



bigger	earth	would	attract	it	even	more,	and	the	sticks	would	break	even
more	surely!
This	fact	that	the	laws	of	physics	were	not	unchanged	under	change

of	scale	was	first	discovered	by	Galileo.	In	discussing	the	strength	of	rods
and	bones,	he	argued	that	if	you	need	a	bone	for	a	bigger	animal	–	say
an	animal	twice	as	high,	wide,	and	thick	–	you	will	have	eight	times	the
weight,	so	you	need	a	bone	that	can	hold	the	strength	eight	times.	But
what	a	bone	can	hold	depends	on	its	cross-section,	and	if	you	made	the
bone	twice	as	big	it	would	only	have	four	times	the	cross-section	and
would	only	be	able	to	support	four	times	the	weight.	In	his	book
Dialogue	on	Two	New	Sciences,	you	will	see	pictures	of	imaginary	bones
of	enormous	dogs,	way	out	of	proportion.	I	suppose	Galileo	felt	that	the
discovery	of	the	fact	that	the	laws	of	nature	are	not	unchanged	under
change	of	scale	was	as	important	as	his	laws	of	motion,	because	they	are
both	put	together	in	the	tome	on	Two	New	Sciences.
Another	example	of	something	that	is	not	a	symmetry	law	is	the	fact

that	if	you	are	spinning	at	a	uniform	angular	speed	in	a	space	ship,	it	is
not	true	to	say	that	you	cannot	tell	if	you	are	going	around.	You	can.	I
might	say	that	you	would	get	dizzy.	There	are	other	effects;	things	get
thrown	to	the	walls	from	the	centrifugal	force	(or	however	you	wish	to
describe	it	–	I	hope	there	are	no	teachers	of	freshman	physics	in	the
audience	to	correct	me!).	It	is	possible	to	tell	that	the	earth	is	rotating	by
a	pendulum	or	by	a	gyroscope,	and	you	are	probably	aware	that	various
observatories	and	museums	have	so-called	Foucault*	pendulums	that
prove	that	the	earth	is	rotating,	without	looking	at	the	stars.	It	is
possible	to	tell	that	we	are	going	around	at	a	uniform	angular	velocity
on	the	earth	without	looking	outside,	because	the	laws	of	physics	are	not



unchanged	by	such	a	motion.
Many	people	have	proposed	that	really	the	earth	is	rotating	relative

to	the	galaxies,	and	that	if	we	were	to	turn	the	galaxies	too	it	would	not
make	any	difference.	Well,	I	do	not	know	what	would	happen	if	you
were	to	turn	the	whole	universe,	and	we	have	at	the	moment	no	way	to
tell.	Nor,	at	the	moment,	do	we	have	any	theory	which	describes	the
influence	of	a	galaxy	on	things	here	so	that	it	comes	out	of	this	theory	–
in	a	straightforward	way,	and	not	by	cheating	or	forcing	–	that	the
inertia	for	rotation,	the	effect	of	rotation,	the	fact	that	a	spinning	bucket
of	water	has	a	concave	surface,	is	the	result	of	a	force	from	the	objects
around.	It	is	not	known	whether	this	is	true.	That	it	should	be	the	case	is
known	as	Mach’s	principle,	but	that	it	is	the	case	has	not	yet	been
demonstrated.	The	more	direct	experimental	question	is	whether,	if	we
are	rotating	at	a	uniform	velocity	relative	to	the	nebulae,	we	see	any
effect.	The	answer	is	yes.	If	we	are	moving	in	a	space	ship	at	a	uniform
velocity	in	a	straight	line	relative	to	the	nebulae,	do	we	see	any	effect?
The	answer	is	no.	Two	different	things.	We	cannot	say	that	all	motion	is
relative.	That	is	not	the	content	of	relativity.	Relativity	says	that	uniform
velocity	in	a	straight	line	relative	to	the	nebulae	is	undetectable.
The	next	symmetry	law	that	I	would	like	to	discuss	is	an	interesting

one	and	has	an	interesting	history.	That	is	the	question	of	reflection	in
space.	I	build	a	piece	of	apparatus,	let	us	say	a	clock,	and	then	a	short
distance	away	I	build	another	clock,	a	mirror	image	of	the	first.	They
match	each	other	like	two	gloves,	right	and	left;	each	spring	which	is
wound	one	way	in	one	clock	is	wound	in	the	opposite	way	in	the	other,
and	so	on.	I	wind	up	the	two	clocks,	set	them	in	corresponding	positions,
and	then	let	them	tick.	The	question	is,	will	they	always	agree	with	each



other?	Will	all	the	machinery	of	one	clock	go	in	the	mirror	image	of	the
other?	I	do	not	know	what	you	would	guess	about	that.	You	would
probably	guess	it	is	true;	most	people	did.	Of	course	we	are	not	talking
about	geography.	We	can	distinguish	right	and	left	by	geography.	We
can	say	that	if	we	stand	in	Florida	and	look	at	New	York	the	ocean	is	on
the	right.	That	distinguishes	right	and	left,	and	if	the	clock	involved	the
water	of	the	sea	then	it	would	not	work	if	we	built	it	the	other	way
because	its	ticker	would	not	get	in	the	water.	In	that	case	what	we
would	have	to	imagine	is	that	the	geography	of	the	earth	was	turned
round	too	on	the	other	clock;	anything	that	is	involved	must	be	turned
round.	Nor	are	we	interested	in	history.	If	you	pick	up	a	screw	in	a
machine	shop,	the	chances	are	it	has	a	right-hand	thread;	you	might
argue	that	the	other	clock	would	not	be	the	same	because	it	would	be
harder	to	get	the	screws.	But	that	is	just	a	question	of	what	kind	of
things	we	make.	Altogether	the	first	guess	is	likely	to	be	that	nothing
makes	any	difference.	It	turns	out	that	the	laws	of	gravitation	are	such
that	it	would	not	make	any	difference	if	the	clock	worked	by	gravity.
The	laws	of	electricity	and	magnetism	are	such	that	if	in	addition	it	had
electric	and	magnetic	guts,	currents	and	wires	and	what-not,	the
corresponding	clock	would	still	work.	If	the	clock	involved	ordinary
nuclear	reactions	to	make	it	run,	it	would	not	make	any	difference
either.	But	there	is	something	that	can	make	a	difference,	and	I	will
come	to	it	in	a	moment.
You	may	know	that	it	is	possible	to	measure	the	concentration	of

sugar	in	water	by	putting	polarized	light	through	the	water.	If	you	put	a
piece	of	polaroid	that	lets	light	through	at	a	certain	axis	in	the	water,
you	find	that	when	you	watch	the	light	as	it	goes	through	deeper	and



deeper	sugar	water	you	have	to	turn	another	piece	of	Polaroid	at	the
other	end	of	the	water	more	and	more	to	the	right	to	let	the	light
through.	If	you	put	the	light	through	the	solution	in	the	other	direction
it	is	still	to	the	right.	Here,	then,	is	a	difference	between	right	and	left.
We	could	use	sugar-water	and	light	in	the	clocks.	Suppose	we	have	a
tank	of	water	and	make	light	go	through	and	turn	our	second	piece	of
polaroid	so	that	the	light	just	gets	through;	then	suppose	we	make	the
corresponding	arrangement	in	our	second	clock,	hoping	the	light	will
turn	to	the	left.	It	will	not;	it	will	still	turn	to	the	right	and	will	not	get
through.	By	using	sugar	water	our	two	clocks	can	be	made	different!
This	is	a	most	remarkable	fact,	and	it	seems	at	first	sight	to	prove

that	the	physical	laws	are	not	symmetric	for	reflection.	However,	the
sugar	that	we	used	that	time	may	have	been	from	sugar	beet;	but	sugar
is	a	fairly	simple	molecule,	and	it	is	possible	to	make	it	in	the	laboratory
out	of	carbon	dioxide	and	water,	going	through	lots	of	stages	in
between.	If	you	try	artificial	sugar,	which	chemically	seems	to	be	the
same	in	every	way,	it	does	not	turn	the	light.	Bacteria	eat	sugar;	if	you
put	bacteria	in	the	artificial	sugar	water	it	turns	out	that	they	only	eat
half	the	sugar,	and	when	the	bacteria	are	finished	and	you	pass	polarized
light	through	the	remaining	sugar	water	you	find	it	turns	to	the	left.	The
explanation	of	this	is	as	follows.	Sugar	is	a	complicated	molecule,	a	set
of	atoms	in	a	complicated	arrangement.	If	you	make	exactly	the	same
arrangement,	but	with	left	as	right,	then	every	distance	between	every
pair	of	atoms	is	the	same	in	one	as	in	the	other,	the	energy	of	the
molecules	is	exactly	the	same,	and	for	all	chemical	phenomena	not
involving	life	they	are	the	same.	But	living	creatures	find	a	difference.
Bacteria	eat	one	kind	and	not	the	other.	The	sugar	that	comes	from	sugar



beet	is	all	one	kind,	all	right-hand	molecules,	and	so	it	turns	the	light
one	way.	The	bacteria	can	only	eat	that	kind	of	molecule.	When	we
manufacture	the	sugar	from	substances	which	are	not	themselves
asymmetrical,	simple	gases,	we	make	both	kinds	in	equal	numbers.	Then
if	we	introduce	the	bacteria,	they	will	remove	the	kind	they	can	eat	and
the	other	is	left.	That	is	why	the	light	goes	through	the	other	way.	It	is
possible	to	separate	the	two	types	by	looking	through	magnifying	glasses
at	the	crystals,	as	Pasteur*	discovered.	We	can	definitely	show	that	all
this	makes	sense,	and	we	can	separate	the	sugar	ourselves	without
waiting	for	the	bacteria	if	we	wish	to.	But	the	interesting	thing	is	that
the	bacteria	can	do	this.	Does	this	mean	that	the	living	processes	do	not
obey	the	same	laws?	Apparently	not.	It	seems	that	in	the	living	creatures
there	are	many,	many	complicated	molecules,	and	they	all	have	a	kind
of	thread	to	them.	Some	of	the	most	characteristic	molecules	in	living
creatures	are	proteins.	They	have	a	corkscrew	property,	and	they	go	to
the	right.	As	far	as	we	can	tell,	if	we	could	make	the	same	things
chemically,	but	to	the	left	rather	than	to	the	right,	they	would	not
function	biologically	because	when	they	met	the	other	proteins	they
would	not	fit	in	the	same	way.	A	left-hand	thread	will	fit	a	left-hand
thread,	but	left	and	right	do	not	fit.	The	bacteria	having	a	right-hand
thread	in	their	chemical	insides	can	distinguish	the	right	and	left	sugar.
How	did	they	get	that	way?	Physics	and	chemistry	cannot	distinguish

the	molecules,	and	can	only	make	both	kinds.	But	biology	can.	It	is	easy
to	believe	that	the	explanation	is	that	long	ago,	when	the	life	processes
first	began,	some	accidental	molecule	got	started	and	propagated	itself
by	reproducing	itself,	and	so	on,	until	after	many	many	years	these
funny	looking	blobs,	with	knobs	sticking	out	with	prongs	on,	stand	and
yak	at	each	other…	But	we	are	nothing	but	the	offspring	of	the	first	few



yak	at	each	other…	But	we	are	nothing	but	the	offspring	of	the	first	few
molecules,	and	it	was	an	accident	of	the	first	few	molecules	that	they
happened	to	form	one	way	instead	of	the	other.	It	had	to	be	either	one
or	the	other,	either	left	or	right,	and	then	it	reproduced	itself,	and	still
propagates	on	and	on.	It	is	much	like	the	screws	in	the	machine	shop.
You	use	right-hand	thread	screws	to	make	new	right-hand	thread	screws,
and	so	on.	This	fact,	that	all	the	molecules	in	living	things	have	exactly
the	same	kind	of	thread,	is	probably	one	of	the	deepest	demonstrations
of	the	uniformity	of	the	ancestry	of	life,	right	back	to	the	completely
molecular	level.
In	order	to	test	better	this	question	about	whether	the	laws	of	physics

are	the	same,	right	and	left,	we	can	put	the	problem	to	ourselves	this
way.	Suppose	that	we	were	in	telephone	conversation	with	a	Martian,	or
an	Arcturian,	and	we	wished	to	describe	things	on	earth	to	him.	First	of
all,	how	is	he	going	to	understand	our	words?	That	question	has	been
studied	intensively	by	Professor	Morrison*	at	Cornell,	and	he	has
pointed	out	that	one	way	would	be	to	start	by	saying	‘tick,	one:	tick,
tick,	two:	tick,	tick,	tick,	three:’	and	so	on.	Pretty	soon	the	guy	would
catch	on	to	the	numbers.	Once	he	understood	your	number	system,	you
could	write	a	whole	sequence	of	numbers	that	represent	the	weights,	the
proportional	weights,	of	the	different	atoms	in	succession,	and	then	say
‘hydrogen,	1008’,	then	deuterium,	helium,	and	so	on.	After	he	had	sat
down	with	these	numbers	for	a	while	he	would	discover	that	the
mathematical	ratios	were	the	same	as	the	ratios	for	the	weights	of	the
elements,	and	that	therefore	those	names	must	be	the	names	of	the
elements.	Gradually	in	this	way	you	could	build	up	a	common	language.
Now	comes	the	problem.	Suppose,	after	you	get	familiar	with	him,	he



says,	‘You	fellows,	you’re	very	nice.	I’d	like	to	know	what	you	look	like’.
You	start,	‘We’re	about	six	feet	tall’,	and	he	says,	‘Six	feet	–	how	big	is	a
foot?’	That	is	very	easy:	‘Six	feet	tall	is	seventeen	thousand	million
hydrogen	atoms	high’.	That	is	not	a	joke	–	it	is	a	possible	way	of
describing	six	feet	to	someone	who	has	no	measure	–	assuming	that	we
cannot	send	him	any	samples,	nor	can	we	both	look	at	the	same	objects.
If	we	wish	to	tell	him	how	big	we	are	we	can	do	it.	That	is	because	the
laws	of	physics	are	not	unchanged	under	a	scale	change,	so	we	can	use
that	fact	to	determine	the	scale.	We	can	go	on	describing	ourselves	–	we
are	six	feet	tall,	and	we	are	so-and-so	bilateral	on	the	outside,	and	we
look	like	this,	and	there	are	these	prongs	sticking	out,	etc.	Then	he	says,
‘That’s	very	interesting,	but	what	do	you	look	like	on	the	inside?’	So	we
describe	the	heart	and	so	on,	and	we	say,	‘Now	put	the	heart	in	on	the
left	side’.	The	question	is,	how	can	we	tell	him	which	side	is	the	left
side?	‘Oh’,	you	say,	‘We	take	beet	sugar,	and	put	it	in	water,	and	it
turns…’	only	the	trouble	is	that	he	has	no	beets	up	there.	Also	we	have
no	way	of	knowing	whether	the	accidents	of	evolution	on	Mars,	even	if
they	had	produced	corresponding	proteins	to	those	here,	would	have
started	with	the	oppositely-handed	threads.	There	is	no	way	to	tell.	After
much	thought	you	see	that	you	cannot	do	it,	and	so	you	conclude	it	is
impossible.
About	five	years	ago,	however,	certain	experiments	produced	all

kinds	of	puzzles.	I	will	not	go	into	detail,	but	we	found	ourselves	in
tighter	and	tighter	difficulties,	more	and	more	paradoxical	situations,
until	finally	Lee	and	Yang*	proposed	that	maybe	the	principle	of	right
and	left	symmetry	–	that	nature	is	the	same	for	right	and	left	–	is	not
correct,	and	that	this	would	help	to	explain	a	number	of	mysteries.	Lee



and	Yang	proposed	some	more	direct	experiments	to	demonstrate	this,
and	I	will	just	mention	the	most	direct	of	all	the	experiments	done.
We	take	a	radioactive	disintegration	in	which,	for	instance,	an

electron	and	a	neutrino	are	emitted	–	an	example,	which	we	have	talked
about	before,	is	the	disintegration	of	a	neutron	into	a	proton,	an	electron
and	an	anti-neutrino,	and	there	are	many	radioactivities	in	which	the
charge	of	the	nucleus	increases	by	one	and	an	electron	comes	out.	The
thing	that	is	interesting	is	that	if	you	measure	the	spin	–	electrons	are
spinning	as	they	come	out	–	you	find	out	that	they	are	spinning	to	the
left	(as	seen	from	behind	–	i.e.	if	they	are	going	south,	they	turn	in	the
same	direction	as	does	the	earth).	It	has	a	definite	significance,	that	the
electron	when	it	comes	out	of	the	disintegration	is	always	turning	one
way,	it	has	a	left-hand	thread.	It	is	as	though	in	the	beta-decay	the	gun
that	was	shooting	out	the	electron	were	a	rifled	gun.	There	are	two	ways
to	rifle	a	gun;	there	is	the	direction	‘out’,	and	you	have	the	choice
whether	you	turn	it	left	or	right	as	you	go	out.	The	experiment	shows
that	the	electron	comes	from	a	rifled	gun,	rifled	to	the	left.	Using	this
fact,	therefore,	we	could	ring	up	our	Martian	and	say,	‘Listen,	take	a
radioactive	stuff,	a	neutron,	and	look	at	the	electron	which	comes	from
such	a	beta-decay.	If	the	electron	is	going	up	as	it	comes	out,	the
direction	of	its	spin	is	into	the	body	from	the	back	on	the	left	side.	That
defines	left.	That	is	where	the	heart	goes’.	Therefore	it	is	possible	to	tell
right	from	left,	and	thus	the	law	that	the	world	is	symmetrical	for	left
and	right	has	collapsed.
The	next	thing	I	would	like	to	talk	about	is	the	relationship	of

conservation	laws	to	symmetry	laws.	In	the	last	lecture	we	talked	about
conservation	principles,	conservation	of	energy,	momentum,	angular
momentum,	and	so	on.	It	is	extremely	interesting	that	there	seems	to	be



momentum,	and	so	on.	It	is	extremely	interesting	that	there	seems	to	be
a	deep	connection	between	the	conservation	laws	and	the	symmetry
laws.	This	connection	has	its	proper	interpretation,	at	least	as	we
understand	it	today,	only	in	the	knowledge	of	quantum	mechanics.
Nevertheless	I	will	show	you	one	demonstration	of	this.
If	we	assume	that	the	laws	of	physics	are	describable	by	a	minimum

principle,	then	we	can	show	that	if	a	law	is	such	that	you	can	move	all
the	equipment	to	one	side,	in	other	words	if	it	is	translatable	in	space,
then	there	must	be	conservation	of	momentum.	There	is	a	deep
connection	between	the	symmetry	principles	and	the	conservation	laws,
but	that	connection	requires	that	the	minimum	principle	be	assumed.	In
the	second	lecture	we	discussed	one	way	of	describing	physical	laws	by
saying	that	a	particle	goes	from	one	place	to	another	in	a	given	length	of
time	by	trying	different	paths.	There	is	a	certain	quantity	which,	perhaps
misleadingly,	happens	to	be	called	the	action.	When	you	calculate	the
action	on	the	various	paths	you	will	find	that	for	the	actual	path	taken
this	quantity	is	always	smaller	than	for	any	other.	That	way	of
describing	the	laws	of	nature	is	to	say	that	the	action	of	certain
mathematical	formulae	is	least	for	the	actual	path	of	all	the	possible
paths.	Another	way	of	saying	a	thing	is	least	is	to	say	that	if	you	move
the	path	a	little	bit	at	first	it	does	not	make	any	difference.	Suppose	you
were	walking	around	on	hills	–	but	smooth	hills,	since	the	mathematical
things	involved	correspond	to	smooth	things	–	and	you	come	to	a	place
where	you	are	lowest,	then	I	say	that	if	you	take	a	small	step	forward
you	will	not	change	your	height.	When	you	are	at	the	lowest	or	at	the
highest	point,	a	step	does	not	make	any	difference	in	the	altitude	in	first
approximation,	whereas	if	you	are	on	a	slope	you	can	walk	down	the



slope	with	a	step	and	then	if	you	take	the	step	in	the	opposite	direction
you	walk	up.	That	is	the	key	to	the	reason	why,	when	you	are	at	the
lowest	place,	taking	a	step	does	not	make	much	difference,	because	if	it
did	make	any	difference	then	if	you	took	a	step	in	the	opposite	direction
you	would	go	down.	Since	this	is	the	lowest	point	and	you	cannot	go
down,	your	first	approximation	is	that	the	step	does	not	make	any
difference.	We	therefore	know	that	if	we	move	a	path	a	little	bit	it	does
not	make	any	difference	to	the	action	on	a	first	approximation.	We	draw
a	path,	A	to	B	(fig.	25),	and	now	I	want	you	to	consider	the	following
possible	other	path.	First	we	jump	immediately	over	to	another	place
near	by,	C,	then	we	move	on	exactly	the	corresponding	path	to	another
point,	which	we	will	call	D,	which	is	displaced	the	same	amount,	of
course,	because	it	is	the	corresponding	path.	Now	we	have	just
discovered	that	the	laws	of	nature	are	such	that	the	total	amount	of
action	going	on	the	ACDB	path	is	the	same	in	the	first	approximation	to
that	original	path	AB	–	that	is	from	the	minimum	principle,	when	it	is
the	real	motion.	I	will	tell	you	something	else.	The	action	on	the	original
path,	A	to	B,	is	the	same	as	the	action	from	C	to	D	if	the	world	is	the
same	when	you	move	everything	over,	because	the	difference	of	these
two	is	only	that	you	have	moved	everything	over.	So	if	the	symmetry
principle	of	translation	in	space	is	right,	then	the	action	on	the	direct
path	between	A	and	B	is	the	same	as	that	on	the	direct	path	between	C
and	D.	However	for	the	true	motion	the	total	action	on	the	indirect	path
ACDB	is	very	nearly	the	same	as	on	the	direct	path	AB,	and	therefore	the
same	as	just	the	part	C	to	D.	This	indirect	action	is	the	sum	of	three	parts
–	the	action	going	A	to	C,	that	of	C	to	D,	plus	that	from	D	to	B.	So,
subtracting	equals	from	equals,	you	can	probably	see	that	the



contribution	from	A	to	C	and	that	from	D	to	B	must	add	up	to	zero.	But
in	the	motion	for	one	of	these	sections	we	are	going	one	way,	and	for	the
other	the	opposite	way.	If	we	take	the	contribution	of	A	to	C,	thinking	of
it	as	an	effect	of	moving	one	way,	and	the	contribution	of	D	to	B	as	B	to
D,	taking	the	opposite	sign	because	it	is	the	other	way,	we	see	that	there
is	a	quantity	A	to	C	which	has	to	match	the	quantity	B	to	D	to	cancel	off.
This	is	the	effect	on	the	action	of	a	tiny	step	in	the	B	to	D	direction.	That
quantity,	the	effect	on	the	action	of	a	small	step	to	the	right,	is	the	same
at	the	beginning	(A	to	C)	as	at	the	end	(B	to	D).	There	is	a	quantity,
therefore,	that	does	not	change	as	time	goes	on,	provided	the	minimum
principle	works,	and	the	symmetry	principle	of	displacement	in	space	is
right.	This	quantity	which	does	not	change	(the	effect	on	the	action	of	a
small	step	to	one	side)	is	in	fact	exactly	the	momentum	that	we
discussed	in	the	last	lecture.	This	shows	the	relation	of	symmetry	laws	to
conservation	laws,	assuming	the	laws	obey	a	principle	of	least	action.
They	satisfy	a	principle	of	least	action,	it	turns	out,	because	they	come
from	quantum	mechanics.	That	is	why	I	said	that	in	the	last	analysts	the
connection	of	symmetry	laws	to	conservation	laws	comes	from	quantum
mechanics.

Figure	25



The	corresponding	argument	for	delay	in	time	comes	out	as	the
conservation	of	energy.	The	case	that	rotation	in	space	does	not	make
any	difference	comes	out	as	the	conservation	of	angular	momentum.
That	we	can	reflect	without	any	change	in	effect	does	not	come	out	to	be
anything	simple	in	the	classical	sense.	People	have	called	it	parity,	and
they	have	a	conservation	law	called	the	conservation	of	parity,	but	these
are	just	complicated	words.	I	have	to	mention	the	conservation	of	parity,
because	you	may	have	read	in	the	papers	that	the	law	of	the
conservation	of	parity	has	been	proved	wrong.	It	would	have	been	much
easier	to	understand	if	what	had	been	written	was	that	the	principle	that
you	cannot	distinguish	right	from	left	has	been	proved	wrong.
Whilst	I	am	talking	about	symmetries,	one	thing	I	would	like	to	tell

you	is	that	there	are	a	few	new	problems.	For	instance,	for	every	particle
there	is	an	anti-particle:	for	an	electron	this	is	a	positron,	for	a	proton	an
anti-proton.	We	can	in	principle	make	what	we	call	antimatter,	in	which
every	atom	has	its	corresponding	anti-pieces	put	together.	The	hydrogen
atom	is	a	proton	and	an	electron;	if	we	take	an	anti-proton,	which	is
electrically	negative,	and	a	positron,	and	put	them	together,	they	also
will	make	a	kind	of	hydrogen	atom,	an	anti-hydrogen	atom.	Anti-
hydrogen	atoms	have	never	in	fact	been	made,	but	it	has	been	figured
out	that	in	principle	it	would	work,	and	that	we	could	make	all	kinds	of
antimatter	in	the	same	manner.	What	we	would	ask	now	is	whether	the
antimatter	works	in	the	same	way	as	matter,	and	as	far	as	we	know	it
does.	One	of	the	laws	of	symmetry	is	that	if	we	made	stuff	out	of
antimatter	it	would	behave	in	the	same	way	as	if	we	made	the
corresponding	stuff	out	of	matter.	Of	course	if	they	came	together	they
would	annihilate	one	another	and	there	would	be	sparks.



It	always	has	been	believed	that	matter	and	antimatter	have	the	same
laws.	However,	now	we	know	that	the	left	and	right	symmetry	appears
wrong,	an	important	question	comes.	If	I	look	at	the	neutron
disintegration,	but	with	antimatter	–	an	anti-neutron	goes	into	an	anti-
proton	plus	an	anti-electron	(also	called	a	positron),	plus	a	neutrino	–
the	question	is,	does	it	behave	in	the	same	way,	in	the	sense	that	the
positron	will	come	out	with	a	left-hand	thread,	or	does	it	behave	the
other	way?	Until	a	few	months	ago	we	believed	that	it	behaves	the
opposite	way,	and	that	the	antimatter	(positron)	goes	to	the	right	where
matter	(electron)	goes	to	the	left.	In	that	case	we	cannot	really	tell	the
Martian	which	is	right	and	left,	because	if	he	happens	to	be	made	out	of
antimatter,	when	he	does	his	experiment	his	electrons	will	be	positrons,
and	they	will	come	up	spinning	the	wrong	way	and	he	will	put	the	heart
on	the	wrong	side.	Suppose	you	telephone	the	Martian,	and	you	explain
how	to	make	a	man;	he	makes	one,	and	it	works.	Then	you	explain	to
him	also	all	our	social	conventions.	Finally,	after	he	tells	us	how	to	build
a	sufficiently	good	space	ship,	you	go	to	meet	this	man,	and	you	walk	up
to	him	and	put	out	your	right	hand	to	shake	hands.	If	he	puts	out	his
right	hand,	O.K.,	but	if	he	puts	out	his	left	hand	watch	out…	the	two	of
you	will	annihilate	with	each	other!
I	wish	I	could	tell	you	about	a	few	more	symmetries,	but	they

become	more	difficult	to	explain.	There	are	also	some	very	remarkable
things,	which	are	the	near-symmetries.	For	instance,	the	remarkable
feature	of	the	fact	that	we	can	distinguish	right	and	left	is	that	we	can
only	do	so	with	a	very	weak	effect,	with	this	beta-disintegration.	What
this	means	is	that	nature	is	99·99	per	cent	indistinguishable	right	from
left,	but	that	there	is	just	one	little	piece,	one	little	characteristic
phenomenon,	which	is	completely	different,	in	the	sense	that	it	is



phenomenon,	which	is	completely	different,	in	the	sense	that	it	is
absolutely	lop-sided.	This	is	a	mystery	that	no	one	has	the	slightest	idea
about	yet.



5
The	Distinction	of	Past	and	Future

It	is	obvious	to	everybody	that	the	phenomena	of	the	world	are	evidently
irreversible.	I	mean	things	happen	that	do	not	happen	the	other	way.
You	drop	a	cup	and	it	breaks,	and	you	can	sit	there	a	long	time	waiting
for	the	pieces	to	come	together	and	jump	back	into	your	hand.	If	you
watch	the	waves	of	the	sea	breaking,	you	can	stand	there	and	wait	for
the	great	moment	when	the	foam	collects	together,	rises	up	out	of	the
sea,	and	falls	back	farther	out	from	the	shore	–	it	would	be	very	pretty!
The	demonstration	of	this	in	lectures	is	usually	made	by	having	a

section	of	moving	picture	in	which	you	take	a	number	of	phenomena,
and	run	the	film	backwards,	and	then	wait	for	all	the	laughter.	The
laughter	just	means	this	would	not	happen	in	the	real	world.	But
actually	that	is	a	rather	weak	way	to	put	something	which	is	as	obvious
and	deep	as	the	difference	between	the	past	and	the	future;	because	even
without	an	experiment	our	very	experiences	inside	are	completely
different	for	past	and	future.	We	remember	the	past,	we	do	not
remember	the	future.	We	have	a	different	kind	of	awareness	about	what
might	happen	than	we	have	of	what	probably	has	happened.	The	past
and	the	future	look	completely	different	psychologically,	with	concepts
like	memory	and	apparent	freedom	of	will,	in	the	sense	that	we	feel	that
we	can	do	something	to	affect	the	future,	but	none	of	us,	or	very	few	of
us,	believe	that	there	is	anything	we	can	do	to	affect	the	past.	Remorse
and	regret	and	hope	and	so	forth	are	all	words	which	distinguish
perfectly	obviously	the	past	and	the	future.



Now	if	the	world	of	nature	is	made	of	atoms,	and	we	too	are	made	of
atoms	and	obey	physical	laws,	the	most	obvious	interpretation	of	this
evident	distinction	between	past	and	future,	and	this	irreversibility	of	all
phenomena,	would	be	that	some	laws,	some	of	the	motion	laws	of	the
atoms,	are	going	one	way	–	that	the	atom	laws	are	not	such	that	they
can	go	either	way.	There	should	be	somewhere	in	the	works	some	kind
of	a	principle	that	uxles	only	make	wuxles,	and	never	vice	versa,	and	so
the	world	is	turning	from	uxley	character	to	wuxley	character	all	the
time	–	and	this	one-way	business	of	the	interactions	of	things	should	be
the	thing	that	makes	the	whole	phenomena	of	the	world	seem	to	go	one
way.
But	we	have	not	found	this	yet.	That	is,	in	all	the	laws	of	physics	that

we	have	found	so	far	there	does	not	seem	to	be	any	distinction	between
the	past	and	the	future.	The	moving	picture	should	work	the	same	going
both	ways,	and	the	physicist	who	looks	at	it	should	not	laugh.
Let	us	take	the	law	of	gravitation	as	our	standard	example.	If	I	have	a

sun	and	a	planet,	and	I	start	the	planet	off	in	some	direction,	going
around	the	sun,	and	then	I	take	a	moving	picture,	and	run	the	moving
picture	backwards	and	look	at	it,	what	happens?	The	planet	goes	around
the	sun,	the	opposite	way	of	course,	keeps	on	going	around	in	an	ellipse.
The	speed	of	the	planet	is	such	that	the	area	swept	out	by	the	radius	is
always	the	same	in	equal	times.	In	fact	it	just	goes	exactly	the	way	it
ought	to	go.	It	cannot	be	distinguished	from	going	the	other	way.	So	the
law	of	gravitation	is	of	such	a	kind	that	the	direction	does	not	make	any
difference;	if	you	show	any	phenomenon	involving	only	gravitation
running	backwards	on	a	film	it	will	look	perfeetly	satisfactory.	You	can
put	it	more	precisely	this	way.	If	all	the	particles	in	a	more	complicated
system	were	to	have	every	one	of	their	speeds	reversed	suddenly,	then



system	were	to	have	every	one	of	their	speeds	reversed	suddenly,	then
the	thing	would	just	unwind	through	all	the	things	that	it	wound	up
into.	If	you	have	a	lot	of	particles	doing	something,	and	then	you
suddenly	reverse	the	speed,	they	will	completely	undo	what	they	did
before.
This	is	in	the	law	of	gravitation,	which	says	that	the	velocity	changes

as	a	result	of	the	forces.	If	I	reverse	the	time,	the	forces	are	not	changed,
and	so	the	changes	in	velocity	are	not	altered	at	corresponding	distances.
So	each	velocity	then	has	a	succession	of	alterations	made	in	exactly	the
reverse	of	the	way	that	they	were	made	before,	and	it	is	easy	to	prove
that	the	law	of	gravitation	is	time-reversible.
The	law	of	electricity	and	magnetism?	Time	reversible.	The	laws	of

nuclear	interaction?	Time	reversible	as	far	as	we	can	tell.	The	laws	of
beta-decay	that	we	talked	about	at	a	previous	time?	Also	time
reversible?	The	difficulty	of	the	experiments	of	a	few	months	ago,	which
indicate	that	there	is	something	the	matter,	some	unknown	about	the
laws,	suggests	the	possibility	that	in	fact	beta-decay	may	not	also	be
time	reversible,	and	we	shall	have	to	wait	for	more	experiments	to	see.
But	at	least	the	following	is	true.	Beta-decay	(which	may	or	may	not	be
time	reversible)	is	a	very	unimportant	phenomenon	for	most	ordinary
circumstances.	The	possibility	of	my	talking	to	you	does	not	depend
upon	beta-decay,	although	it	does	depend	on	chemical	interactions,	it
depends	on	electrical	forces,	not	much	on	nuclear	forces	at	the	moment,
but	it	depends	also	on	gravitation.	But	I	am	one-sided	–	I	speak,	and	a
voice	goes	out	into	the	air,	and	it	does	not	come	sucking	back	into	my
mouth	when	I	open	it	–	and	this	irreversibility	cannot	be	hung	on	the
phenomenon	of	beta-decay.	In	other	words,	we	believe	that	most	of	the
ordinary	phenomena	in	the	world,	which	are	produced	by	atomic



ordinary	phenomena	in	the	world,	which	are	produced	by	atomic
motions,	are	according	to	laws	which	can	be	completely	reversed.	So	we
will	have	to	look	some	more	to	find	the	explanation	of	the	irreversibility.
If	we	look	at	our	planets	moving	around	the	sun	more	carefully,	we

soon	find	that	all	is	not	quite	right.	For	example,	the	Earth’s	rotation	on
its	axis	is	slightly	slowing	down.	It	is	due	to	tidal	friction,	and	you	can
see	that	friction	is	something	which	is	obviously	irreversible.	If	I	take	a
heavy	weight	on	the	floor,	and	push	it,	it	will	slide	and	stop.	If	I	stand
and	wait,	it	does	not	suddenly	start	up	and	speed	up	and	come	into	my
hand.	So	the	frictional	effect	seems	to	be	irreversible.	But	a	frictional
effect,	as	we	discussed	at	another	time,	is	the	result	of	the	enormous
complexity	of	the	interactions	of	the	weight	with	the	wood,	the	jiggling
of	the	atoms	inside.	The	organized	motion	of	the	weight	is	changed	into
disorganized,	irregular	wiggle-waggles	of	the	atoms	in	the	wood.	So
therefore	we	should	look	at	the	thing	more	closely.
As	a	matter	of	fact,	we	have	here	the	clue	to	the	apparent

irreversibility.	I	will	take	a	simple	example.	Suppose	we	have	blue	water,
with	ink,	and	white	water,	that	is	without	ink,	in	a	tank,	with	a	little
separation,	and	then	we	pull	out	the	separation	very	delicately.	The
water	starts	separate,	blue	on	one	side	and	white	on	the	other	side.	Wait
a	while.	Gradually	the	blue	mixes	up	with	the	white,	and	after	a	while
the	water	is	‘luke	blue’,	I	mean	it	is	sort	of	fifty-fifty,	the	colour
uniformly	distributed	throughout.	Now	if	we	wait	and	watch	this	for	a
long	time,	it	does	not	by	itself	separate.	(You	could	do	something	to	get
the	blue	separated	again.	You	could	evaporate	the	water	and	condense	it
somewhere	else,	and	collect	the	blue	dye	and	dissolve	it	in	half	the
water,	and	put	the	thing	back.	But	while	you	were	doing	all	that	you



yourself	would	be	causing	irreversible	phenomena	somewhere	else.)	By
itself	it	does	not	go	the	other	way.
That	gives	us	some	clue.	Let	us	look	at	the	molecules.	Suppose	that

we	take	a	moving	picture	of	the	blue	and	white	water	mixing.	It	will
look	funny	if	we	run	it	backwards,	because	we	shall	start	with	uniform
water	and	gradually	the	thing	will	separate	–	it	will	be	obviously	nutty.
Now	we	magnify	the	picture,	so	that	every	physicist	can	watch,	atom	by
atom,	to	find	out	what	happens	irreversibly	–	where	the	laws	of	balance
of	forward	and	backward	break	down.	So	you	start,	and	you	look	at	the
picture.	You	have	atoms	of	two	different	kinds	(it’s	ridiculous,	but	let’s
call	them	blue	and	white)	jiggling	all	the	time	in	thermal	motion.	If	we
were	to	start	at	the	beginning	we	should	have	mostly	atoms	of	one	kind
on	one	side,	and	atoms	of	the	other	kind	on	the	other	side.	Now	these
atoms	are	jiggling	around,	billions	and	billions	of	them,	and	if	we	start
them	with	one	kind	all	on	one	side,	and	the	other	kind	on	the	other	side,
we	see	that	in	their	perpetual	irregular	motions	they	will	get	mixed	up,
and	that	is	why	the	water	becomes	more	or	less	uniformly	blue.
Let	us	watch	any	one	collision	selected	from	that	picture,	and	in	the

moving	picture	the	atoms	come	together	this	way	and	bounce	off	that
way.	Now	run	that	section	of	the	film	backwards,	and	you	find	the	pair
of	molecules	moving	together	the	other	way	and	bouncing	off	this	way.
And	the	physicist	looks	with	his	keen	eye,	and	measures	everything,	and
says,	‘That’s	all	right,	that’s	according	to	the	laws	of	physics.	If	two
molecules	came	this	way	they	would	bounce	this	way′.	It	is	reversible.
The	laws	of	molecular	collision	are	reversible.
So	if	you	watch	too	carefully	you	cannot	understand	it	at	all,	because

every	one	of	the	collisions	is	absolutely	reversible,	and	yet	the	whole
moving	picture	shows	something	absurd,	which	is	that	in	the	reversed



moving	picture	shows	something	absurd,	which	is	that	in	the	reversed
picture	the	molecules	start	in	the	mixed	condition	–	blue,	white,	blue,
white,	blue,	white	–	and	as	time	goes	on,	through	all	the	collisions,	the
blue	separates	from	the	white.	But	they	cannot	do	that	–	it	is	not	natural
that	the	accidents	of	life	should	be	such	that	the	blues	will	separate
themselves	from	the	whites.	And	yet	if	you	watch	this	reversed	movie
very	carefully	every	collision	is	O.K.
Well	you	see	that	all	there	is	to	it	is	that	the	irreversibility	is	caused

by	the	general	accidents	of	life.	If	you	start	with	a	thing	that	is	separated
and	make	irregular	changes,	it	does	get	more	uniform.	But	if	it	starts
uniform	and	you	make	irregular	changes,	it	does	not	get	separated.	It
could	get	separated.	It	is	not	against	the	laws	of	physics	that	the
molecules	bounce	around	so	that	they	separate.	It	is	just	unlikely.	It
would	never	happen	in	a	million	years.	And	that	is	the	answer.	Things
are	irreversible	only	in	a	sense	that	going	one	way	is	likely,	but	going
the	other	way,	although	it	is	possible	and	is	according	to	the	laws	of
physics,	would	not	happen	in	a	million	years.	It	is	just	ridiculous	to
expect	that	if	you	sit	there	long	enough	the	jiggling	of	the	atoms	will
separate	a	uniform	mixture	of	ink	and	water	into	ink	on	one	side	and
water	on	the	other.
Now	if	I	had	put	a	box	around	my	experiment,	so	that	there	were

only	four	or	five	molecules	of	each	kind	in	the	box,	as	time	went	on	they
would	get	mixed	up.	But	I	think	you	could	believe	that,	if	you	kept
watching,	in	the	perpetual	irregular	collisions	of	these	molecules,	after
some	time	–	not	necessarily	a	million	years,	maybe	only	a	year	–	you
would	see	that,	accidentally	they	would	get	back	more	or	less	to	their
original	state,	at	least	in	the	sense	that	if	I	put	a	barrier	through	the



middle,	all	the	whites	would	be	on	one	side	and	all	the	blues	on	the
other.	It	is	not	impossible.	However,	the	actual	objects	with	which	we
work	have	not	only	four	or	five	blues	and	whites.	They	have	four	or	five
million,	million,	million,	million,	which	are	all	going	to	get	separated
like	this.	And	so	the	apparent	irreversibility	of	nature	does	not	come
from	the	irreversibility	of	the	fundamental	physical	laws;	it	comes	from
the	characteristic	that	if	you	start	with	an	ordered	system,	and	have	the
irregularities	of	nature,	the	bouncing	of	molecules,	then	the	thing	goes
one	way.
Therefore	the	next	question	is	–	how	did	they	get	ordered	in	the	first

place?	That	is	to	say,	why	is	it	possible	to	start	with	the	ordered?	The
difficulty	is	that	we	start	with	an	ordered	thing,	and	we	do	not	end	with
an	ordered	thing.	One	of	the	rules	of	the	world	is	that	the	thing	goes
from	an	ordered	condition	to	a	disordered.	Incidentally,	this	word	order,
like	the	word	disorder,	is	another	of	these	terms	of	physics	which	are	not
exactly	the	same	as	in	ordinary	life.	The	order	need	not	be	interesting	to
you	as	human	beings,	it	is	just	that	there	is	a	definite	situation,	all	on
one	side	and	all	on	the	other,	or	they	are	mixed	up	–	and	that	is	ordered
and	disordered.
The	question,	then,	is	how	the	thing	gets	ordered	in	the	first	place,

and	why,	when	we	look	at	any	ordinary	situation,	which	is	only	partly
ordered,	we	can	conclude	that	it	probably	came	from	one	which	was
more	ordered.	If	I	look	at	a	tank	of	water,	in	which	the	water	is	very
dark	blue	on	one	side	and	very	clear	white	on	the	other,	and	a	sort	of
bluish	colour	in	between,	and	I	know	that	the	thing	has	been	left	alone
for	twenty	or	thirty	minutes,	then	I	will	guess	that	it	got	this	way
because	the	separation	was	more	complete	in	the	past.	If	I	wait	longer,



then	the	blue	and	white	will	get	more	intermixed,	and	if	I	know	that	this
thing	has	been	left	alone	for	a	sufficiently	long	time,	I	can	conclude
something	about	the	past	condition.	The	fact	that	it	is	‘smooth’	at	the
sides	can	only	arise	because	it	was	much	more	satisfactorily	separated	in
the	past;	because	if	it	were	not	more	satisfactorily	separated	in	the	past,
in	the	time	since	then	it	would	have	become	more	mixed	up	than	it	is.	It
is	therefore	possible	to	tell,	from	the	present,	something	about	the	past.
In	fact	physicists	do	not	usually	do	this	much.	Physicists	like	to	think

that	all	you	have	to	do	is	say,	‘These	are	the	conditions,	now	what
happens	next?’	But	all	our	sister	sciences	have	a	completely	different
problem:	in	fact	all	the	other	things	that	are	studied	–	history,	geology,
astronomical	history	–	have	a	problem	of	this	other	kind.	I	find	they	are
able	to	make	predictions	of	a	completely	different	type	from	those	of	a
physicist.	A	physicist	says,	‘In	this	condition	I’ll	tell	you	what	will
happen	next’.	But	a	geologist	will	say	something	like	this	–	‘I	have	dug	in
the	ground	and	I	have	found	certain	kinds	of	bones.	I	predict	that	if	you
dig	in	the	ground	you	will	find	a	similar	kind	of	bones’.	The	historian,
although	he	talks	about	the	past,	can	do	it	by	talking	about	the	future.
When	he	says	that	the	French	Revolution	was	in	1789,	he	means	that	if
you	look	in	another	book	about	the	French	Revolution	you	will	find	the
same	date.	What	he	does	is	to	make	a	kind	of	prediction	about
something	that	he	has	never	looked	at	before,	documents	that	have	still
to	be	found.	He	predicts	that	the	documents	in	which	there	is	something
written	about	Napoleon	will	coincide	with	what	is	written	in	the	other
documents.	The	question	is	how	that	is	possible	–	and	the	only	way	that
is	possible	is	to	suggest	that	the	past	of	the	world	was	more	organized	in
this	sense	than	the	present.



Some	people	have	proposed	that	the	way	the	world	became	ordered
is	this.	In	the	beginning	the	whole	universe	was	just	irregular	motions,
like	the	mixed	water.	We	saw	that	if	you	waited	long	enough,	with	very
few	atoms,	the	water	could	have	got	separated	accidentally.	Some
physicists	(a	century	ago)	suggested	that	all	that	has	happened	is	that
the	world,	this	system	that	has	been	going	on	and	going	on,	fluctuated.
(That	is	the	term	used	when	it	gets	a	little	out	of	the	ordinary	uniform
condition.)	It	fluctuated,	and	now	we	are	watching	the	fluctuation	undo
itself	again.	You	may	say,	‘But	look	how	long	you	would	have	to	wait	for
such	a	fluctuation.’	I	know,	but	if	it	did	not	fluctuate	far	enough	to	be
able	to	produce	evolution,	to	be	able	to	produce	an	intelligent	person,
we	would	not	have	noticed	it.	So	we	had	to	keep	waiting	until	we	were
alive	to	notice	it	–	we	had	to	have	at	least	that	big	a	fluctuation.	But	I
believe	this	theory	to	be	incorrect.	I	think	it	is	a	ridiculous	theory	for	the
following	reason.	If	the	world	were	much	bigger,	and	the	atoms	were	all
over	the	place	starting	from	a	completely	mixed	up	condition,	then	if	I
happened	to	look	only	at	the	atoms	in	one	place,	and	I	found	the	atoms
there	separated,	I	would	have	no	way	to	conclude	that	the	atoms
anywhere	else	would	be	separated.	In	fact	if	the	thing	were	a	fluctuation,
and	I	noticed	something	odd,	the	most	likely	way	that	it	got	there	would
be	that	there	was	nothing	odd	anywhere	else.	That	is,	I	would	have	to
borrow	odds,	so	to	speak,	to	get	the	thing	lopsided,	and	there	is	no	use
borrowing	too	much.	In	the	experiment	with	the	blue	and	white	water,
when	eventually	the	few	molecules	in	the	box	became	separated,	the
most	likely	condition	of	the	rest	of	the	water	would	still	be	mixed	up.
And	therefore,	although	when	we	look	at	the	stars	and	we	look	at	the
world	we	see	everything	is	ordered,	if	there	were	a	fluctuation,	the



prediction	would	be	that	if	we	looked	at	a	place	where	we	have	not
looked	before,	it	would	be	disordered	and	a	mess.	Although	the
separation	of	the	matter	into	stars	which	are	hot	and	space	which	is
cold,	Which	we	have	seen,	could	be	a	fluctuation,	then	in	places	where
we	have	not	looked	we	would	expect	to	find	that	the	stars	are	not
separated	from	space.	And	since	we	always	make	the	prediction	that	in	a
place	where	we	have	not	looked	we	shall	see	stars	in	a	similar	condition,
or	find	the	same	statement	about	Napoleon,	or	that	we	shall	see	bones
like	the	bones	that	we	have	seen	before,	the	success	of	all	those	sciences
indicates	that	the	world	did	not	come	from	a	fluctuation,	but	came	from
a	condition	which	was	more	separated,	more	organized,	in	the	past	than
at	the	present	time.	Therefore	I	think	it	necessary	to	add	to	the	physical
laws	the	hypothesis	that	in	the	past	the	universe	was	more	ordered,	in
the	technical	sense,	than	it	is	today	–	I	think	this	is	the	additional
statement	that	is	needed	to	make	sense,	and	to	make	an	understanding
of	the	irreversibility.
That	statement	itself	is	of	course	lopsided	in	time;	it	says	that

something	about	the	past	is	different	from	the	future.	But	it	comes
outside	the	province	of	what	we	ordinarily	call	physical	laws,	because
we	try	today	to	distinguish	between	the	statement	of	the	physical	laws
which	govern	the	rules	by	which	the	universe	develops,	and	the	law
which	states	the	condition	that	the	world	was	in	in	the	past.	This	is
considered	to	be	astronomical	history	–	perhaps	some	day	it	will	also	be
a	part	of	physical	law.
Now	there	are	a	number	of	interesting	features	of	irreversibility

which	I	would	like	to	illustrate.	One	of	them	is	to	see	how,	exactly,	an
irreversible	machine	really	works.



Suppose	that	we	build	something	that	we	know	ought	to	work	only
one	way	–	and	what	I	am	going	to	build	is	a	wheel	with	a	ratchet	on	it	–
a	saw-toothed	wheel,	with	sharp	up	notches,	and	relatively	slow	down
notches,	all	the	way	round.	The	wheel	is	on	a	shaft,	and	then	there	is	a
little	pawl,	which	is	on	a	pivot	and	which	is	held	down	by	a	spring	(fig.
26).

Figure	26

Now	the	wheel	can	only	turn	one	way.	If	you	try	to	turn	it	the	other
way,	the	straight-edged	parts	of	the	teeth	get	jammed	against	the	pawl
and	it	does	not	go,	whereas	if	you	turn	it	the	other	way	it	just	goes	right
over	the	teeth,	snap,	snap,	snap.	(You	know	the	sort	of	thing:	they	use
them	in	clocks,	and	a	watch	has	this	kind	of	thing	inside	so	that	you	can
only	wind	it	one	way,	and	after	you	have	wound	it,	it	holds	the	spring.)
It	is	completely	irreversible	in	the	sense	that	the	wheel	can	only	turn	one
way.
Now	it	has	been	imagined	that	this	irreversible	machine,	this	wheel

that	can	only	turn	one	way,	could	be	used	for	a	very	useful	and
interesting	thing.	As	you	know,	there	is	a	perpetual	irregular	motion	of
molecules,	and	if	you	build	a	very	delicate	instrument	it	will	always
jiggle	because	it	is	being	bombarded	irregularly	by	the	air	molecules	in
the	neighbourhood.	Well	that	is	very	clever,	so	we	will	connect	the
wheel	with	a	shaft	that	has	four	vanes,	like	this	(fig.	27).



Figure	27

They	are	in	a	box	of	gas,	and	they	are	bombarded	all	the	time	by	the
molecules	irregularly,	so	the	vanes	arc	pushed	sometimes	one	way,
sometimes	the	other	way.	But	when	the	vanes	are	pushed	one	way	the
thing	gets	jammed	by	the	ratchet,	and	when	the	vanes	are	pushed	the
other	way,	it	goes	around,	and	so	we	find	the	wheel	perpetually	going
around,	and	we	have	a	kind	of	perpetual	motion.	That	is	because	the
ratchet	wheel	is	irreversible.
But	actually	we	have	to	look	into	things	in	more	detail.	The	way	this

works	is	that	when	the	wheel	goes	one	way	it	lifts	the	pawl	up	and	then
the	pawl	snaps	down	against	the	tooth.	Then	it	will	bounce	off,	and	if	it
is	perfectly	elastic	it	will	go	bounce,	bounce,	bounce,	all	the	time,	and
the	wheel	can	just	go	down	and	around	the	other	way	when	the	pawl
accidentally	bounces	up.	So	this	will	not	work	unless	it	is	true	that	when
the	pawl	comes	down	it	sticks,	or	stops,	or	bounces	and	cuts	out.	If	it
bounces	and	cuts	out	there	must	be	what	we	call	damping,	or	friction,
and	in	the	falling	down	and	bouncing	and	stopping,	which	is	the	only
way	this	will	work	one-way,	heat	is	generated	by	the	friction,	so	the
wheel	will	get	hotter	and	hotter.	However,	when	it	begins	to	get	quite
warm	something	else	happens.	Just	as	there	is	Brownian	motion,	or
irregular	motions,	in	the	gas	round	the	vanes,	so	whatever	this	wheel



irregular	motions,	in	the	gas	round	the	vanes,	so	whatever	this	wheel
and	pawl	are	made	of,	the	parts	that	they	are	made	of,	are	getting
hotter,	and	are	beginning	to	move	in	a	more	irregular	fashion.	The	time
comes	when	the	wheel	is	so	hot	that	the	pawl	is	simply	jiggling	because
of	the	molecular	motions	of	the	things	inside	it,	and	so	it	bounces	up	and
down	on	the	wheel	because	of	molecular	motion,	the	same	thing	as	was
making	the	vane	turn	round.	In	bouncing	up	and	down	on	the	wheel	it	is
up	as	much	as	it	is	down,	and	the	tooth	can	go	either	way.	We	no	longer
have	a	one-way	device.	As	a	matter	of	fact,	the	thing	can	be	driven
backwards!	If	the	wheel	is	hot	and	the	vane	part	is	cold,	the	wheel	that
you	thought	would	go	only	one	way	will	go	the	other	way,	because
every	time	the	pawl	comes	down	it	comes	down	on	an	inclined	plane	on
the	toothed	wheel,	and	so	pushes	the	wheel	‘backwards’.	Then	it	bounces
up	again,	comes	down	on	another	inclined	plane,	and	so	on.	So	if	the
wheel	is	hotter	than	the	vanes	it	will	go	the	wrong	way.
What	has	this	got	to	do	with	the	temperature	of	the	gas	round	the

vanes?	Suppose	we	did	not	have	that	part	at	all.	Then	if	the	wheel	is
pushed	forward	by	the	pawl	falling	on	an	inclined	plane,	the	next	thing
that	will	happen	is	that	the	straight	vertical	side	of	the	tooth	will	bounce
against	the	pawl	and	the	wheel	will	bounce	back.	In	order	to	prevent	the
wheel	from	bouncing	back	we	put	a	damper	on	it	and	put	vanes	in	the
air,	so	it	will	be	slowed	down	and	not	bounce	freely.	Then	it	will	go	only
one	way,	but	the	wrong	way,	and	so	it	turns	out	that	no	matter	how	you
design	it,	a	wheel	like	this	will	go	one	way	if	one	side	is	hotter	and	the
other	way	if	the	other	side	is	hotter.	But	after	there	is	a	heat	exchange
between	the	two,	and	everything	is	calmed	down,	so	that	the	vane	and
the	wheel	have	come	to	be	at	the	same	temperature,	it	will	neither	go



the	one	way	nor	the	other	on	the	average.	That	is	the	technical	way	in
which	the	phenomena	of	nature	will	go	one	way	as	long	as	they	are	out
of	equilibrium,	as	long	as	one	side	is	quieter	than	the	other,	or	one	side
is	bluer	than	the	other.
The	conservation	of	energy	would	let	us	think	that	we	have	as	much

energy	as	we	want.	Nature	never	loses	or	gains	energy.	Yet	the	energy	of
the	sea,	for	example,	the	thermal	motion	of	all	the	atoms	in	the	sea,	is
practically	unavailable	to	us.	In	order	to	get	that	energy	organized,
herded,	to	make	it	available	for	use,	we	have	to	have	a	difference	in
temperature,	or	else	we	shall	find	that	although	the	energy	is	there	we
cannot	make	use	of	it.	There	is	a	great	difference	between	energy	and
availability	of	energy.	The	energy	of	the	sea	is	a	large	amount,	but	it	is
not	available	to	us.
The	conservation	of	energy	means	that	the	total	energy	in	the	world

is	kept	the	same.	But	in	the	irregular	jigglings	that	energy	can	be	spread
about	so	uniformly	that,	in	certain	circumstances,	there	is	no	way	to
make	more	go	one	way	than	the	other	–	there	is	no	way	to	control	it	any
more.
I	think	that	by	an	analogy	I	can	give	some	idea	of	the	difficulty,	in

this	way.	I	do	not	know	if	you	have	ever	had	the	experience	–	I	have	–	of
sitting	on	the	beach	with	several	towels,	and	suddenly	a	tremendous
downpour	comes.	You	pick	up	the	towels	as	quickly	as	you	can,	and	run
into	the	bathhouse.	Then	you	start	to	dry	yourself,	and	you	find	that	this
towel	is	a	little	wet,	but	it	is	drier	than	you	are.	You	keep	drying	with
this	one	until	you	find	it	is	too	wet	–	it	is	wetting	you	as	much	as	drying
you	–	and	you	try	another	one;	and	pretty	soon	you	discover	a	horrible
thing	–	that	all	the	towels	are	damp	and	so	are	you.	There	is	no	way	to



get	any	drier,	even	though	you	have	many	towels,	because	there	is	no
difference	in	some	sense	between	the	wetness	of	the	towels	and	the
wetness	of	yourself.	I	could	invent	a	kind	of	quantity	which	I	could	call
‘ease	of	removing	water’.	The	towel	has	the	same	ease	of	removing	water
from	it	as	you	have,	so	when	you	touch	yourself	with	the	towel,	as	much
water	comes	off	the	towel	on	to	you	as	comes	from	you	to	the	towel.	It
does	not	mean	there	is	the	same	amount	of	water	in	the	towel	as	there	is
on	you	–	a	big	towel	will	have	more	water	in	it	than	a	little	towel	–	but
they	have	the	same	dampness.	When	things	get	to	the	same	dampness
then	there	is	nothing	you	can	do	any	longer.
Now	the	water	is	like	the	energy,	because	the	total	amount	of	water

is	not	changing.	(If	the	bathhouse	door	is	open	and	you	can	run	into	the
sun	and	get	dried	out,	or	find	another	towel,	then	you’re	saved,	but
suppose	everything	is	closed,	and	you	can’t	get	away	from	these	towels
or	get	any	new	towels.)	In	the	same	way	if	you	imagine	a	part	of	the
world	that	is	closed,	and	wait	long	enough,	in	the	accidents	of	the	world
the	energy,	like	the	water,	will	be	distributed	over	all	of	the	parts	evenly
until	there	is	nothing	left	of	one-way-ness,	nothing	left	of	the	real
interest	of	the	world	as	we	experience	it.
Thus	in	the	ratchet	and	pawl	and	vanes	situation,	which	is	a	limited

one,	in	which	nothing	else	is	involved,	the	temperatures	gradually
become	equal	on	both	sides,	and	the	wheel	does	not	go	round	either	one
way	or	the	other.	In	the	same	way	the	situation	is	that	if	you	leave	any
system	long	enough	it	gets	the	energy	thoroughly	mixed	up	in	it,	and	no
more	energy	is	really	available	to	do	anything.
Incidentally,	the	thing	that	corresponds	to	the	dampness	or	the	‘ease

of	removing	water’	is	called	the	temperature,	and	although	I	say	when



two	things	are	at	the	same	temperature	things	get	balanced,	it	does	not
mean	they	have	the	same	energy	in	them;	it	means	that	it	is	just	as	easy
to	pick	energy	off	one	as	to	pick	it	off	the	other.	Temperature	is	like
‘ease	of	removing	energy’.	So	if	you	sit	them	next	to	each	other,	nothing
apparently	happens;	they	pass	energy	back	and	forth	equally,	but	the	net
result	is	nothing.	So	when	things	have	become	all	of	the	same
temperature,	there	is	no	more	energy	available	to	do	anything.	The
principle	of	irreversibility	is	that	if	things	are	at	different	temperatures
and	are	left	to	themselves,	as	time	goes	on	they	become	more	and	more
at	the	same	temperature,	and	the	availability	of	energy	is	perpetually
decreasing.
This	is	another	name	for	what	is	called	the	entropy	law,	which	says

the	entropy	is	always	increasing.	But	never	mind	the	words;	stated	the
other	way,	the	availability	of	energy	is	always	decreasing.	And	that	is	a
characteristic	of	the	world,	in	the	sense	that	it	is	due	to	the	chaos	of
molecular	irregular	motions.	Things	of	different	temperature,	if	left	to
themselves,	tend	to	become	of	the	same	temperature.	If	you	have	two
things	at	the	same	temperature,	like	water	on	an	ordinary	stove	without
a	fire	under	it,	the	water	is	not	going	to	freeze	and	the	stove	get	hot.	But
if	you	have	a	hot	stove	with	ice,	it	goes	the	other	way.	So	the	one-way-
ness	is	always	to	the	loss	of	the	availability	of	energy.
That	is	all	I	want	to	say	on	the	subject,	but	I	want	to	make	a	few

remarks	about	some	characteristics.	Here	we	have	an	example	in	which
an	obvious	effect,	the	irreversibility,	is	not	an	obvious	consequence	of
the	laws,	but	is	in	fact	rather	far	from	the	basic	laws.	It	takes	a	lot	of
analysis	to	understand	the	reason	for	it.	The	effect	is	of	first	importance
in	the	economy	of	the	world,	in	the	real	behaviour	of	the	world	in	all
obvious	things.	My	memory,	my	characteristics,	the	difference	between



obvious	things.	My	memory,	my	characteristics,	the	difference	between
past	and	future,	are	completely	involved	in	this,	and	yet	the
understanding	of	it	is	not	prima	facie	available	by	knowing	about	the
laws.	It	takes	a	lot	of	analysis.
It	is	often	the	case	that	the	laws	of	physics	do	not	have	an	obvious

direct	relevance	to	experience,	but	that	they	are	abstract	from
experience	to	varying	degrees.	In	this	particular	case,	the	fact	that	the
laws	are	reversible	although	the	phenomena	are	not	is	an	example.
There	are	often	great	distances	between	the	detailed	laws	and	the

main	aspects	of	real	phenomena.	For	example,	if	you	watch	a	glacier
from	a	distance,	and	see	the	big	rocks	falling	into	the	sea,	and	the	way
the	ice	moves,	and	so	forth,	it	is	not	really	essential	to	remember	that	it
is	made	out	of	little	hexagonal	ice	crystals.	Yet	if	understood	well
enough	the	motion	of	the	glacier	is	in	fact	a	consequence	of	the
character	of	the	hexagonal	ice	crystals.	But	it	takes	quite	a	while	to
understand	all	the	behaviour	of	the	glacier	(in	fact	nobody	knows
enough	about	ice	yet,	no	matter	how	much	they’ve	studied	the	crystal).
However	the	hope	is	that	if	we	do	understand	the	ice	crystal	we	shall
ultimately	understand	the	glacier.
In	fact,	although	we	have	been	talking	in	these	lectures	about	the

fundaments	of	the	physical	laws,	I	must	say	immediately	that	one	does
not,	by	knowing	all	the	fundamental	laws	as	we	know	them	today,
immediately	obtain	an	understanding	of	anything	much.	It	takes	a	while,
and	even	then	it	is	only	partial.	Nature,	as	a	matter	of	fact,	seems	to	be
so	designed	that	the	most	important	things	in	the	real	world	appear	to
be	a	kind	of	complicated	accidental	result	of	a	lot	of	laws.
To	give	an	example,	nuclei,	which	involve	several	nuclear	particles,



protons	and	neutrons,	are	very	complicated.	They	have	what	we	call
energy	levels,	they	can	sit	in	states	or	conditions	of	different	energy
values,	and	various	nuclei	have	various	energy	levels.	And	it’s	a
complicated	mathematical	problem,	which	we	can	only	partly	solve,	to
find	the	position	of	the	energy	levels.	The	exact	position	of	the	levels	is
obviously	a	consequence	of	an	enormous	complexity	and	therefore	there
is	no	particular	mystery	about	the	fact	that	nitrogen,	with	15	particles
inside,	happens	to	have	a	level	at	2.4	million	volts,	and	another	level	at
7.1,	and	so	on.	But	the	remarkable	thing	about	nature	is	that	the	whole
universe	in	its	character	depends	upon	precisely	the	position	of	one

particular	level	in	one	particular	nucleus.	In	the	carbon12	nucleus,	it	so
happens,	there	is	a	level	at	7.82	million	volts.	And	that	makes	all	the
difference	in	the	world.
The	situation	is	the	following.	If	we	start	with	hydrogen,	and	it

appears	that	at	the	beginning	the	world	was	practically	all	hydrogen,
then	as	the	hydrogen	comes	together	under	gravity	and	gets	hotter,
nuclear	reactions	can	take	place,	and	it	can	form	helium,	and	then	the
helium	can	combine	only	partially	with	the	hydrogen	and	produce	a	few
more	elements,	a	little	heavier.	But	these	heavier	elements	disintegrate
right	away	back	into	helium.	Therefore	for	a	while	there	was	a	great
mystery	about	where	all	the	other	elements	in	the	world	came	from,
because	starting	with	hydrogen	the	cooking	processes	inside	the	stars
would	not	make	much	more	than	helium	and	less	than	half	a	dozen
other	elements.	Faced	with	this	problem,	Professors	Hoyle	and	Salpeter	*
said	that	there	is	one	way	out.	If	three	helium	atoms	could	come
together	to	form	carbon,	we	can	easily	calculate	how	often	that	should
happen	in	a	star.	And	it	turns	out	that	it	should	never	happen,	except	for



one	possible	accident	–	if	there	happened	to	be	an	energy	level	at	7.82
million	volts	in	carbon,	then	the	three	helium	atoms	would	come
together	and	before	they	came	apart,	would	stay	together	a	little	longer
on	the	average	than	they	would	do	if	there	were	no	level	at	7.82.	And
staying	there	a	little	longer,	there	would	be	enough	time	for	something
else	to	happen,	and	to	make	other	elements.	If	there	was	a	level	at	7-82
million	volts	in	carbon,	then	we	could	understand	where	all	the	other
elements	in	the	periodic	table	came	from.	And	so,	by	a	backhanded,
upside-down	argument,	it	was	predicted	that	there	is	in	carbon	a	level	at
7.82	million	volts;	and	experiments	in	the	laboratory	showed	that	indeed
there	is.	Therefore	the	existence	in	the	world	of	all	these	other	elements
is	very	closely	related	to	the	fact	that	there	is	this	particular	level	in
carbon.	But	the	position	of	this	particular	level	in	carbon	seems	to	us,
knowing	the	physical	laws,	to	be	a	very	complicated	accident	of	12
complicated	particles	interacting.	This	example	is	an	excellent
illustration	of	the	fact	that	an	understanding	of	the	physical	laws	does
not	necessarily	give	you	an	understanding	of	things	of	significance	in	the
world	in	any	direct	way.	The	details	of	real	experience	are	often	very	far
from	the	fundamental	laws.
We	have	a	way	of	discussing	the	world,	when	we	talk	of	it	at	various

hierarchies,	or	levels.	Now	I	do	not	mean	to	be	very	precise,	dividing	the
world	into	definite	levels,	but	I	will	indicate,	by	describing	a	set	of	ideas,
what	I	mean	by	hierarchies	of	ideas.
For	example,	at	one	end	we	have	the	fundamental	laws	of	physics.

Then	we	invent	other	terms	for	concepts	which	are	approximate,	which
have,	we	believe,	their	ultimate	explanation	in	terms	of	the	fundamental
laws.	For	instance,	‘heat’.	Heat	is	supposed	to	be	jiggling,	and	the	word
for	a	hot	thing	is	just	the	word	for	a	mass	of	atoms	which	are	jiggling.



for	a	hot	thing	is	just	the	word	for	a	mass	of	atoms	which	are	jiggling.
But	for	a	while,	if	we	are	talking	about	heat,	we	sometimes	forget	about
the	atoms	jiggling	-just	as	when	we	talk	about	the	glacier	we	do	not
always	think	of	the	hexagonal	ice	and	the	snowflakes	which	originally
fell.	Another	example	of	the	same	thing	is	a	salt	crystal.	Looked	at
fundamentally	it	is	a	lot	of	protons,	neutrons,	and	electrons;	but	we	have
this	concept	‘salt	crystal’,	which	carries	a	whole	pattern	already	of
fundamental	interactions.	An	idea	like	pressure	is	the	same.
Now	if	we	go	higher	up	from	this,	in	another	level	we	have

properties	of	substances	–	like	‘refractive	index’,	how	light	is	bent	when
it	goes	through	something;	or	‘surface	tension’,	the	fact	that	water	tends
to	pull	itself	together,	both	of	which	are	described	by	numbers.	I	remind
you	that	we	have	to	go	through	several	laws	down	to	find	out	that	it	is
the	pull	of	the	atoms,	and	so	on.	But	we	still	say	‘surface	tension’,	and	do
not	always	worry,	when	discussing	surface	tension,	about	the	inner
workings.
On,	up	in	the	hierarchy.	With	the	water	we	have	waves,	and	we	have

a	thing	like	a	storm,	the	word	‘storm’	which	represents	an	enormous
mass	of	phenomena,	or	a	‘sun	spot’,	or	‘star’,	which	is	an	accumulation
of	things.	And	it	is	not	worth	while	always	to	think	of	it	way	back.	In
fact	we	cannot,	because	the	higher	up	we	go	the	more	steps	we	have	in
between,	each	one	of	which	is	a	little	weak.	We	have	not	thought	them
all	through	yet.
As	we	go	up	in	this	hierarchy	of	complexity,	we	get	to	things	like

muscle	twitch,	or	nerve	impulse,	which	is	an	enormously	complicated
thing	in	the	physical	world,	involving	an	organization	of	matter	in	a	very
elaborate	complexity.	Then	come	things	like	‘frog’.
And	then	we	go	on,	and	we	come	to	words	and	concepts	like	‘man’,



And	then	we	go	on,	and	we	come	to	words	and	concepts	like	‘man’,
and	‘history’,	or	‘political	expediency’,	and	so	forth,	a	series	of	concepts
which	we	use	to	understand	things	at	an	ever	higher	level.
And	going	on,	we	come	to	things	like	evil,	and	beauty,	and	hope…
Which	end	is	nearer	to	God;	if	I	may	use	a	religious	metaphor.	Beauty

and	hope,	or	the	fundamental	laws?	I	think	that	the	right	way,	of	course,
is	to	say	that	what	we	have	to	look	at	is	the	whole	structural
interconnection	of	the	thing;	and	that	all	the	sciences,	and	not	just	the
sciences	but	all	the	efforts	of	intellectual	kinds,	are	an	endeavour	to	see
the	connections	of	the	hierarchies,	to	connect	beauty	to	history,	to
connect	history	to	man’s	psychology,	man’s	psychology	to	the	working	of
the	brain,	the	brain	to	the	neural	impulse,	the	neural	impulse	to	the
chemistry,	and	so	forth,	up	and	down,	both	ways.	And	today	we	cannot,
and	it	is	no	use	making	believe	that	we	can,	draw	carefully	a	line	all	the
way	from	one	end	of	this	thing	to	the	other,	because	we	have	only	just
begun	to	see	that	there	is	this	relative	hierarchy.
And	I	do	not	think	either	end	is	nearer	to	God.	To	stand	at	either	end,

and	to	walk	off	that	end	of	the	pier	only,	hoping	that	out	in	that
direction	is	the	complete	understanding,	is	a	mistake.	And	to	stand	with
evil	and	beauty	and	hope,	or	to	stand	with	the	fundamental	laws,	hoping
that	way	to	get	a	deep	understanding	of	the	whole	world,	with	that
aspect	alone,	is	a	mistake.	It	is	not	sensible	for	the	ones	who	specialize	at
one	end,	and	the	ones	who	specialize	at	the	other	end,	to	have	such
disregard	for	each	other.	(They	don’t	actually,	but	people	say	they	do.)
The	great	mass	of	workers	in	between,	connecting	one	step	to	another,
are	improving	all	the	time	our	understanding	of	the	world,	both	from
working	at	the	ends	and	working	in	the	middle,	and	in	that	way	we	are



gradually	understanding	this	tremendous	world	of	interconnecting
hierarchies.



6
Probability	and	Uncertainty	–	the	Quantum
Mechanical	view	of	Nature

In	the	beginning	of	the	history	of	experimental	observation,	or	any	other
kind	of	observation	on	scientific	things,	it	is	intuition,	which	is	really
based	on	simple	experience	with	everyday	objects,	that	suggests
reasonable	explanations	for	things.	But	as	we	try	to	widen	and	make
more	consistent	our	description	of	what	we	see,	as	it	gets	wider	and
wider	and	we	see	a	greater	range	of	phenomena,	the	explanations
become	what	we	call	laws	instead	of	simple	explanations.	One	odd
characteristic	is	that	they	often	seem	to	become	more	and	more
unreasonable	and	more	and	more	intuitively	far	from	obvious.	To	take
an	example,	in	the	relativity	theory	the	proposition	is	that	if	you	think
two	things	occur	at	the	same	time	that	is	just	your	opinion,	someone	else
could	conclude	that	of	those	events	one	was	before	the	other,	and	that
therefore	simultaneity	is	merely	a	subjective	impression.
There	is	no	reason	why	we	should	expect	things	to	be	otherwise,

because	the	things	of	everyday	experience	involve	large	numbers	of
particles,	or	involve	things	moving	very	slowly,	or	involve	other
conditions	that	are	special	and	represent	in	fact	a	limited	experience
with	nature.	It	is	a	small	section	only	of	natural	phenomena	that	one
gets	from	direct	experience.	It	is	only	through	refined	measurements	and
careful	experimentation	that	we	can	have	a	wider	vision.	And	then	we
see	unexpected	things:	we	see	things	that	are	far	from	what	we	would
guess	–	far	from	what	we	could	have	imagined.	Our	imagination	is



stretched	to	the	utmost,	not,	as	in	fiction,	to	imagine	things	which	are

not	really	there,	but	just	to	comprehend	those	things	which	are	there.	It
is	this	kind	of	situation	that	I	want	to	discuss.
Let	us	start	with	the	history	of	light.	At	first	light	was	assumed	to

behave	very	much	like	a	shower	of	particles,	of	corpuscles,	like	rain,	or
like	bullets	from	a	gun.	Then	with	further	research	it	was	clear	that	this
was	not	right,	that	the	light	actually	behaved	like	waves,	like	water
waves	for	instance.	Then	in	the	twentieth	century,	on	further	research,	it
appeared	again	that	light	actually	behaved	in	many	ways	like	particles.
In	the	photo-electric	effect	you	could	count	these	particles	–	they	are
called	photons	now.	Electrons,	when	they	were	first	discovered,	behaved
exactly	like	particles	or	bullets,	very	simply.	Further	research	showed,
from	electron	diffraction	experiments	for	example,	that	they	behaved
like	waves.	As	time	went	on	there	was	a	growing	confusion	about	how
these	things	really	behaved	–	waves	or	particles,	particles	or	waves	?
Everything	looked	like	both.
This	growing	confusion	was	resolved	in	1925	or	1926	with	the

advent	of	the	correct	equations	for	quantum	mechanics.	Now	we	know
how	the	electrons	and	light	behave.	But	what	can	I	call	it?	If	I	say	they
behave	like	particles	I	give	the	wrong	impression;	also	if	I	say	they
behave	like	waves.	They	behave	in	their	own	inimitable	way,	which
technically	could	be	called	a	quantum	mechanical	way.	They	behave	in	a
way	that	is	like	nothing	that	you	have	ever	seen	before.	Your	experience
with	things	that	you	have	seen	before	is	incomplete.	The	behaviour	of
things	on	a	very	tiny	scale	is	simply	different.	An	atom	does	not	behave
like	a	weight	hanging	on	a	spring	and	oscillating.	Nor	does	it	behave	like
a	miniature	representation	of	the	solar	system	with	little	planets	going
around	in	orbits.	Nor	does	it	appear	to	be	somewhat	like	a	cloud	or	fog



around	in	orbits.	Nor	does	it	appear	to	be	somewhat	like	a	cloud	or	fog
of	some	sort	surrounding	the	nucleus.	It	behaves	like	nothing	you	have
ever	seen	before.
There	is	one	simplification	at	least.	Electrons	behave	in	this	respect	in

exactly	the	same	way	as	photons;	they	are	both	screwy,	but	in	exactly
the	same	way.
How	they	behave,	therefore,	takes	a	great	deal	of	imagination	to

appreciate,	because	we	are	going	to	describe	something	which	is
different	from	anything	you	know	about.	In	that	respect	at	least	this	is
perhaps	the	most	difficult	lecture	of	the	series,	in	the	sense	that	it	is
abstract,	in	the	sense	that	it	is	not	close	to	experience.	I	cannot	avoid
that.	Were	I	to	give	a	series	of	lectures	on	the	character	of	physical	law,
and	to	leave	out	from	this	series	the	description	of	the	actual	behaviour
of	particles	on	a	small	scale,	I	would	certainly	not	be	doing	the	job.	This
thing	is	completely	characteristic	of	all	of	the	particles	of	nature,	and	of
a	universal	character,	so	if	you	want	to	hear	about	the	character	of
physical	law	it	is	essential	to	talk	about	this	particular	aspect.
It	will	be	difficult.	But	the	difficulty	really	is	psychological	and	exists

in	the	perpetual	torment	that	results	from	your	saying	to	yourself,	‘But
how	can	it	be	like	that	?’	which	is	a	reflection	of	uncontrolled	but	utterly
vain	desire	to	see	it	in	terms	of	something	familiar.	I	will	not	describe	it
in	terms	of	an	analogy	with	something	familiar;	I	will	simply	describe	it.
There	was	a	time	when	the	newspapers	said	that	only	twelve	men
understood	the	theory	of	relativity.	I	do	not	believe	there	ever	was	such
a	time.	There	might	have	been	a	time	when	only	one	man	did,	because
he	was	the	only	guy	who	caught	on,	before	he	wrote	his	paper.	But	after
people	read	the	paper	a	lot	of	people	understood	the	theory	of	relativity



in	some	way	or	other,	certainly	more	than	twelve.	On	the	other	hand,	I
think	I	can	safely	say	that	nobody	understands	quantum	mechanics.	So
do	not	take	the	lecture	too	seriously,	feeling	that	you	really	have	to
understand	in	terms	of	some	model	what	I	am	going	to	describe,	but	just
relax	and	enjoy	it.	I	am	going	to	tell	you	what	nature	behaves	like.	If	you
will	simply	admit	that	maybe	she	does	behave	like	this,	you	will	find	her
a	delightful,	entrancing	thing.	Do	not	keep	saying	to	yourself,	if	you	can
possibly	avoid	it,	‘But	how	can	it	be	like	that?’	because	you	will	get
‘down	the	drain’,	into	a	blind	alley	from	which	nobody	has	yet	escaped.
Nobody	knows	how	it	can	be	like	that.
So	then,	let	me	describe	to	you	the	behaviour	of	electrons	or	of

photons	in	their	typical	quantum	mechanical	way.	I	am	going	to	do	this
by	a	mixture	of	analogy	and	contrast.	If	I	made	it	pure	analogy	we
would	fail;	it	must	be	by	analogy	and	contrast	with	things	which	are
familiar	to	you.	So	I	make	it	by	analogy	and	contrast,	first	to	the
behaviour	of	particles,	for	which	I	will	use	bullets,	and	second	to	the
behaviour	of	waves,	for	which	I	will	use	water	waves.	What	I	am	going
to	do	is	to	invent	a	particular	experiment	and	first	tell	you	what	the
situation	would	be	in	that	experiment	using	particles,	then	what	you
would	expect	to	happen	if	waves	were	involved,	and	finally	what
happens	when	there	are	actually	electrons	or	photons	in	the	system.	I
will	take	just	this	one	experiment,	which	has	been	designed	to	contain
all	of	the	mystery	of	quantum	mechanics,	to	put	you	up	against	the
paradoxes	and	mysteries	and	peculiarities	of	nature	one	hundred	per
cent.	Any	other	situation	in	quantum	mechanics,	it	turns	out,	can	always
be	explained	by	saying,	‘You	remember	the	case	of	the	experiment	with
the	two	holes	?	It’s	the	same	thing’.	I	am	going	to	tell	you	about	the



experiment	with	the	two	holes.	It	does	contain	the	general	mystery;	I	am
avoiding	nothing;	I	am	baring	nature	in	her	most	elegant	and	difficult
form.

Figure	28

We	start	with	bullets	(fig.	28).	Suppose	that	we	have	some	source	of
bullets,	a	machine	gun,	and	in	front	of	it	a	plate	with	a	hole	for	the
bullets	to	come	through,	and	this	plate	is	armour	plate.	A	long	distance
away	we	have	a	second	plate	which	has	two-holes	in	it	–	that	is	the
famous	two-hole	business.	I	am	going	to	talk	a	lot	about	these	holes,	so	I
will	call	them	hole	No.	1	and	hole	No.	2.	You	can	imagine	round	holes	in
three	dimensions	–	the	drawing	is	just	a	cross	section.	A	long	distance
away	again	we	have	another	screen	which	is	just	a	backstop	of	some	sort
on	which	we	can	put	in	various	places	a	detector,	which	in	the	case	of
bullets	is	a	box	of	sand	into	which	the	bullets	will	be	caught	so	that	we
can	count	them.	I	am	going	to	do	experiments	in	which	I	count	how
many	bullets	come	into	this	detector	or	box	of	sand	when	the	box	is	in
different	positions,	and	to	describe	that	I	will	measure	the	distance	of	the
box	from	somewhere,	and	call	that	distance	‘x’,	and	I	will	talk	about
what	happens	when	you	change	‘x’,	which	means	only	that	you	move



the	detector	box	up	and	down.	First	I	would	like	to	make	a	few
modifications	from	real	bullets,	in	three	idealizations.	The	first	is	that
the	machine	gun	is	very	shaky	and	wobbly	and	the	bullets	go	in	various
directions,	not	just	exactly	straight	on;	they	can	ricochet	off	the	edges	of
the	holes	in	the	armour	plate.	Secondly,	we	should	say,	although	this	is
not	very	important,	that	the	bullets	have	all	the	same	speed	or	energy.
The	most	important	idealization	in	which	this	situation	differs	from	real
bullets	is	that	I	want	these	bullets	to	be	absolutely	indestructible,	so	that
what	we	find	in	the	box	is	not	pieces	of	lead,	of	some	bullet	that	broke
in	half,	but	we	get	the	whole	bullet.	Imagine	indestructible	bullets,	or
hard	bullets	and	soft	armour	plate.
The	first	thing	that	we	shall	notice	about	bullets	is	that	the	things

that	arrive	come	in	lumps.	When	the	energy	comes	it	is	all	in	one
bulletful,	one	bang.	If	you	count	the	bullets,	there	are	one,	two,	three,
four	bullets;	the	things	come	in	lumps.	They	are	of	equal	size,	you
suppose,	in	this	case,	and	when	a	thing	comes	into	the	box	it	is	either	all
in	the	box	or	it	is	not	in	the	box.	Moreover,	if	I	put	up	two	boxes	I	never
get	two	bullets	in	the	boxes	at	the	same	time,	presuming	that	the	gun	is
not	going	off	too	fast	and	I	have	enough	time	between	them	to	see.	Slow
down	the	gun	so	it	goes	off	very	slowly,	then	look	very	quickly	in	the
two	boxes,	and	you	will	never	get	two	bullets	at	the	same	time	in	the
two	boxes,	because	a	bullet	is	a	single	identifiable	lump.
Now	what	I	am	going	to	measure	is	how	many	bullets	arrive	on	the

average	over	a	period	of	time.	Say	we	wait	an	hour,	and	we	count	how
many	bullets	are	in	the	sand	and	average	that.	We	take	the	number	of
bullets	that	arrive	per	hour,	and	we	can	call	that	the	probability	of
arrival,	because	it	just	gives	the	chance	that	a	bullet	going	through	a	slit



arrives	in	the	particular	box.	The	number	of	bullets	that	arrive	in	the	box
will	vary	of	course	as	I	vary	‘x’.	On	the	diagram	I	have	plotted
horizontally	the	number	of	bullets	that	I	get	if	I	hold	the	box	in	each
position	for	an	hour.	I	shall	get	a	curve	that	will	look	more	or	less	like
curve	N12	because	when	the	box	is	behind	one	of	the	holes	it	gets	a	lot	of

bullets,	and	if	it	is	a	little	out	of	line	it	does	not	get	as	many,	they	have
to	bounce	off	the	edges	of	the	holes,	and	eventually	the	curve
disappears.	The	curve	looks	like	curve	N12,	and	the	number	that	we	get

in	an	hour	when	both	holes	are	open	I	will	call	N12,	which	merely	means

the	number	which	arrive	through	hole	No.	1	and	hole	No.	2.
I	must	remind	you	that	the	number	that	I	have	plotted	does	not	come

in	lumps.	It	can	have	any	size	it	wants.	It	can	be	two	and	a	half	bullets	in
an	hour,	in	spite	of	the	fact	that	bullets	come	in	lumps.	All	I	mean	by
two	and	a	half	bullets	per	hour	is	that	if	you	run	for	ten	hours	you	will
get	twenty-five	bullets,	so	on	the	average	it	is	two	and	a	half	bullets.	I
am	sure	you	are	all	familiar	with	the	joke	about	the	average	family	in
the	United	States	seeming	to	have	two	and	a	half	children.	It	does	not
mean	that	there	is	a	half	child	in	any	family	–	children	come	in	lumps.
Nevertheless,	when	you	take	the	average	number	per	family	it	can	be
any	number	whatsoever,	and	in	the	same	way	this	number	N12,	which	is

the	number	of	bullets	that	arrive	in	the	container	per	hour,	on	the
average,	need	not	be	an	integer.	What	we	measure	is	the	probability	of
arrival,	which	is	a	technical	term	for	the	average	number	that	arrive	in	a
given	length	of	time.
Finally,	if	we	analyse	the	curve	N12	we	can	interpret	it	very	nicely	as

the	sum	of	two	curves,	one	which	will	represent	what	I	will	call	Nl,	the



number	which	will	come	if	hole	No.	2	is	closed	by	another	piece	of
armour	plate	in	front,	and	N2,	the	number	which	will	come	through	hole

No.	2	alone,	if	hole	No.	1	is	closed.	We	discover	now	a	very	important
law,	which	is	that	the	number	that	arrive	with	both	holes	open	is	the
number	that	arrive	by	coming	through	hole	No.	1,	plus	the	number	that
come	through	hole	No.	2.	This	proposition,	the	fact	that	all	you	have	to
do	is	to	add	these	together,	I	call	‘no	interference’.

N12	=	N1	+	N2	(no	interference).

Figure	29

That	is	for	bullets,	and	now	we	have	done	with	bullets	we	begin
again,	this	time	with	water	waves	(fig.	29).	The	source	is	now	a	big	mass
of	stuff	which	is	being	shaken	up	and	down	in	the	water.	The	armour
plate	becomes	a	long	line	of	barges	or	jetties	with	a	gap	in	the	water	in
between.	Perhaps	it	would	be	better	to	do	it	with	ripples	than	with	big
ocean	waves;	it	sounds	more	sensible.	I	wiggle	my	finger	up	and	down	to
make	waves,	and	I	have	a	little	piece	of	wood	as	a	barrier	with	a	hole	for
the	ripples	to	come	through.	Then	I	have	a	second	barrier	with	two
holes,	and	finally	a	detector.	What	do	I	do	with	the	detector	?	What	the



detector	detects	is	how	much	the	water	is	jiggling.	For	instance,	I	put	a
cork	in	the	water	and	measure	how	it	moves	up	and	down,	and	what	I
am	going	to	measure	in	fact	is	the	energy	of	the	agitation	of	the	cork,
which	is	exactly	proportional	to	the	energy	carried	by	the	waves.	One
other	thing:	the	jiggling	is	made	very	regular	and	perfect	so	that	the
waves	are	all	the	same	space	from	one	another.	One	thing	that	is
important	for	water	waves	is	that	the	thing	we	are	measuring	can	have
any	size	at	all.	We	are	measuring	the	intensity	of	the	waves,	or	the
energy	in	the	cork,	and	if	the	waves	are	very	quiet,	if	my	finger	is	only
jiggling	a	little,	then	there	will	be	very	little	motion	of	the	cork.	No
matter	how	much	it	is,	it	is	proportional.	It	can	have	any	size;	it	does	not
come	in	lumps;	it	is	not	all	there	or	nothing.
What	we	are	going	to	measure	is	the	intensity	of	the	waves,	or,	to	be

precise,	the	energy	generated	by	the	waves	at	a	point.	What	happens	if
we	measure	this	intensity,	which	I	will	call	‘I’	to	remind	you	that	it	is	an
intensity	and	not	a	number	of	particles	of	any	kind?	The	curve	I12,	that

is	when	both	holes	are	open,	is	shown	in	the	diagram	(Fig.29).	It	is	an
interesting,	complicated	looking	curve.	If	we	put	the	detector	in	different
places	we	get	an	intensity	which	varies	very	rapidly	in	a	peculiar
manner.	You	are	probably	familiar	with	the	reason	for	that.	The	reason
is	that	the	ripples	as	they	come	have	crests	and	troughs	spreading	from
hole	No.	1,	and	they	have	crests	and	troughs	spreading	from	hole	No.	2.
If	we	are	at	a	place	which	is	exactly	in	between	the	two	holes,	so	that
the	two	waves	arrive	at	the	same	time,	the	crests	will	come	on	top	of
each	other	and	there	will	be	plenty	of	jiggling.	We	have	a	lot	of	jiggling
right	in	dead	centre.	On	the	other	hand	if	I	move	the	detector	to	some
point	further	from	hole	No.	2	than	hole	No.	1,	it	takes	a	little	longer	for



the	waves	to	come	from	2	than	from	1,	and	when	a	crest	is	arriving	from
1	the	crest	has	not	quite	reached	there	yet	from	hole	2,	in	fact	it	is	a
trough	from	2,	so	that	the	water	tries	to	move	up	and	it	tries	to	move
down,	from	the	influences	of	the	waves	coming	from	the	two	holes,	and
the	net	result	is	that	it	does	not	move	at	all,	or	practically	not	at	all.	So
we	have	a	low	bump	at	that	place.	Then	if	it	moves	still	further	over	we
get	enough	delay	so	that	crests	come	together	from	both	holes,	although
one	crest	is	in	fact	a	whole	wave	behind,	and	so	you	get	a	big	one	again,
then	a	small	one,	a	big	one,	a	small	one…	depending	upon	the	way	the
crests	and	troughs	‘interfere’.	The	word	interference	again	is	used	in
science	in	a	funny	way.	We	can	have	what	we	call	constructive
interference,	as	when	both	waves	interfere	to	make	the	intensity
stronger.	The	important	thing	is	that	I12	is	not	the	same	as	I1	plus	I2,	and

we	say	it	shows	constructive	and	destructive	interference.	We	can	find
out	what	I1	and	I2	look	like	by	closing	hole	No.	2	to	find	Il,	and	closing

hole	No.	1	to	find	I2.	The	intensity	that	we	get	if	one	hole	is	closed	is

simply	the	waves	from	one	hole,	with	no	interference,	and	the	curves	are
shown	in	fig.	2.	You	will	notice	that	I1	is	the	same	as	Nl,	and	I2	the	same

as	N2	and	yet	I12	is	quite	different	from	N12.

As	a	matter	of	fact,	the	mathematics	of	the	curve	I12	is	rather

interesting.	What	is	true	is	that	the	height	of	the	water,	which	we	will
call	h,	when	both	holes	are	open	is	equal	to	the	height	that	you	would
get	from	No.	1	open,	plus	the	height	that	you	would	get	from	No.	2
open.	Thus,	if	it	is	a	trough	the	height	from	No.	2	is	negative	and	cancels
out	the	height	from	No.	1.	You	can	represent	it	by	talking	about	the
height	of	the	water,	but	it	turns	out	that	the	intensity	in	any	case,	for



instance	when	both	holes	are	open,	is	not	the	same	as	the	height	but	is
proportional	to	the	square	of	the	height.	It	is	because	of	the	fact	that	we
are	dealing	with	squares	that	we	get	these	very	interesting	curves.

h12	=	h1	+	2
								but
I12	≠	I1	+	I2	(Interference)

I12	=	(h12)2,

I1		=	(h1)2

I2		=	(h2)2,

That	was	water.	Now	we	start	again,	this	time	with	electrons	(fig.
30).

Figure	30

The	source	is	a	filament,	the	barriers	tungsten	plates,	these	are	holes	in
the	tungsten	plate,	and	for	a	detector	we	have	any	electrical	system
which	is	sufficiently	sensitive	to	pick	up	the	charge	of	an	electron
arriving	with	whatever	energy	the	source	has.	If	you	would	prefer	it,	we
could	use	photons	with	black	paper	instead	of	the	tungsten	plate	–	in
fact	black	paper	is	not	very	good	because	the	fibres	do	not	make	sharp



fact	black	paper	is	not	very	good	because	the	fibres	do	not	make	sharp
holes,	so	we	would	have	to	have	something	better	–	and	for	a	detector	a
photo-multiplier	capable	of	detecting	the	individual	photons	arriving.
What	happens	with	either	case?	I	will	discuss	only	the	electron	case,
since	the	case	with	photons	is	exactly	the	same.
First,	what	we	receive	in	the	electrical	detector,	with	a	sufficiently

powerful	amplifier	behind	it,	are	clicks,	lumps,	absolute	lumps.	When
the	click	comes	it	is	a	certain	size,	and	the	size	is	always	the	same.	If	you
turn	the	source	weaker	the	clicks	come	further	apart,	but	it	is	the	same
sized	click.	If	you	turn	it	up	they	come	so	fast	that	they	jam	the
amplifier.	You	have	to	turn	it	down	enough	so	that	there	are	not	too
many	clicks	for	the	machinery	that	you	are	using	for	the	detector.	Next,
if	you	put	another	detector	in	a	different	place	and	listen	to	both	of	them
you	will	never	get	two	clicks	at	the	same	time,	at	least	if	the	source	is
weak	enough	and	the	precision	with	which	you	measure	the	time	is	good
enough.	If	you	cut	down	the	intensity	of	the	source	so	that	the	electrons
come	few	and	far	between,	they	never	give	a	click	in	both	detectors	at
once.	That	means	that	the	thing	which	is	coming	comes	in	lumps	–it	has
a	definite	size,	and	it	only	comes	to	one	place	at	a	time.	Right,	so
electrons,	or	photons,	come	in	lumps.	Therefore	what	we	can	do	is	the
same	thing	as	we	did	for	bullets:	we	can	measure	the	probability	of
arrival.	What	we	do	is	hold	the	detector	in	various	places	–	actually	if	we
wanted	to	although	it	is	expensive,	we	could	put	detectors	all	over	at	the
same	time	and	make	the	whole	curve	simultaneously	–	but	we	hold	the
detector	in	each	place,	say	for	an	hour,	and	we	measure	at	the	end	of	the
hour	how	many	electrons	came,	and	we	average	it.	What	do	we	get	for
the	number	of	electrons	that	arrive	?	The	same	kind	of	N12	as	with



bullets	?	Figure	30	shows	what	we	get	for	N12,	that	is	what	we	get	with

both	holes	open.	That	is	the	phenomenon	of	nature,	that	she	produces
the	curve	which	is	the	same	as	you	would	get	for	the	interference	of
waves.	She	produces	this	curve	for	what?	Not	for	the	energy	in	a	wave
but	for	the	probability	of	arrival	of	one	of	these	lumps.
The	mathematics	is	simple.	You	change	I	to	N,	so	you	have	to	change

h	to	something	else,	which	is	new	–	it	is	not	the	height	of	anything	–	so
we	invent	an	‘a’,	which	we	call	a	probability	amplitude,	because	we	do
not	know	what	it	means.	In	this	case	a1	is	the	probability	amplitude	to

arrive	from	hole	No.	1,	and	a2	the	probability	amplitude	to	arrive	from

hole	No.	2.	To	get	the	total	probability	amplitude	to	arrive	you	add	the
two	together	and	square	it.	This	is	a	direct	imitation	of	what	happens
with	the	waves,	because	we	have	to	get	the	same	curve	out	so	we	use	the
same	mathematics.
I	should	check	on	one	point	though,	about	the	interference.	I	did	not

say	what	happens	if	we	close	one	of	the	holes.	Let	us	try	to	analyse	this
interesting	curve	by	presuming	that	the	electrons	came	through	one	hole
or	through	the	other.	We	close	one	hole,	and	measure	how	many	come
through	hole	No.	1,	and	we	get	the	simple	curve	N1.	Or	we	can	close	the

other	hole	and	measure	how	many	come	through	hole	No.	2,	and	we	get
the	N2	curve.	But	these	two	added	together	do	not	give	the	same	as	N1
+	N2;	it	does	show	interference.	In	fact	the	mathematics	is	given	by	this

funny	formula	that	the	probability	of	arrival	is	the	square	of	an

amplitude	which	itself	is	the	sum	of	two	pieces,	N12	=	(a1	+	a2)2.	The

question	is	how	it	can	come	about	that	when	the	electrons	go	through
hole	No.	1	they	will	be	distributed	one	way,	when	they	go	through	hole



No.	2	they	will	be	distributed	another	way,	and	yet	when	both	holes	are
open	you	do	not	get	the	sum	of	the	two.	For	instance,	if	I	hold	the
detector	at	the	point	q	with	both	holes	open	I	get	practically	nothing,	yet
if	I	close	one	of	the	holes	I	get	plenty,	and	if	I	close	the	other	hole	I	get
something.	I	leave	both	holes	open	and	I	get	nothing;	I	let	them	come
through	both	holes	and	they	do	not	come	any	more.	Or	take	the	point	at
the	centre;	you	can	show	that	that	is	higher	than	the	sum	of	the	two
single	hole	curves.	You	might	think	that	if	you	were	clever	enough	you
could	argue	that	they	have	some	way	of	going	around	through	the	holes
back	and	forth,	or	they	do	something	complicated,	or	one	splits	in	half
and	goes	through	the	two	holes,	or	something	similar,	in	order	to	explain
this	phenomenon.	Nobody,	however,	has	succeeded	in	producing	an
explanation	that	is	satisfactory,	because	the	mathematics	in	the	end	are
so	very	simple,	the	curve	is	so	very	simple	(fig.	30).
I	will	summarize,	then,	by	saying	that	electrons	arrive	in	lumps,	like

particles,	but	the	probability	of	arrival	of	these	lumps	is	determined	as
the	intensity	of	waves	would	be.	It	is	in	this	sense	that	the	electron
behaves	sometimes	like	a	particle	and	sometimes	like	a	wave.	It	behaves
in	two	different	ways	at	the	same	time	(fig.	31).
That	is	all	there	is	to	say.	I	could	give	a	mathematical	description	to

figure	out	the	probability	of	arrival	of	electrons	under	any
circumstances,	and	that	would	in	principle	be	the	end	of	the	lecture	–
except	that	there	are	a	number	of	subtleties	involved	in	the	fact	that
nature	works	this	way.	There	are	a	number	of	peculiar	things,	and	I
would	like	to	discuss	those	peculiarities	because	they	may	not	be	self-
evident	at	this	point.



Figure	31

To	discuss	the	subtleties,	we	begin	by	discussing	a	proposition	which
we	would	have	thought	reasonable,	since	these	things	are	lumps.	Since
what	comes	is	always	one	complete	lump,	in	this	case	an	electron,	it	is
obviously	reasonable	to	assume	that	either	an	electron	goes	through	hole
No.	1	or	it	goes	through	hole	No.	2.	It	seems	very	obvious	that	it	cannot
do	anything	else	if	it	is	a	lump.	I	am	going	to	discuss	this	proposition,	so
I	have	to	give	it	a	name;	I	will	call	it	‘proposition	A’.

Now	we	have	already	discussed	a	little	what	happens	with
proposition	A.	If	it	were	true	that	an	electron	either	goes	through	hole
No.	1	or	through	hole	No.	2,	then	the	total	number	to	arrive	would	have
to	be	analysable	as	the	sum	of	two	contributions.	The	total	number
which	arrive	will	be	the	number	that	come	via	hole	1,	plus	the	number
that	come	via	hole	2.	Since	the	resulting	curve	cannot	be	easily	analysed
as	the	sum	of	two	pieces	in	such	a	nice	manner,	and	since	the
experiments	which	determine	how	many	would	arrive	if	only	one	hole



or	the	other	were	open	do	not	give	the	result	that	the	total	is	the	sum	of
the	two	parts,	it	is	obvious	that	we	should	conclude	that	this	proposition
is	false.	If	it	is	not	true	that	the	electron	either	comes	through	hole	No.	1
or	hole	No.	2,	maybe	it	divides	itself	in	half	temporarily	or	something.
So	proposition	A	is	false.	That	is	logic.	Unfortunately,	or	otherwise,	we
can	test	logic	by	experiment.	We	have	to	find	out	whether	it	is	true	or
not	that	the	electrons	come	through	either	hole	1	or	hole	2,	or	maybe
they	go	round	through	both	holes	and	get	temporarily	split	up,	or
something.
All	we	have	to	do	is	watch	them.	And	to	watch	them	we	need	light.

So	we	put	behind	the	holes	a	source	of	very	intense	light.	Light	is
scattered	by	electrons,	bounced	off	them,	so	if	the	light	is	strong	enough
you	can	see	electrons	as	they	go	by.	We	stand	back,	then,	and	we	look	to
see	whether	when	an	electron	is	counted	we	see,	or	have	seen	the
moment	before	the	electron	is	counted,	a	flash	behind	hole	1	or	a	flash
behind	hole	2,	or	maybe	a	sort	of	half	flash	in	each	place	at	the	same
time.	We	are	going	to	find	out	now	how	it	goes,	by	looking.	We	turn	on
the	light	and	look,	and	lo,	we	discover	that	every	time	there	is	a	count	at
the	detector	we	see	either	a	flash	behind	No.	1	or	a	flash	behind	No.	2.
What	we	find	is	that	the	electron	comes	one	hundred	per	cent,	complete,
through	hole	1	or	through	hole	2	–	when	we	look.	A	paradox!
Let	us	squeeze	nature	into	some	kind	of	a	difficulty	here.	I	will	show

you	what	we	are	going	to	do.	We	are	going	to	keep	the	light	on	and	we
are	going	to	watch	and	count	how	many	electrons	come	through.	We
will	make	two	columns,	one	for	hole	No.	1	and	one	for	hole	No.	2,	and
as	each	electron	arrives	at	the	detector	we	will	note	in	the	appropriate
column	which	hole	it	came	through.	What	does	the	column	for	hole	No.



1	look	like	when	we	add	it	all	together	for	different	positions	of	the
detector?	If	I	watch	behind	hole	No.	1	what	do	I	see	?	I	see	the	curve	N1
(fig.	30).	That	column	is	distributed	just	as	we	thought	when	we	closed
hole	2,	much	the	same	way	whether	we	are	looking	or	not.	If	we	close
hole	2	we	get	the	same	distribution	in	those	that	arrive	as	if	we	were
watching	hole	No.	1;	likewise	the	number	that	have	arrived	via	hole	No.
2	is	also	a	simple	curve	N2.	Now	look,	the	total	number	which	arrive	has

to	be	the	total	number.	It	has	to	be	the	sum	of	the	number	N1	plus	the

number	N2;	because	each	one	that	comes	through	has	been	checked	off

in	either	column	1	or	column	2.	The	total	number	which	arrive	absolutely
has	to	be	the	sum	of	these	two.	It	has	to	be	distributed	as	N1	+	N2.	But	I

said	it	was	distributed	as	the	curve	N12.	No,	it	is	distributed	as	N1	+	N2.

It	really	is,	of	course;	it	has	to	be	and	it	is.	If	we	mark	with	a	prime	the
results	when	a	light	is	lit,	then	we	find	that	N1′,	is	practically	the	same

as	N1,	without	the	light,	and	N2′	is	almost	the	same	as	N2.	But	the

number	N12′,	that	we	see	when	the	light	is	on	and	both	holes	are	open	is

equal	to	the	number	that	we	see	through	hole	1	plus	the	number	that	we
see	through	hole	2.	This	is	the	result	that	we	get	when	the	light	is	on.
We	get	a	different	answer	whether	I	turn	on	the	light	or	not.	If	I	have	the
light	turned	on,	the	distribution	is	the	curve	N1	+	N2.	If	I	turn	off	the

light,	the	distribution	is	N12.	Turn	on	the	light	and	it	is	N1	+	N2	again.

So	you	see,	nature	has	squeezed	out!	We	could	say,	then,	that	the	light
affects	the	result.	If	the	light	is	on	you	get	a	different	answer	from	that
when	the	light	is	off.	You	can	say	too	that	light	affects	the	behaviour	of
electrons.	If	you	talk	about	the	motion	of	the	electrons	through	the
experiment,	which	is	a	little	inaccurate,	you	can	say	that	the	light	affects



the	motion,	so	that	those	which	might	have	arrived	at	the	maximum
have	somehow	been	deviated	or	kicked	by	the	light	and	arrive	at	the
minimum	instead,	thus	smoothing	the	curve	to	produce	the	simple	N1	+

N2	curve.

Electrons	are	very	delicate.	When	you	are	looking	at	a-baseball	and
you	shine	a	light	on	it,	it	does	not	make	any	difference,	the	baseball	still
goes	the	same	way.	But	when	you	shine	a	light	on	an	electron	it	knocks
him	about	a	bit,	and	instead	of	doing	one	thing	he	does	another,	because
you	have	turned	the	light	on	and	it	is	so	strong.	Suppose	we	try	turning
it	weaker	and	weaker,	until	it	is	very	dim,	then	use	very	careful
detectors	that	can	see	very	dim	lights,	and	look	with	a	dim	light.	As	the
light	gets	dimmer	and	dimmer	you	cannot	expect	the	very	very	weak
light	to	affect	the	electron	so	completely	as	to	change	the	pattern	a
hundred	per	cent	from	N12	to	N1	+	N2.	As	the	light	gets	weaker	and

weaker,	somehow	it	should	get	more	and	more	like	no	light	at	all.	How
then	does	one	curve	turn	into	another?	But	of	course	light	is	not	like	a
wave	of	water.	Light	also	comes	in	particle-like	character,	called
photons,	and	as	you	turn	down	the	intensity	of	the	light	you	are	not
turning	down	the	effect,	you	are	turning	down	the	number	of	photons
that	are	coming	out	of	the	source.	As	I	turn	down	the	hght	I	am	getting
fewer	and	fewer	photons.	The	least	I	can	scatter	from	an	electron	is	one
photon,	and	if	I	have	too	few	photons	sometimes	the	electron	will	get
through	when	there	is	no	photon	coming	by,	in	which	case	I	will	not	see
it.	A	very	weak	light,	therefore,	does	not	mean	a	small	disturbance,	it
just	means	a	few	photons.	The	result	is	that	with	a	very	weak	light	I
have	to	invent	a	third	column	under	the	title	‘didn’t	see’.	When	the	light
is	very	strong	there	are	few	in	there,	and	when	the	light	is	very	weak



most	of	them	end	in	there.	So	there	are	three	columns,	hole	1,	hole	2,
and	didn’t	see.	You	can	guess	what	happens.	The	ones	I	do	see	are
distributed	according	to	the	curve	N1	+	N2.	The	ones	I	do	not	see	are

distributed	as	the	curve	N12.	As	I	turn	the	light	weaker	and	weaker	I	see

less	and	less	and	a	greater	and	greater	fraction	are	not	seen.	The	actual
curve	in	any	case	is	a	mixture	of	the	two	curves,	so	as	the	light	gets
weaker	it	gets	more	and	more	like	N12	in	a	continuous	fashion.

I	am	not	able	here	to	discuss	a	large	number	of	different	ways	which
you	might	suggest	to	find	out	which	hole	the	electron	went	through.	It
always	turns	out,	however,	that	it	is	impossible	to	arrange	the	light	in
any	way	so	that	you	can	tell	through	which	hole	the	thing	is	going
without	disturbing	the	pattern	of	arrival	of	the	electrons,	without
destroying	the	interference.	Not	only	light,	but	anything	else	–	whatever
you	use,	in	principle	it	is	impossible	to	do	it.	You	can,	if	you	want,
invent	many	ways	to	tell	which	hole	the	electron	is	going	through,	and
then	it	turns	out	that	it	is	going	through	one	or	the	other.	But	if	you	try
to	make	that	instrument	so	that	at	the	same	time	it	does	not	disturb	the
motion	of	the	electron,	then	what	happens	is	that	you	can	no	longer	tell
which	hole	it	goes	through	and	you	get	the	complicated	result	again.
Heisenberg	noticed,	when	he	discovered	the	laws	of	quantum

mechanics,	that	the	new	laws	of	nature	that	he	had	discovered	could
only	be	consistent	if	there	were	some	basic	limitation	to	our
experimental	abilities	that	had	not	been	previously	recognized.	In	other
words,	you	cannot	experimentally	be	as	delicate	as	you	wish.	Heisenberg
proposed	his	uncertainty	principle	which,	stated	in	terms	of	our	own
experiment,	is	the	following.	(He	stated	it	in	another	way,	but	they	are
exactly	equivalent,	and	you	can	get	from	one	to	the	other.)	‘It	is
impossible	to	design	any	apparatus	whatsoever	to	determine	through



impossible	to	design	any	apparatus	whatsoever	to	determine	through
which	hole	the	electron	passes	that	will	not	at	the	same	time	disturb	the
electron	enough	to	destroy	the	interference	pattern’.	No	one	has	found	a
way	around	this.	I	am	sure	you	are	itching	with	inventions	of	methods	of
detecting	which	hole	the	electron	went	through;	but	if	each	one	of	them
is	analysed	carefully	you	will	find	out	that	there	is	something	the	matter
with	it.	You	may	think	you	could	do	it	without	disturbing	the	electron,
but	it	turns	out	there	is	always	something	the	matter,	and	you	can
always	account	for	the	difference	in	the	patterns	by	the	disturbance	of
the	instruments	used	to	determine	through	which	hole	the	electron
comes.
This	is	a	basic	characteristic	of	nature,	and	tells	us	something	about

everything.	If	a	new	particle	is	found	tomorrow,	the	kaon	–	actually	the
kaon	has	already	been	found,	but	to	give	it	a	name	let	us	call	it	that	–
and	I	use	kaons	to	interact	with	electrons	to	determine	which	hole	the
electron	is	going	through,	I	already	know,	ahead	of	time	–	I	hope	–
enough	about	the	behaviour	of	a	new	particle	to	say	that	it	cannot	be	of
such	a	type	that	I	could	tell	through	which	hole	the	electron	would	go
without	at	the	same	time	producing	a	disturbance	on	the	electron	and
changing	the	pattern	from	interference	to	no	interference.	The
uncertainty	principle	can	therefore	be	used	as	a	general	principle	to
guess	ahead	at	many	of	the	characteristics	of	unknown	objects.	They	are
limited	in	their	likely	character.
Let	us	return	to	our	proposition	A	–	‘Electrons	must	go	either	through

one	hole	or	another’.	Is	it	true	or	not?	Physicists	have	a	way	of	avoiding
the	pitfalls	which	exist.	They	make	their	rules	of	thinking	as	follows.	If
you	have	an	apparatus	which	is	capable	of	telling	which	hole	the



electron	goes	through	(and	you	can	have	such	an	apparatus),	then	you
can	say	that	it	either	goes	through	one	hole	or	the	other.	It	does;	it
always	is	going	through	one	hole	or	the	other	–	when	you	look.	But
when	you	have	no	apparatus	to	determine	through	which	hole	the	thing
goes,	then	you	cannot	say	that	it	either	goes	through	one	hole	or	the
other.	(You	can	always	say	it	–	provided	you	stop	thinking	immediately
and	make	no	deductions	from	it.	Physicists	prefer	not	to	say	it,	rather
than	to	stop	thinking	at	the	moment.)	To	conclude	that	it	goes	either
through	one	hole	or	the	other	when	you	are	not	looking	is	to	produce	an
error	in	prediction.	That	is	the	logical	tight-rope	on	which	we	have	to
walk	if	we	wish	to	interpret	nature.
This	proposition	that	I	am	talking	about	is	general.	It	is	not	just	for

two	holes,	but	is	a	general	proposition	which	can	be	stated	this	way.	The
probability	of	any	event	in	an	ideal	experiment	–	that	is	just	an
experiment	in	which	everything	is	specified	as	well	as	it	can	be	–	is	the
square	of	something,	which	in	this	case	I	have	called	‘a’,	the	probability
amplitude.	When	an	event	can	occur	in	several	alternative	ways,	the
probability	amplitude,	this	‘a’	number,	is	the	sum	of	the	‘a’s	for	each	of
the	various	alternatives.	If	an	experiment	is	performed	which	is	capable
of	determining	which	alternative	is	taken,	the	probability	of	the	event	is
changed;	it	is	then	the	sum	of	the	probabilities	for	each	alternative.	That
is,	you	lose	the	interference.
The	question	now	is,	how	does	it	really	work?	What	machinery	is

actually	producing	this	thing?	Nobody	knows	any	machinery.	Nobody
can	give	you	a	deeper	explanation	of	this	phenomenon	than	I	have
given;	that	is,	a	description	of	it.	They	can	give	you	a	wider	explanation,
in	the	sense	that	they	can	do	more	examples	to	show	how	it	is
impossible	to	tell	which	hole	the	electron	goes	through	and	not	at	the



impossible	to	tell	which	hole	the	electron	goes	through	and	not	at	the
same	time	destroy	the	interference	pattern.	They	can	give	a	wider	class
of	experiments	than	just	the	two	slit	interference	experiment.	But	that	is
just	repeating	the	same	thing	to	drive	it	in.	It	is	not	any	deeper;	it	is	only
wider.	The	mathematics	can	be	made	more	precise;	you	can	mention
that	they	are	complex	numbers	instead	of	real	numbers,	and	a	couple	of
other	minor	points	which	have	nothing	to	do	with	the	main	idea.	But	the
deep	mystery	is	what	I	have	described,	and	no	one	can	go	any	deeper
today.
What	we	have	calculated	so	far	is	the	probability	of	arrival	of	an

electron.	The	question	is	whether	there	is	any	way	to	determine	where
an	individual	electron	really	arrives?	Of	course	we	are	not	averse	to
using	the	theory	of	probability,	that	is	calculating	odds,	when	a	situation
is	very	complicated.	We	throw	up	a	dice	into	the	air,	and	with	the
various	resistances,	and	atoms,	and	all	the	complicated	business,	we	are
perfectly	willing	to	allow	that	we	do	not	know	enough	details	to	make	a
definite	prediction;	so	we	calculate	the	odds	that	the	thing	will	come	this
way	or	that	way.	But	here	what	we	are	proposing,	is	it	not,	is	that	there
is	probability	all	the	way	back:	that	in	the	fundamental	laws	of	physics
there	are	odds.
Suppose	that	I	have	an	experiment	so	set	up	that	with	the	light	out	I

get	the	interference	situation.	Then	I	say	that	even	with	the	hght	on	I
cannot	predict	through	which	hole	an	electron	will	go.	I	only	know	that
each	time	I	look	it	will	be	one	hole	or	the	other;	there	is	no	way	to
predict	ahead	of	time	which	hole	it	will	be.	The	future,	in	other	words,	is
unpredictable.	It	is	impossible	to	predict	in	any	way,	from	any
information	ahead	of	time,	through	which	hole	the	thing	will	go,	or



which	hole	it	will	be	seen	behind.	That	means	that	physics	has,	in	a	way,
given	up,	if	the	original	purpose	was	–	and	everybody	thought	it	was	–
to	know	enough	so	that	given	the	circumstances	we	can	predict	what
will	happen	next.	Here	are	the	circumstances:	electron	source,	strong
light	source,	tungsten	plate	with	two	holes:	tell	me,	behind	which	hole
shall	I	see	the	electron?	One	theory	is	that	the	reason	you	cannot	tell
through	which	hole	you	are	going	to	see	the	electron	is	that	it	is
determined	by	some	very	complicated	things	back	at	the	source:	it	has
internal	wheels,	internal	gears,	and	so	forth,	to	determine	which	hole	it
goes	through;	it	is	fifty-fifty	probability,	because,	like	a	die,	it	is	set	at
random;	physics	is	incomplete,	and	if	we	get	a	complete	enough	physics
then	we	shall	be	able	to	predict	through	which	hole	it	goes.	That	is
called	the	hidden	variable	theory.	That	theory	cannot	be	true;	it	is	not
due	to	lack	of	detailed	knowledge	that	we	cannot	make	a	prediction.
I	said	that	if	I	did	not	turn	on	the	light	I	should	get	the	interference

pattern.	If	I	have	a	circumstance	in	which	I	get	that	interference	pattern,
then	it	is	impossible	to	analyse	it	in	terms	of	saying	it	goes	through	hole
1	or	hole	2,	because	that	interference	curve	is	so	simple,	mathematically
a	completely	different	thing	from	the	contribution	of	the	two	other
curves	as	probabilities.	If	it	had	been	possible	for	us	to	determine
through	which	hole	the	electron	was	going	to	go	if	we	had	the	light	on,
then	whether	we	have	the	light	on	or	off	is	nothing	to	do	with	it.
Whatever	gears	there	are	at	the	source,	which	we	observed,	and	which
permitted	us	to	tell	whether	the	thing	was	going	to	go	through	1	or	2,
we	could	have	observed	with	the	light	off,	and	therefore	we	could	have
told	with	the	light	off	through	which	hole	each	electron	was	going	to	go.
But	if	we	could	do	this,	the	resulting	curve	would	have	to	be	represented



as	the	sum	of	those	that	go	through	hole	1	and	those	that	go	through
hole	2,	and	it	is	not.	It	must	then	be	impossible	to	have	any	information
ahead	of	time	about	which	hole	the	electron	is	going	to	go	through,
whether	the	light	is	on	or	off,	in	any	circumstance	when	the	experiment
is	set	up	so	that	it	can	produce	the	interference	with	the	light	off.	It	is
not	our	ignorance	of	the	internal	gears,	of	the	internal	complications,
that	makes	nature	appear	to	have	probability	in	it.	It	seems	to	be
somehow	intrinsic.	Someone	has	said	it	this	way	–	‘Nature	herself	does
not	even	know	which	way	the	electron	is	going	to	go’.
A	philosopher	once	said	‘It	is	necessary	for	the	very	existence	of

science	that	the	same	conditions	always	produce	the	same	results’.	Well,
they	do	not.	You	set	up	the	circumstances,	with	the	same	conditions
every	time,	and	you	cannot	predict	behind	which	hole	you	will	see	the
electron.	Yet	science	goes	on	in	spite	of	it	–	although	the	same
conditions	do	not	always	produce	the	same	results.	That	makes	us
unhappy,	that	we	cannot	predict	exactly	what	will	happen.	Incidentally,
you	could	think	up	a	circumstance	in	which	it	is	very	dangerous	and
serious,	and	man	must	know,	and	still	you	cannot	predict.	For	instance
we	could	cook	up	–	we’d	better	not,	but	we	could	–	a	scheme	by	which
we	set	up	a	photo	cell,	and	one	electron	to	go	through,	and	if	we	see	it
behind	hole	No.	1	we	set	off	the	atomic	bomb	and	start	World	War	III,
whereas	if	we	see	it	behind	hole	No.	2	we	make	peace	feelers	and	delay
the	war	a	little	longer.	Then	the	future	of	man	would	be	dependent	on
something	which	no	amount	of	science	can	predict.	The	future	is
unpredictable.
What	is	necessary	‘for	the	very	existence	of	science’,	and	what	the

characteristics	of	nature	are,	are	not	to	be	determined	by	pompous



preconditions,	they	are	determined	always	by	the	material	with	which
we	work,	by	nature	herself.	We	look,	and	we	see	what	we	find,	and	we
cannot	say	ahead	of	time	successfully	what	it	is	going	to	look	like.	The
most	reasonable	possibilities	often	turn	out	not	to	be	the	situation.	If
science	is	to	progress,	what	we	need	is	the	ability	to	experiment,	honesty
in	reporting	results	–	the	results	must	be	reported	without	somebody
saying	what	they	would	like	the	results	to	have	been	–	and	finally	–	an
important	thing	–	the	intelligence	to	interpret	the	results.	An	important
point	about	this	intelligence	is	that	it	should	not	be	sure	ahead	of	time
what	must	be.	It	can	be	prejudiced,	and	say	‘That	is	very	unlikely;	I	don’t
like	that’.	Prejudice	is	different	from	absolute	certainty.	I	do	not	mean
absolute	prejudice	–	just	bias.	As	long	as	you	are	only	biased	it	does	not
make	any	difference,	because	if	your	bias	is	wrong	a	perpetual
accumulation	of	experiments	will	perpetually	annoy	you	until	they
cannot	be	disregarded	any	longer.	They	can	only	be	disregarded	if	you
are	absolutely	sure	ahead	of	time	of	some	precondition	that	science	has
to	have.	In	fact	it	is	necessary	for	the	very	existence	of	science	that
minds	exist	which	do	not	allow	that	nature	must	satisfy	some
preconceived	conditions,	like	those	of	our	philosopher.



7
Seeking	New	Laws

What	I	want	to	talk	about	in	this	lecture	is	not,	strictly	speaking,	the
character	of	physical	law.	One	might	imagine	at	least	that	one	is	talking
about	nature	when	one	is	talking	about	the	character	of	physical	law;
but	I	do	not	want	to	talk	about	nature,	but	rather	about	how	we	stand
relative	to	nature	now.	I	want	to	tell	you	what	we	think	we	know,	what
there	is	to	guess,	and	how	one	goes	about	guessing.	Someone	suggested
that	it	would	be	ideal	if,	as	I	went	along,	I	would	slowly	explain	how	to
guess	a	law,	and	then	end	by	creating	a	new	law	for	you.	I	do	not	know
whether	I	shall	be	able	to	do	that.
First	I	want	to	tell	you	what	the	present	situation	is,	what	it	is	that

we	know	about	physics.	You	may	think	that	I	have	told	you	everything
already,	because	in	the	lectures	I	have	told	you	all	the	great	principles
that	are	known.	But	the	principles	must	be	principles	about	something;
the	principle	of	the	conservation	of	energy	relates	to	the	energy	of
something,	and	the	quantum	mechanical	laws	are	quantum	mechanical
laws	about	something	–	and	all	these	principles	added	together	still	do
not	tell	us	what	the	content	is	of	the	nature	that	we	are	talking	about.	I
will	tell	you	a	little,	then,	about	the	stuff	on	which	all	of	these	principles
are	supposed	to	have	been	working.
First	of	all	there	is	matter	–	and,	remarkably	enough,	all	matter	is	the

same.	The	matter	of	which	the	stars	are	made	is	known	to	be	the	same	as
the	matter	on	the	earth.	The	character	of	the	light	that	is	emitted	by
those	stars	gives	a	kind	of	fingerprint	by	which	we	can	tell	that	there	are



the	same	kinds	of	atoms	there	as	on	the	earth.	The	same	kinds	of	atoms

appear	to	be	in	living	creatures	as	in	non-living	creatures;	frogs	are	made
of	the	same	‘goup’	as	rocks,	only	in	different	arrangements.	So	that
makes	our	problem	simpler;	we	have	nothing	but	atoms,	all	the	same,
everywhere.
The	atoms	all	seem	to	be	made	from	the	same	general	constitution.

They	have	a	nucleus,	and	around	the	nucleus	there	are	electrons.	We	can
make	a	list	of	the	parts	of	the	world	that	we	think	we	know	about	(fig.
32).

Figure	32

First	there	are	the	electrons,	which	are	the	particles	on	the	outside	of	the
atom.	Then	there	are	the	nuclei;	but	those	are	understood	today	as	being
themselves	made	up	of	two	other	things	which	are	called	neutrons	and
protons	–	two	particles.	We	have	to	see	the	stars,	and	see	the	atoms,	and
they	emit	light,	and	the	light	itself	is	described	by	particles	which	are
called	photons.	In	the	beginning	we	spoke	about	gravitation;	and	if	the
quantum	theory	is	right,	then	the	gravitation	should	have	some	kind	of
waves	which	behave	like	particles	too,	and	these	are	called	gravitons.	If
you	do	not	believe	in	that,	just	call	it	gravity.	Finally,	I	did	mention
what	is	called	beta-decay,	in	which	a	neutron	can	disintegrate	into	a
proton,	an	electron	and	a	neutrino	–	or	really	an	anti-neutrino;	there	is
another	particle,	a	neutrino.	In	addition	to	all	the	particles	I	have	listed



another	particle,	a	neutrino.	In	addition	to	all	the	particles	I	have	listed
there	are	of	course	all	the	anti-particles;	that	is	just	a	quick	statement
that	takes	care	of	doubling	the	number	of	particles	but	there	is	no
complication.
With	these	particles	that	I	have	listed,	all	of	the	low	energy

phenomena,	in	fact	all	ordinary	phenomena	that	happen	everywhere	in
the	Universe,	so	far	as	we	know,	can	be	explained.	There	are	exceptions,
when	here	and	there	some	very	high	energy	particle	does	something,
and	in	the	laboratory	we	have	been	able	to	do	some	peculiar	things.	But
if	we	leave	out	these	special	cases,	all	ordinary	phenomena	can	be
explained	by	the	actions	and	the	motions	of	particles.	For	example,	life
itself	is	supposedly	understandable	in	principle	from	the	movements	of
atoms,	and	those	atoms	are	made	out	of	neutrons,	protons	and	electrons.
I	must	immediately	say	that	when	we	state	that	we	understand	it	in
principle,	we	only	mean	that	we	think	that,	if	we	could	figure	everything
out,	we	would	find	that	there	is	nothing	new	in	physics	which	needs	to
be	discovered	in	order	to	understand	the	phenomena	of	life.	Another
instance,	the	fact	that	the	stars	emit	energy,	solar	energy	or	stellar
energy,	is	presumably	also	understood	in	terms	of	nuclear	reactions
among	these	particles.	All	kinds	of	details	of	the	way	atoms	behave	are
accurately	described	with	this	kind	of	model,	at	least	as	far	as	we	know
at	present.	In	fact,	I	can	say	that	in	the	range	of	phenomena	today,	so	far
as	I	know	there	are	no	phenomena	that	we	are	sure	cannot	be	explained
this	way,	or	even	that	there	is	deep	mystery	about.
This	was	not	always	possible.	There	is,	for	instance,	a	phenomenon

called	super-conductivity,	which	means	that	metals	conduct	electricity
without	resistance	at	low	temperatures.	It	was	not	at	first	obvious	that
this	was	a	consequence	of	the	known	laws.	Now	that	it	has	been	thought



through	carefully	enough,	it	is	seen	in	fact	to	be	fully	explainable	in
terms	of	our	present	knowledge.	There	are	other	phenomena,	such	as
extra-sensory	perception,	which	cannot	be	explained	by	our	knowledge
of	physics.	However,	that	phenomenon	has	not	been	well	established,
and	we	cannot	guarantee	that	it	is	there.	If	it	could	be	demonstrated,	of
course,	that	would	prove	that	physics	is	incomplete,	and	it	is	therefore
extremely	interesting	to	physicists	whether	it	is	right	or	wrong.	Many
experiments	exist	which	show	that	it	does	not	work.	The	same	goes	for
astrological	influences.	If	it	were	true	that	the	stars	could	affect	the	day
that	it	was	good	to	go	to	the	dentist	–	in	America	we	have	that	kind	of
astrology	–	then	physics	theory	would	be	proved	wrong,	because	there	is
no	mechanism	understandable	in	principle	from	the	behaviour	of
particles	which	would	make	this	work.	That	is	the	reason	that	there	is
some	scepticism	among	scientists	with	regard	to	those	ideas.
On	the	other	hand,	in	the	case	of	hypnotism,	at	first	it	looked	as

though	that	also	would	be	impossible,	when	it	was	described
incompletely.	Now	that	it	is	known	better	it	is	realized	that	it	is	not
absolutely	impossible	that	hypnosis	could	occur	through	normal
physiological,	though	as	yet	unknown,	processes;	it	does	not	obviously
require	some	special	new	kind	of	force.
Today,	although	our	theory	of	what	goes	on	outside	the	nucleus	of

the	atom	seems	precise	and	complete	enough,	in	the	sense	that	given
enough	time	we	can	calculate	anything	as	accurately	as	it	can	be
measured,	it	turns	out	that	the	forces	between	neutrons	and	protons,
which	constitute	the	nucleus,	are	not	so	completely	known,	and	are	not
understood	at	all	well.	What	I	mean	is	that	we	do	not	today	understand
the	forces	between	neutrons	and	protons	to	the	extent	that	if	you	wanted
me	to,	and	gave	me	enough	time	and	computers,	I	could	calculate



me	to,	and	gave	me	enough	time	and	computers,	I	could	calculate
exactly	the	energy	levels	of	carbons,	or	something	like	that.	We	do	not
know	enough.	Although	we	can	do	the	corresponding	thing	for	the
energy	levels	of	the	outside	electrons	of	the	atom,	we	cannot	for	the
nucleus,	since	the	nuclear	forces	are	still	not	understood	very	well.
In	order	to	find	out	more	about	this,	experimenters	have	gone	on	to

study	phenomena	at	very	high	energy.	They	hit	neutrons	and	protons
together	at	very	high	energy	to	produce	peculiar	things,	and	by	studying
these	peculiar	things	we	hope	to	understand	better	the	forces	between
neutrons	and	protons.	Pandora’s	box	has	been	opened	by	these
experiments!	Although	all	we	really	wanted	was	to	get	a	better	idea	of
the	forces	between	neutrons	and	protons,	when	we	hit	these	things
together	hard	we	discovered	that	there	are	more	particles	in	the	world.
In	fact	more	than	four	dozen	other	particles	have	been	dredged	up	in	an
attempt	to	understand	these	forces;	we	will	put	these	four	dozen	others
into	the	neutron/proton	column	(fig.	33),	because	they	interact	with
neutrons	and	protons,	and	have	something	to	do	with	the	forces	between
them.	In	addition	to	that,	while	the	dredge	was	digging	up	all	this	mud	it
picked	up	a	couple	of	pieces	that	are	irrelevant	to	the	problem	of	nuclear
forces.	One	of	them	is	called	a	mu	meson,	or	muon,	and	the	other	is	a
neutrino	which	goes	with	it.	There	are	two	kinds	of	neutrino,	one	which
goes	with	the	electron	and	one	which	goes	with	the	mu	meson.
Incidentally,	most	amazingly,	all	the	laws	of	the	muon	and	its	neutrino
are	now	known,	as	far	as	we	can	tell	experimentally,	and	the	law	is	that
they	behave	in	precisely	the	same	way	as	the	electron	and	its	neutrino,
except	that	the	mass	of	the	mu	meson	is	207	times	heavier	than	the
electron;	but	that	is	the	only	difference	known	between	those	objects,



which	is	rather	curious.	Four	dozen	other	particles	is	a	frightening	array
–	plus	the	anti-particles.	They	have	various	names,	mesons,	pions,	kaons,
lambda,	sigma…	it	does	not	make	any	difference…	with	four	dozen
particles	there	are	going	to	be	a	lot	of	names!	But	it	turns	out	that	these
particles	come	in	families,	which	helps	us	a	little.	Actually	some	of	these
so-called	particles	last	such	a	short	time	that	there	are	debates	about
whether	it	is	in	fact	possible	to	define	their	very	existence,	but	I	will	not
enter	into	that	debate.

Figure	33

In	order	to	illustrate	the	family	idea,	I	will	take	the	cases	of	a	neutron
and	a	proton.	The	neutron	and	the	proton	have	the	same	mass,	within	a
tenth	of	a	per	cent	or	so.	One	is	1,836,	the	other	1,839	times	as	heavy	as
an	electron.	More	remarkable	is	the	fact	that	for	the	nuclear	forces,	the
strong	forces	inside	the	nucleus,	the	force	between	two	protons	is	the
same	as	between	a	proton	and	a	neutron,	and	is	the	same	again	between
a	neutron	and	a	neutron.	In	other	words,	from	the	strong	nuclear	forces
you	cannot	tell	a	proton	from	a	neutron.	So	it	is	a	symmetry	law;
neutrons	may	be	substituted	for	protons	without	changing	anything	–
provided	you	are	only	talking	about	the	strong	forces.	But	if	you	change
a	neutron	for	a	proton	you	have	a	terrific	difference,	because	the	proton



carries	an	electrical	charge	and	the	neutron	does	not.	By	electrical
measurement	you	can	immediately	see	the	difference	between	a	proton
and	a	neutron,	so	this	symmetry,	that	you	can	replace	one	by	the	other,
is	what	we	call	an	approximate	symmetry.	It	is	right	for	the	strong
interactions	of	nuclear	forces,	but	it	is	not	right	in	any	deep	sense	of
nature,	because	it	does	not	work	for	electricity.	This	is	called	a	partial
symmetry,	and	we	have	to	struggle	with	these	partial	symmetries.
Now	that	the	families	have	been	extended,	it	turns	out	that

substitutions	of	the	type	of	neutron	for	proton	can	be	extended	over	a
wider	range	of	particles.	But	the	accuracy	is	still	lower.	The	statement
that	neutrons	can	always	be	substituted	for	protons	is	only	approximate
–	it	is	not	true	for	electricity	–	but	the	wider	substitutions	which	have
been	found	possible	give	a	still	poorer	symmetry.	However,	these	partial
symmetries	have	helped	to	gather	the	particles	into	families	and	thus	to
locate	places	where	particles	are	missing	and	to	help	to	discover	new
ones.
This	kind	of	game,	of	roughly	guessing	at	family	relationships	and	so

on,	is	illustrative	of	the	kind	of	preliminary	sparring	which	one	does
with	nature	before	really	discovering	some	deep	and	fundamental	law.
Examples	are	very	important	in	the	previous	history	of	science.	For
instance,	Mendeleev’s*	discovery	of	the	periodic	table	of	the	elements	is
analogous	to	this	game.	It	is	the	first	step;	but	the	complete	description
of	the	reason	for	the	atomic	table	came	much	later,	with	atomic	theory.
In	the	same	way,	organization	of	the	knowledge	of	nuclear	levels	was
made	by	Maria	Mayer	and	Jensen†	in	what	they	called	the	shell	model
of	nuclei	some	years	ago.	Physics	is	in	an	analogous	game,	in	which	a
reduction	of	the	complexity	is	made	by	some	approximate	guesses.
In	addition	to	these	particles	we	have	all	the	principles	that	we	were



In	addition	to	these	particles	we	have	all	the	principles	that	we	were
talking	about	before,	the	principles	of	symmetry,	of	relativity,	and	that
things	must	behave	quantum	mechanically;	and,	combining	that	with
relativity,	that	all	conservation	laws	must	be	local.
If	we	put	all	these	principles	together,	we	discover	that	there	are	too

many.	They	are	inconsistent	with	each	other.	It	seems	that	if	we	take
quantum	mechanics,	plus	relativity,	plus	the	proposition	that	everything
has	to	be	local,	plus	a	number	of	tacit	assumptions,	we	get	inconsistency,
because	we	get	infinity	for	various	things	when	we	calculate	them,	and	if
we	get	infinity	how	can	we	ever	say	that	this	agrees	with	nature?	An
example	of	these	tacit	assumptions	which	I	mentioned,	about	which	we
are	too	prejudiced	to	understand	the	real	significance,	is	such	a
proposition	as	the	following.	If	you	calculate	the	chance	for	every
possibility	–	say	it	is	50%	probability	this	will	happen,	25%	that	will
happen,	etc.,	it	should	add	up	to	1.	We	think	that	if	you	add	all	the
alternatives	you	should	get	100%	probability.	That	seems	reasonable,
but	reasonable	things	are	where	the	trouble	always	is.	Another	such
proposition	is	that	the	energy	of	something	must	always	be	positive	–	it
cannot	be	negative.	Another	proposition	which	is	probably	added	in
before	we	get	inconsistency	is	what	is	called	causality,	which	is
something	like	the	idea	that	effects	cannot	precede	their	causes.	Actually
no	one	has	made	a	model	in	which	you	disregard	the	proposition	about
the	probability,	or	you	disregard	the	causality,	which	is	also	consistent
with	quantum	mechanics,	relativity,	locality	and	so	on.	So	we	really	do
not	know	exactly	what	it	is	that	we	are	assuming	that	gives	us	the
difficulty	producing	infinities.	A	nice	problem!	However,	it	turns	out
that	it	is	possible	to	sweep	the	infinities	under	the	rug,	by	a	certain



crude	skill,	and	temporarily	we	are	able	to	keep	on	calculating.
O.K.,	that	is	the	present	situation.	Now	I	am	going	to	discuss	how	we

would	look	for	a	new	law.
In	general	we	look	for	a	new	law	by	the	following	process.	First	we

guess	it.	Then	we	compute	the	consequences	of	the	guess	to	see	what
would	be	implied	if	this	law	that	we	guessed	is	right.	Then	we	compare
the	result	of	the	computation	to	nature,	with	experiment	or	experience,
compare	it	directly	with	observation,	to	see	if	it	works.	If	it	disagrees
with	experiment	it	is	wrong.	In	that	simple	statement	is	the	key	to
science.	It	does	not	make	any	difference	how	beautiful	your	guess	is.	It
does	not	make	any	difference	how	smart	you	are,	who	made	the	guess,
or	what	his	name	is	–	if	it	disagrees	with	experiment	it	is	wrong.	That	is
all	there	is	to	it.	It	is	true	that	one	has	to	check	a	little	to	make	sure	that
it	is	wrong,	because	whoever	did	the	experiment	may	have	reported
incorrectly,	or	there	may	have	been	some	feature	in	the	experiment	that
was	not	noticed,	some	dirt	or	something;	or	the	man	who	computed	the
consequences,	even	though	it	may	have	been	the	one	who	made	the
guesses,	could	have	made	some	mistake	in	the	analysis.	These	are
obvious	remarks,	so	when	I	say	if	it	disagrees	with	experiment	it	is
wrong,	I	mean	after	the	experiment	has	been	checked,	the	calculations
have	been	checked,	and	the	thing	has	been	rubbed	back	and	forth	a	few
times	to	make	sure	that	the	consequences	are	logical	consequences	from
the	guess,	and	that	in	fact	it	disagrees	with	a	very	carefully	checked
experiment.
This	will	give	you	a	somewhat	wrong	impression	of	science.	It

suggests	that	we	keep	on	guessing	possibilities	and	comparing	them	with
experiment,	and	this	is	to	put	experiment	into	a	rather	weak	position.	In
fact	experimenters	have	a	certain	individual	character.	They	like	to	do



fact	experimenters	have	a	certain	individual	character.	They	like	to	do
experiments	even	if	nobody	has	guessed	yet,	and	they	very	often	do	their
experiments	in	a	region	in	which	people	know	the	theorist	has	not	made
any	guesses.	For	instance,	we	may	know	a	great	many	laws,	but	do	not
know	whether	they	really	work	at	high	energy,	because	it	is	just	a	good
guess	that	they	work	at	high	energy.	Experimenters	have	tried
experiments	at	higher	energy,	and	in	fact	every	once	in	a	while
experiment	produces	trouble;	that	is,	it	produces	a	discovery	that	one	of
the	things	we	thought	right	is	wrong.	In	this	way	experiment	can
produce	unexpected	results,	and	that	starts	us	guessing	again.	One
instance	of	an	unexpected	result	is	the	mu	meson	and	its	neutrino,	which
was	not	guessed	by	anybody	at	all	before	it	was	discovered,	and	even
today	nobody	yet	has	any	method	of	guessing	by	which	this	would	be	a
natural	result.
You	can	see,	of	course,	that	with	this	method	we	can	attempt	to

disprove	any	definite	theory.	If	we	have	a	definite	theory,	a	real	guess,
from	which	we	can	conveniently	compute	consequences	which	can	be
compared	with	experiment,	then	in	principle	we	can	get	rid	of	any
theory.	There	is	always	the	possibility	of	proving	any	definite	theory
wrong;	but	notice	that	we	can	never	prove	it	right.	Suppose	that	you
invent	a	good	guess,	calculate	the	consequences,	and	discover	every	time
that	the	consequences	you	have	calculated	agree	with	experiment.	The
theory	is	then	right?	No,	it	is	simply	not	proved	wrong.	In	the	future	you
could	compute	a	wider	range	of	consequences,	there	could	be	a	wider
range	of	experiments,	and	you	might	then	discover	that	the	thing	is
wrong.	That	is	why	laws	like	Newton’s	laws	for	the	motion	of	planets
last	such	a	long	time.	He	guessed	the	law	of	gravitation,	calculated	all



kinds	of	consequences	for	the	system	and	so	on,	compared	them	with
experiment	–	and	it	took	several	hundred	years	before	the	slight	error	of
the	motion	of	Mercury	was	observed.	During	all	that	time	the	theory	had
not	been	proved	wrong,	and	could	be	taken	temporarily	to	be	right.	But
it	could	never	be	proved	right,	because	tomorrow’s	experiment	might
succeed	in	proving	wrong	what	you	thought	was	right.	We	never	are
definitely	right,	we	can	only	be	sure	we	are	wrong.	However,	it	is	rather
remarkable	how	we	can	have	some	ideas	which	will	last	so	long.
One	of	the	ways	of	stopping	science	would	be	only	to	do	experiments

in	the	region	where	you	know	the	law.	But	experimenters	search	most
diligently,	and	with	the	greatest	effort,	in	exactly	those	places	where	it
seems	most	likely	that	we	can	prove	our	theories	wrong.	In	other	words
we	are	trying	to	prove	ourselves	wrong	as	quickly	as	possible,	because
only	in	that	way	can	we	find	progress.	For	example,	today	among
ordinary	low	energy	phenomena	we	do	not	know	where	to	look	for
trouble,	we	think	everything	is	all	right,	and	so	there	is	no	particular	big
programme	looking	for	trouble	in	nuclear	reactions,	or	in	super-
conductivity.	In	these	lectures	I	am	concentrating	on	discovering
fundamental	laws.	The	whole	range	of	physics,	which	is	interesting,
includes	also	an	understanding	at	another	level	of	these	phenomena	like
super-conductivity	and	nuclear	reactions,	in	terms	of	the	fundamental
laws.	But	I	am	talking	now	about	discovering	trouble,	something	wrong
with	the	fundamental	laws,	and	since	among	low	energy	phenomena
nobody	knows	where	to	look,	all	the	experiments	today	in	this	field	of
finding	out	a	new	law,	are	of	high	energy.
Another	thing	I	must	point	out	is	that	you	cannot	prove	a	vague

theory	wrong.	If	the	guess	that	you	make	is	poorly	expressed	and	rather



vague,	and	the	method	that	you	use	for	figuring	out	the	consequences	is
a	little	vague	–	you	are	not	sure,	and	you	say,	‘I	think	everything’s	right
because	it’s	all	due	to	so	and	so,	and	such	and	such	do	this	and	that
more	or	less,	and	I	can	sort	of	explain	how	this	works…’,	then	you	see
that	this	theory	is	good,	because	it	cannot	be	proved	wrong!	Also	if	the
process	of	computing	the	consequences	is	indefinite,	then	with	a	little
skill	any	experimental	results	can	be	made	to	look	like	the	expected
consequences.	You	are	probably	familiar	with	that	in	other	fields.	‘A’
hates	his	mother.	The	reason	is,	of	course,	because	she	did	not	caress
him	or	love	him	enough	when	he	was	a	child.	But	if	you	investigate	you
find	out	that	as	a	matter	of	fact	she	did	love	him	very	much,	and
everything	was	all	right.	Well	then,	it	was	because	she	was	over-
indulgent	when	he	was	a	child!	By	having	a	vague	theory	it	is	possible	to
get	either	result.	The	cure	for	this	one	is	the	following.	If	it	were	possible
to	state	exactly,	ahead	of	time,	how	much	love	is	not	enough,	and	how
much	love	is	over-indulgent,	then	there	would	be	a	perfectly	legitimate
theory	against	which	you	could	make	tests.	It	is	usually	said	when	this	is
pointed	out,	‘When	you	are	dealing	with	psychological	matters	things
can’t	be	defined	so	precisely’.	Yes,	but	then	you	cannot	claim	to	know
anything	about	it.
You	will	be	horrified	to	hear	that	we	have	examples	in	physics	of

exactly	the	same	kind.	We	have	these	approximate	symmetries,	which
work	something	like	this.	You	have	an	approximate	symmetry,	so	you
calculate	a	set	of	consequences	supposing	it	to	be	perfect.	When
compared	with	experiment,	it	does	not	agree.	Of	course	–	the	symmetry
you	are	supposed	to	expect	is	approximate,	so	if	the	agreement	is	pretty
good	you	say,	‘Nice!’,	while	if	the	agreement	is	very	poor	you	say,	‘Well,



this	particular	thing	must	be	especially	sensitive	to	the	failure	of	the
symmetry’.	Now	you	may	laugh,	but	we	have	to	make	progress	in	that
way.	When	a	subject	is	first	new,	and	these	particles	are	new	to	us,	this
jockeying	around,	this	‘feeling’	way	of	guessing	at	the	results,	is	the
beginning	of	any	science.	The	same	thing	is	true	of	the	symmetry
proposition	in	physics	as	is	true	of	psychology,	so	do	not	laugh	too	hard.
It	is	necessary	in	the	beginning	to	be	very	careful.	It	is	easy	to	fall	into
the	deep	end	by	this	kind	of	vague	theory.	It	is	hard	to	prove	it	wrong,
and	it	takes	a	certain	skill	and	experience	not	to	walk	off	the	plank	in
the	game.
In	this	process	of	guessing,	computing	consequences,	and	comparing

with	experiment,	we	can	get	stuck	at	various	stages.	We	may	get	stuck	in
the	guessing	stage,	when	we	have	no	ideas.	Or	we	may	get	stuck	in	the
computing	stage.	For	example,	Yukawa*	guessed	an	idea	for	the	nuclear
forces	in	1934,	but	nobody	could	compute	the	consequences	because	the
mathematics	was	too	difficult,	and	so	they	could	not	compare	his	idea
with	experiment.	The	theories	remained	for	a	long	time,	until	we
discovered	all	these	extra	particles	which	were	not	contemplated	by
Yukawa,	and	therefore	it	is	undoubtedly	not	as	simple	as	the	way
Yukawa	did	it.	Another	place	where	you	can	get	stuck	is	at	the
experimental	end.	For	example,	the	quantum	theory	of	gravitation	is
going	very	slowly,	if	at	all,	because	all	the	experiments	that	you	can	do
never	involve	quantum	mechanics	and	gravitation	at	the	same	time.	The
gravity	force	is	too	weak	compared	with	the	electrical	force.
Because	I	am	a	theoretical	physicist,	and	more	delighted	with	this

end	of	the	problem,	I	want	now	to	concentrate	on	how	you	make	the
guesses.
As	I	said	before,	it	is	not	of	any	importance	where	the	guess	comes



As	I	said	before,	it	is	not	of	any	importance	where	the	guess	comes
from;	it	is	only	important	that	it	should	agree	with	experiment,	and	that
it	should	be	as	definite	as	possible.	Then’,	you	say,	‘that	is	very	simple.
You	set	up	a	machine,	a	great	computing	machine,	which	has	a	random
wheel	in	it	that	makes	a	succession	of	guesses,	and	each	time	it	guesses	a
hypothesis	about	how	nature	should	work	it	computes	immediately	the
consequences,	and	makes	a	comparison	with	a	list	of	experimental
results	it	has	at	the	other	end’.	In	other	words,	guessing	is	a	dumb	man’s
job.	Actually	it	is	quite	the	opposite,	and	I	will	try	to	explain	why.
The	first	problem	is	how	to	start.	You	say,	‘Well	I’d	start	off	with	all

the	known	principles’.	But	all	the	principles	that	are	known	are
inconsistent	with	each	other,	so	something	has	to	be	removed.	We	get	a
lot	of	letters	from	people	insisting	that	we	ought	to	makes	holes	in	our
guesses.	You	see,	you	make	a	hole,	to	make	room	for	a	new	guess.
Somebody	says,	‘You	know,	you	people	always	say	that	space	is
continuous.	How	do	you	know	when	you	get	to	a	small	enough
dimension	that	there	really	are	enough	points	in	between,	that	it	isn’t
just	a	lot	of	dots	separated	by	little	distances?’	Or	they	say,	‘You	know
those	quantum	mechanical	amplitudes	you	told	me	about,	they’re	so
complicated	and	absurd,	what	makes	you	think	those	are	right?	Maybe
they	aren’t	right’.	Such	remarks	are	obvious	and	are	perfectly	clear	to
anybody	who	is	working	on	this	problem.	It	does	not	do	any	good	to
point	this	out.	The	problem	is	not	only	what	might	be	wrong	but	what,
precisely,	might	be	substituted	in	place	of	it.	In	the	case	of	the
continuous	space,	suppose	the	precise	proposition	is	that	space	really
consists	of	a	series	of	dots,	and	that	the	space	between	them	does	not
mean	anything,	and	that	the	dots	are	in	a	cubic	array.	Then	we	can



prove	immediately	that	this	is	wrong.	It	does	not	work.	The	problem	is
not	just	to	say	something	might	be	wrong,	but	to	replace	it	by	something
–	and	that	is	not	so	easy.	As	soon	as	any	really	definite	idea	is
substituted	it	becomes	almost	immediately	apparent	that	it	does	not
work.
The	second	difficulty	is	that	there	is	an	infinite	number	of

possibilities	of	these	simple	types.	It	is	something	like	this.	You	are
sitting	working	very	hard,	you	have	worked	for	a	long	time	trying	to
open	a	safe.	Then	some	Joe	comes	along	who	knows	nothing	about	what
you	are	doing,	except	that	you	are	trying	to	open	the	safe.	He	says	‘Why
don’t	you	try	the	combination	10:20:30?’	Because	you	are	busy,	you
have	tried	a	lot	of	things,	maybe	you	have	already	tried	10:20:30.	Maybe
you	know	already	that	the	middle	number	is	32	not	20.	Maybe	you
know	as	a	matter	of	fact	that	it	is	a	five	digit	combination….	So	please
do	not	send	me	any	letters	trying	to	tell	me	how	the	thing	is	going	to
work.	I	read	them	–	I	always	read	them	to	make	sure	that	I	have	not
already	thought	of	what	is	suggested	–	but	it	takes	too	long	to	answer
them,	because	they	are	usually	in	the	class	‘try	10:20:30’.	As	usual,
nature’s	imagination	far	surpasses	our	own,	as	we	have	seen	from	the
other	theories	which	are	subtle	and	deep.	To	get	such	a	subtle	and	deep
guess	is	not	so	easy.	One	must	be	really	clever	to	guess,	and	it	is	not
possible	to	do	it	blindly	by	machine.
I	want	to	discuss	now	the	art	of	guessing	nature’s	laws.	It	is	an	art.

How	is	it	done?	One	way	you	might	suggest	is	to	look	at	history	to	see
how	the	other	guys	did	it.	So	we	look	at	history.
We	must	start	with	Newton.	He	had	a	situation	where	he	had

incomplete	knowledge,	and	he	was	able	to	guess	the	laws	by	putting
together	ideas	which	were	all	relatively	close	to	experiment;	there	was



together	ideas	which	were	all	relatively	close	to	experiment;	there	was
not	a	great	distance	between	the	observations	and	the	tests.	That	was	the
first	way,	but	today	it	does	not	work	so	well.
The	next	guy	who	did	something	great	was	Maxwell,	who	obtained

the	laws	of	electricity	and	magnetism.	What	he	did	was	this.	He	put
together	all	the	laws	of	electricity,	due	to	Faraday	and	other	people	who
came	before	him,	and	he	looked	at	them	and	realized	that	they	were
mathematically	inconsistent.	In	order	to	straighten	it	out	he	had	to	add
one	term	to	an	equation.	He	did	this	by	inventing	for	himself	a	model	of
idler	wheels	and	gears	and	so	on	in	space.	He	found	what	the	new	law
was	–	but	nobody	paid	much	attention	because	they	did	not	believe	in
the	idler	wheels.	We	do	not	believe	in	the	idler	wheels	today,	but	the
equations	that	he	obtained	were	correct.	So	the	logic	may	be	wrong	but
the	answer	right.
In	the	case	of	relativity	the	discovery	was	completely	different.	There

was	an	accumulation	of	paradoxes;	the	known	laws	gave	inconsistent
results.	This	was	a	new	kind	of	thinking,	a	thinking	in	terms	of
discussing	the	possible	symmetries	of	laws.	It	was	especially	difficult,
because	for	the	first	time	it	was	realized	how	long	something	like
Newton’s	laws	could	seem	right,	and	still	ultimately	be	wrong.	Also	it
was	difficult	to	accept	that	ordinary	ideas	of	time	and	space,	which
seemed	so	instinctive,	could	be	wrong.
Quantum	mechanics	was	discovered	in	two	independent	ways	–

which	is	a	lesson.	There	again,	and	even	more	so,	an	enormous	number
of	paradoxes	were	discovered	experimentally,	things	that	absolutely
could	not	be	explained	in	any	way	by	what	was	known.	It	was	not	that
the	knowledge	was	incomplete,	but	that	the	knowledge	was	too



complete.	Your	prediction	was	that	this	should	happen	–	it	did	not.	The
two	different	routes	were	one	by	Schrödinger,*	who	guessed	the
equation,	the	other	by	Heisenberg,	who	argued	that	you	must	analyse
what	is	measurable.	These	two	different	philosophical	methods	led	to
the	same	discovery	in	the	end.
More	recently,	the	discovery	of	the	laws	of	the	weak	decay	I	spoke	of,

when	a	neutron	disintegrates	into	a	proton,	an	electron	and	an	anti-
neutrino	–	which	are	still	only	partly	known	–	add	up	to	a	somewhat
different	situation.	This	time	it	was	a	case	of	incomplete	knowledge,	and
only	the	equation	was	guessed.	The	special	difficulty	this	time	was	that
the	experiments	were	all	wrong.	How	can	you	guess	the	right	answer	if,
when	you	calculate	the	result,	it	disagrees	with	experiment?	You	need
courage	to	say	the	experiments	must	be	wrong.	I	will	explain	where	that
courage	comes	from	later.
Today	we	have	no	paradoxes	–	maybe.	We	have	this	infinity	that

comes	in	when	we	put	all	the	laws	together,	but	the	people	sweeping	the
dirt	under	the	rug	are	so	clever	that	one	sometimes	thinks	this	is	not	a
serious	paradox.	Again,	the	fact	that	we	have	found	all	these	particles
does	not	tell	us	anything	except	that	our	knowledge	is	incomplete.	I	am
sure	that	history	does	not	repeat	itself	in	physics,	as	you	can	tell	from
looking	at	the	examples	I	have	given.	The	reason	is	this.	Any	schemes	–
such	as	‘think	of	symmetry	laws’,	or	‘put	the	information	in
mathematical	form’,	or	‘guess	equations’	–	are	known	to	everybody	now,
and	they	are	all	tried	all	the	time.	When	you	are	stuck,	the	answer
cannot	be	one	of	these,	because	you	will	have	tried	these	right	away.
There	must	be	another	way	next	time.	Each	time	we	get	into	this	log-jam
of	too	much	trouble,	too	many	problems,	it	is	because	the	methods	that



we	are	using	are	just	like	the	ones	we	have	used	before.	The	next
scheme,	the	new	discovery,	is	going	to	be	made	in	a	completely	different
way.	So	history	does	not	help	us	much.
I	should	like	to	say	a	little	about	Heisenberg’s	idea	that	you	should

not	talk	about	what	you	cannot	measure,	because	many	people	talk
about	this	idea	without	really	understanding	it.	You	can	interpret	this	in
the	sense	that	the	constructs	or	inventions	that	you	make	must	be	of
such	a	kind	that	the	consequences	that	you	compute	are	comparable
with	experiment	–	that	is,	that	you	do	not	compute	a	consequence	like	‘a
moo	must	be	three	goos’,	when	nobody	knows	what	a	moo	or	a	goo	is.
Obviously	that	is	no	good.	But	if	the	consequences	can	be	compared	to
experiment,	then	that	is	all	that	is	necessary.	It	does	not	matter	that
moos	and	goos	cannot	appear	in	the	guess.	You	can	have	as	much	junk
in	the	guess	as	you	like,	provided	that	the	consequences	can	be
compared	with	experiment.	This	is	not	always	fully	appreciated.	People
often	complain	of	the	unwarranted	extension	of	the	ideas	of	particles
and	paths,	etc.,	into	the	atomic	realm.	Not	so	at	all;	there	is	nothing
unwarranted	about	the	extension.	We	must,	and	we	should,	and	we
always	do,	extend	as	far	as	we	can	beyond	what	we	already	know,
beyond	those	ideas	that	we	have	already	obtained.	Dangerous?	Yes.
Uncertain?	Yes.	But	it	is	the	only	way	to	make	progress.	Although	it	is
uncertain,	it	is	necessary	to	make	science	useful.	Science	is	only	useful	if
it	tells	you	about	some	experiment	that	has	not	been	done;	it	is	no	good
if	it	only	tells	you	what	just	went	on.	It	is	necessary	to	extend	the	ideas
beyond	where	they	have	been	tested.	For	example,	in	the	law	of
gravitation,	which	was	developed	to	understand	the	motion	of	planets,	it
would	have	been	no	use	if	Newton	had	simply	said,	‘I	now	understand



the	planets’,	and	had	not	felt	able	to	try	to	compare	it	with	the	earth’s
pull	on	the	moon,	and	for	later	men	to	say	‘Maybe	what	holds	the
galaxies	together	is	gravitation’.	We	must	try	that.	You	could	say,	‘When
you	get	to	the	size	of	the	galaxies,	since	you	know	nothing	about	it,
anything	can	happen’.	I	know,	but	there	is	no	science	in	accepting	this
type	of	limitation.	There	is	no	ultimate	understanding	of	the	galaxies.	On
the	other	hand,	if	you	assume	that	the	entire	behaviour	is	due	only	to
known	laws,	this	assumption	is	very	limited	and	definite	and	easily
broken	by	experiment.	What	we	are	looking	for	is	just	such	hypotheses,
very	definite	and	easy	to	compare	with	experiment.	The	fact	is	that	the
way	the	galaxies	behave	so	far	does	not	seem	to	be	against	the
proposition.
I	can	give	you	another	example,	even	more	interesting	and

important.	Probably	the	most	powerful	single	assumption	that
contributes	most	to	the	progress	of	biology	is	the	assumption	that
everything	animals	do	the	atoms	can	do,	that	the	things	that	are	seen	in
the	biological	world	are	the	results	of	the	behaviour	of	physical	and
chemical	phenomena,	with	no	‘extra	something’.	You	could	always	say,
‘When	you	come	to	living	things,	anything	can	happen’.	If	you	accept
that	you	will	never	understand	living	things.	It	is	very	hard	to	believe
that	the	wiggling	of	the	tentacle	of	the	octopus	is	nothing	but	some
fooling	around	of	atoms	according	to	the	known	physical	laws.	But	when
it	is	investigated	with	this	hypothesis	one	is	able	to	make	guesses	quite
accurately	about	how	it	works.	In	this	way	one	makes	great	progress	in
understanding.	So	far	the	tentacle	has	not	been	cut	off	–	it	has	not	been
found	that	this	idea	is	wrong.
It	is	not	unscientific	to	make	a	guess,	although	many	people	who	are



not	in	science	think	it	is.	Some	years	ago	I	had	a	conversation	with	a
layman	about	flying	saucers	–	because	I	am	scientific	I	know	all	about
flying	saucers!	I	said	‘I	don’t	think	there	are	flying	saucers’.	So	my
antagonist	said,	‘Is	it	impossible	that	there	are	flying	saucers?	Can	you
prove	that	it’s	impossible?’	‘No’,	I	said,	‘I	can’t	prove	it’s	impossible.	It’s
just	very	unlikely’.	At	that	he	said,	‘You	are	very	unscientific.	If	you	can’t
prove	it	impossible	then	how	can	you	say	that	it’s	unlikely?’	But	that	is
the	way	that	is	scientific.	It	is	scientific	only	to	say	what	is	more	likely
and	what	less	likely,	and	not	to	be	proving	all	the	time	the	possible	and
impossible.	To	define	what	I	mean,	I	might	have	said	to	him,	‘Listen,	I
mean	that	from	my	knowledge	of	the	world	that	I	see	around	me,	I	think
that	it	is	much	more	likely	that	the	reports	of	flying	saucers	are	the
results	of	the	known	irrational	characteristics	of	terrestrial	intelligence
than	of	the	unknown	rational	efforts	of	extra-terrestrial	intelligence’.	It	is
just	more	likely,	that	is	all.	It	is	a	good	guess.	And	we	always	try	to	guess
the	most	likely	explanation,	keeping	in	the	back	of	the	mind	the	fact	that
if	it	does	not	work	we	must	discuss	the	other	possibilities.
How	can	we	guess	what	to	keep	and	what	to	throw	away?	We	have

all	these	nice	principles	and	known	facts,	but	we	are	in	some	kind	of
trouble:	either	we	get	the	infinities,	or	we	do	not	get	enough	of	a
description	–	we	are	missing	some	parts.	Sometimes	that	means	that	we
have	to	throw	away	some	idea;	at	least	in	the	past	it	has	always	turned
out	that	some	deeply	held	idea	had	to	be	thrown	away.	The	question	is,
what	to	throw	away	and	what	to	keep.	If	you	throw	it	all	away	that	is
going	a	little	far,	and	then	you	have	not	much	to	work	with.	After	all,
the	conservation	of	energy	looks	good,	and	it	is	nice,	and	I	do	not	want
to	throw	it	away.	To	guess	what	to	keep	and	what	to	throw	away	takes
considerable	skill.	Actually	it	is	probably	merely	a	matter	of	luck,	but	it



considerable	skill.	Actually	it	is	probably	merely	a	matter	of	luck,	but	it
looks	as	if	it	takes	considerable	skill.
Probability	amplitudes	are	very	strange,	and	the	first	thing	you	think

is	that	the	strange	new	ideas	are	clearly	cock-eyed.	Yet	everything	that
can	be	deduced	from	the	ideas	of	the	existence	of	quantum	mechanical
probability	amplitudes,	strange	though	they	are,	do	work,	throughout
the	long	list	of	strange	particles,	one	hundred	per	cent.	Therefore	I	do
not	believe	that	when	we	find	out	the	inner	guts	of	the	composition	of
the	world	we	shall	find	these	ideas	are	wrong.	I	think	this	part	is	right,
but	I	am	only	guessing:	I	am	telling	you	how	I	guess.
On	the	other	hand,	I	believe	that	the	theory	that	space	is	continuous

is	wrong,	because	we	get	these	infinities	and	other	difficulties,	and	we
are	left	with	questions	on	what	determines	the	size	of	all	the	particles.	I
rather	suspect	that	the	simple	ideas	of	geometry,	extended	down	into
infinitely	small	space,	are	wrong.	Here,	of	course,	I	am	only	making	a
hole,	and	not	telling	you	what	to	substitute.	If	I	did,	I	should	finish	this
lecture	with	a	new	law.
Some	people	have	used	the	inconsistency	of	all	the	principles	to	say

that	there	is	only	one	possible	consistent	world,	that	if	we	put	all	the
principles	together,	and	calculate	very	exactly,	we	shall	not	only	be	able
to	deduce	the	principles,	but	we	shall	also	discover	that	these	are	the
only	principles	that	could	possibly	exist	if	the	thing	is	still	to	remain
consistent.	That	seems	to	me	a	big	order.	I	believe	that	sounds	like
wagging	the	dog	by	the	tail.	I	believe	that	it	has	to	be	given	that	certain
things	exist	–	not	all	the	50-odd	particles,	but	a	few	little	things	like
electrons,	etc.	–	and	then	with	all	the	principles	the	great	complexities
that	come	out	are	probably	a	definite	consequence.	I	do	not	think	that



you	can	get	the	whole	thing	from	arguments	about	consistencies.
Another	problem	we	have	is	the	meaning	of	the	partial	symmetries.

These	symmetries,	like	the	statement	that	neutrons	and	protons	are
nearly	the	same	but	are	not	the	same	for	electricity,	or	the	fact	that	the
law	of	reflection	symmetry	is	perfect	except	for	one	kind	of	reaction,	are
very	annoying.	The	thing	is	almost	symmetrical	but	not	completely.	Now
two	schools	of	thought	exist.	One	will	say	that	it	is	really	simple,	that
they	are	really	symmetrical	but	that	there	is	a	little	complication	which
knocks	it	a	bit	cock-eyed.	Then	there	is	another	school	of	thought,	which
has	only	one	representative,	myself,	which	says	no,	the	thing	may	be
complicated	and	become	simple	only	through	the	complications.	The
Greeks	believed	that	the	orbits	of	the	planets	were	circles.	Actually	they
are	ellipses.	They	are	not	quite	symmetrical,	but	they	are	very	close	to
circles.	The	question	is,	why	are	they	very	close	to	circles?	Why	are	they
nearly	symmetrical?	Because	of	a	long	complicated	effect	of	tidal	friction
–	a	very	complicated	idea.	It	is	possible	that	nature	in	her	heart	is
completely	unsymmetrical	in	these	things,	but	in	the	complexities	of
reality	it	gets	to	look	approximately	as	if	it	is	symmetrical,	and	the
ellipses	look	almost	like	circles.	That	is	another	possibility;	but	nobody
knows,	it	is	just	guesswork.
Suppose	you	have	two	theories,	A	and	B,	which	look	completely

different	psychologically,	with	different	ideas	in	them	and	so	on,	but
that	all	the	consequences	that	are	computed	from	each	are	exactly	the
same,	and	both	agree	with	experiment.	The	two	theories,	although	they
sound	different	at	the	beginning,	have	all	consequences	the	same,	which
is	usually	easy	to	prove	mathematically	by	showing	that	the	logic	from	A
and	B	will	always	give	corresponding	consequences.	Suppose	we	have
two	such	theories,	how	are	we	going	to	decide	which	one	is	right?	There



two	such	theories,	how	are	we	going	to	decide	which	one	is	right?	There
is	no	way	by	science,	because	they	both	agree	with	experiment	to	the
same	extent.	So	two	theories,	although	they	may	have	deeply	different
ideas	behind	them,	may	be	mathematically	identical,	and	then	there	is
no	scientific	way	to	distinguish	them.
However,	for	psychological	reasons,	in	order	to	guess	new	theories,

these	two	things	may	be	very	far	from	equivalent,	because	one	gives	a
man	different	ideas	from	the	other.	By	putting	the	theory	in	a	certain
kind	of	framework	you	get	an	idea	of	what	to	change.	There	will	be
something,	for	instance,	in	theory	A	that	talks	about	something,	and	you
will	say,	‘ll	change	that	idea	in	here’.	But	to	find	out	what	the
corresponding	thing	is	that	you	are	going	to	change	in	B	may	be	very
complicated	–	it	may	not	be	a	simple	idea	at	all.	In	other	words,
although	they	are	identical	before	they	are	changed,	there	are	certain
ways	of	changing	one	which	looks	natural	which	will	not	look	natural	in
the	other.	Therefore	psychologically	we	must	keep	all	the	theories	in	our
heads,	and	every	theoretical	physicist	who	is	any	good	knows	six	or
seven	different	theoretical	representations	for	exactly	the	same	physics.
He	knows	that	they	are	all	equivalent,	and	that	nobody	is	ever	going	to
be	able	to	decide	which	one	is	right	at	that	level,	but	he	keeps	them	in
his	head,	hoping	that	they	will	give	him	different	ideas	for	guessing.
That	reminds	me	of	another	point,	that	the	philosophy	or	ideas

around	a	theory	may	change	enormously	when	there	are	very	tiny
changes	in	the	theory.	For	instance,	Newton’s	ideas	about	space	and	time
agreed	with	experiment	very	well,	but	in	order	to	get	the	correct	motion
of	the	orbit	of	Mercury,	which	was	a	tiny,	tiny	difference,	the	difference
in	the	character	of	the	theory	needed	was	enormous.	The	reason	is	that



Newton’s	laws	were	so	simple	and	so	perfect,	and	they	produced	definite
results.	In	order	to	get	something	that	would	produce	a	slightly	different
result	it	had	to	be	completely	different.	In	stating	a	new	law	you	cannot
make	imperfections	on	a	perfect	thing;	you	have	to	have	another	perfect
thing.	So	the	differences	in	philosophical	ideas	between	Newton’s	and
Einstein’s	theories	of	gravitation	are	enormous.
What	are	these	philosophies?	They	are	really	tricky	ways	to	compute

consequences	quickly.	A	philosophy,	which	is	sometimes	called	an
understanding	of	the	law,	is	simply	a	way	that	a	person	holds	the	laws	in
his	mind	in	order	to	guess	quickly	at	consequences.	Some	people	have
said,	and	it	is	true	in	cases	like	Maxwell’s	equations,	‘Never	mind	the
philosophy,	never	mind	anything	of	this	kind,	just	guess	the	equations.
The	problem	is	only	to	compute	the	answers	so	that	they	agree	with
experiment,	and	it	is	not	necessary	to	have	a	philosophy,	or	argument,	or
words,	about	the	equation’.	That	is	good	in	the	sense	that	if	you	only
guess	the	equation	you	are	not	prejudicing	yourself,	and	you	will	guess
better.	On	the	other	hand,	maybe	the	philosophy	helps	you	to	guess.	It	is
very	hard	to	say.
For	those	people	who	insist	that	the	only	thing	that	is	important	is

that	the	theory	agrees	with	experiment,	I	would	like	to	imagine	a
discussion	between	a	Mayan	astronomer	and	his	student.	The	Mayans
were	able	to	calculate	with	great	precision	predictions,	for	example,	for
eclipses	and	for	the	position	of	the	moon	in	the	sky,	the	position	of
Venus,	etc.	It	was	all	done	by	arithmetic.	They	counted	a	certain	number
and	subtracted	some	numbers,	and	so	on.	There	was	no	discussion	of
what	the	moon	was.	There	was	no	discussion	even	of	the	idea	that	it
went	around.	They	just	calculated	the	time	when	there	would	be	an



eclipse,	or	when	the	moon	would	rise	at	the	full,	and	so	on.	Suppose	that
a	young	man	went	to	the	astronomer	and	said,	‘I	have	an	idea.	Maybe
those	things	are	going	around,	and	there	are	balls	of	something	like
rocks	out	there,	and	we	could	calculate	how	they	move	in	a	completely
different	way	from	just	calculating	what	time	they	appear	in	the	sky’.
‘Yes’,	says	the	astronomer,	‘and	how	accurately	can	you	predict
eclipses?’	He	says,	‘I	haven’t	developed	the	thing	very	far	yet’.	Then	says
the	astronomer,	‘Well,	we	can	calculate	eclipses	more	accurately	than
you	can	with	your	model,	so	you	must	not	pay	any	attention	to	your
idea	because	obviously	the	mathematical	scheme	is	better’.	There	is	a
very	strong	tendency,	when	someone	comes	up	with	an	idea	and	says,
‘Let’s	suppose	that	the	world	is	this	way’,	for	people	to	say	to	him,	‘What
would	you	get	for	the	answer	to	such	and	such	a	problem?’	And	he	says,
‘I	haven’t	developed	it	far	enough’.	And	they	say,	‘Well,	we	have	already
developed	it	much	further,	and	we	can	get	the	answers	very	accurately’.
So	it	is	a	problem	whether	or	not	to	worry	about	philosophies	behind
ideas.
Another	way	of	working,	of	course,	is	to	guess	new	principles.	In

Einstein’s	theory	of	gravitation	he	guessed,	on	top	of	all	the	other
principles,	the	principle	that	corresponded	to	the	idea	that	the	forces	are
always	proportional	to	the	masses.	He	guessed	the	principle	that	if	you
are	in	an	accelerating	car	you	cannot	distinguish	that	from	being	in	a
gravitational	field,	and	by	adding	that	principle	to	all	the	other
principles,	he	was	able	to	deduce	the	correct	laws	of	gravitation.
That	outlines	a	number	of	possible	ways	of	guessing.	I	would	now

like	to	come	to	some	other	points	about	the	final	result.	First	of	all,	when
we	are	all	finished,	and	we	have	a	mathematical	theory	by	which	we	can



compute	consequences,	what	can	we	do?	It	really	is	an	amazing	thing.	In
order	to	figure	out	what	an	atom	is	going	to	do	in	a	given	situation	we
make	up	rules	with	marks	on	paper,	carry	them	into	a	machine	which
has	switches	that	open	and	close	in	some	complicated	way,	and	the
result	will	tell	us	what	the	atom	is	going	to	do!	If	the	way	that	these
switches	open	and	close	were	some	kind	of	model	of	the	atom,	if	we
thought	that	the	atom	had	switches	in	it,	then	I	would	say	that	I
understood	more	or	less	what	is	going	on.	I	find	it	quite	amazing	that	it
is	possible	to	predict	what	will	happen	by	mathematics,	which	is	simply
following	rules	which	really	have	nothing	to	do	with	what	is	going	on	in
the	original	thing.	The	closing	and	opening	of	switches	in	a	computer	is
quite	different	from	what	is	happening	in	nature.
One	of	the	most	important	things	in	this	‘guess	–	compute

consequences	–	compare	with	experiment’	business	is	to	know	when	you
are	right.	It	is	possible	to	know	when	you	are	right	way	ahead	of
checking	all	the	consequences.	You	can	recognize	truth	by	its	beauty	and
simplicity.	It	is	always	easy	when	you	have	made	a	guess,	and	done	two
or	three	little	calculations	to	make	sure	that	it	is	not	obviously	wrong,	to
know	that	it	is	right.	When	you	get	it	right,	it	is	obvious	that	it	is	right	–
at	least	if	you	have	any	experience	–	because	usually	what	happens	is
that	more	comes	out	than	goes	in.	Your	guess	is,	in	fact,	that	something
is	very	simple.	If	you	cannot	see	immediately	that	it	is	wrong,	and	it	is
simpler	than	it	was	before,	then	it	is	right.	The	inexperienced,	and
crackpots,	and	people	like	that,	make	guesses	that	are	simple,	but	you
can	immediately	see	that	they	are	wrong,	so	that	does	not	count.	Others,
the	inexperienced	students,	make	guesses	that	are	very	complicated,	and
it	sort	of	looks	as	if	it	is	all	right,	but	I	know	it	is	not	true	because	the



truth	always	turns	out	to	be	simpler	than	you	thought.	What	we	need	is
imagination,	but	imagination	in	a	terrible	strait-jacket.	We	have	to	find	a
new	view	of	the	world	that	has	to	agree	with	everything	that	is	known,
but	disagree	in	its	predictions	somewhere,	otherwise	it	is	not	interesting.
And	in	that	disagreement	it	must	agree	with	nature.	If	you	can	find	any
other	view	of	the	world	which	agrees	over	the	entire	range	where	things
have	already	been	observed,	but	disagrees	somewhere	else,	you	have
made	a	great	discovery.	It	is	very	nearly	impossible,	but	not	quite,	to
find	any	theory	which	agrees	with	experiments	over	the	entire	range	in
which	all	theories	have	been	checked,	and	yet	gives	different
consequences	in	some	other	range,	even	a	theory	whose	different
consequences	do	not	turn	out	to	agree	with	nature.	A	new	idea	is
extremely	difficult	to	think	of.	It	takes	a	fantastic	imagination.
What	of	the	future	of	this	adventure?	What	will	happen	ultimately?

We	are	going	along	guessing	the	laws;	how	many	laws	are	we	going	to
have	to	guess?	I	do	not	know.	Some	of	my	colleagues	say	that	this
fundamental	aspect	of	our	science	will	go	on;	but	I	think	there	will
certainly	not	be	perpetual	novelty,	say	for	a	thousand	years.	This	thing
cannot	keep	on	going	so	that	we	are	always	going	to	discover	more	and
more	new	laws.	If	we	do,	it	will	become	boring	that	there	are	so	many
levels	one	underneath	the	other.	It	seems	to	me	that	what	can	happen	in
the	future	is	either	that	all	the	laws	become	known	–	that	is,	if	you	had
enough	laws	you	could	compute	consequences	and	they	would	always
agree	with	experiment,	which	would	be	the	end	of	the	line	–	or	it	may
happen	that	the	experiments	get	harder	and	harder	to	make,	more	and
more	expensive,	so	you	get	99.9	per	cent	of	the	phenomena,	but	there	is
always	some	phenomenon	which	has	just	been	discovered,	which	is	very
hard	to	measure,	and	which	disagrees;	and	as	soon	as	you	have	the



hard	to	measure,	and	which	disagrees;	and	as	soon	as	you	have	the
explanation	of	that	one	there	is	always	another	one,	and	it	gets	slower
and	slower	and	more	and	more	uninteresting.	That	is	another	way	it	may
end.	But	I	think	it	has	to	end	in	one	way	or	another.
We	are	very	lucky	to	live	in	an	age	in	which	we	are	still	making

discoveries.	It	is	like	the	discovery	of	America	–	you	only	discover	it
once.	The	age	in	which	we	live	is	the	age	in	which	we	are	discovering
the	fundamental	laws	of	nature,	and	that	day	will	never	come	again.	It	is
very	exciting,	it	is	marvellous,	but	this	excitement	will	have	to	go.	Of
course	in	the	future	there	will	be	other	interests.	There	will	be	the
interest	of	the	connection	of	one	level	of	phenomena	to	another	–
phenomena	in	biology	and	so	on,	or,	if	you	are	talking	about
exploration,	exploring	other	planets,	but	there	will	not	still	be	the	same
things	that	we	are	doing	now.
Another	thing	that	will	happen	is	that	ultimately,	if	it	turns	out	that

all	is	known,	or	it	gets	very	dull,	the	vigorous	philosophy	and	the	careful
attention	to	all	these	things	that	I	have	been	talking	about	will	gradually
disappear.	The	philosophers	who	are	always	on	the	outside	making
stupid	remarks	will	be	able	to	close	in,	because	we	cannot	push	them
away	by	saying,	‘If	you	were	right	we	would	be	able	to	guess	all	the	rest
of	the	laws’,	because	when	the	laws	are	all	there	they	will	have	an
explanation	for	them.	For	instance,	there	are	always	explanations	about
why	the	world	is	three-dimensional.	Well,	there	is	only	one	world,	and	it
is	hard	to	tell	if	that	explanation	is	right	or	not,	so	that	if	everything
were	known	there	would	be	some	explanation	about	why	those	were	the
right	laws.	But	that	explanation	would	be	in	a	frame	that	we	cannot
criticize	by	arguing	that	that	type	of	reasoning	will	not	permit	us	to	go



further.	There	will	be	a	degeneration	of	ideas,	just	like	the	degeneration
that	great	explorers	feel	is	occurring	when	tourists	begin	moving	in	on	a
territory.
In	this	age	people	are	experiencing	a	delight,	the	tremendous	delight

that	you	get	when	you	guess	how	nature	will	work	in	a	new	situation
never	seen	before.	From	experiments	and	information	in	a	certain	range
you	can	guess	what	is	going	to	happen	in	a	region	where	no	one	has	ever
explored	before.	It	is	a	little	different	from	regular	exploration	in	that
there	are	enough	clues	on	the	land	discovered	to	guess	what	the	land
that	has	not	been	discovered	is	going	to	look	like.	These	guesses,
incidentally,	are	often	very	different	from	what	you	have	already	seen	–
they	take	a	lot	of	thought.
What	is	it	about	nature	that	lets	this	happen,	that	it	is	possible	to

guess	from	one	part	what	the	rest	is	going	to	do?	That	is	an	unscientific
question:	I	do	not	know	how	to	answer	it,	and	therefore	I	am	going	to
give	an	unscientific	answer.	I	think	it	is	because	nature	has	a	simplicity
and	therefore	a	great	beauty.







Plate	1.	Three	photographs	taken	at	different	times	of	the	same
double	star	system

Plate	2.	A	globular	star	cluster

Plate	3.	A	spiral	galaxy



Plate	4.	A	cluser	of	galaxies

Plate	5.	A	gaseous	nebula



Plate	6.	Evidence	of	the	creation	of	new	stars
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