

DATABASE S YSTEMS

CARLOS CORONEL • STEVEN MORRIS • PETER ROB

DESIGN, IMPLEMENTATION, AND MANAGEMENT

A u s t r a l i a • B r a z i l • J a p a n • K o r e a • M e x i c o • S i n g a p o r e • S p a i n • U n i t e d K i n g d o m • U n i t e d S t a t e s

A_C7046_FM.4c 10/23/09 4:28 PM Page i

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Database Systems: Design, Implementation,
and Management, Ninth Edition
Carlos Coronel, Steven Morris, and Peter Rob

Vice President of Editorial, Business: Jack W. Calhoun

Publisher: Joe Sabatino

Senior Acquisitions Editor: Charles McCormick, Jr.

Senior Product Manager: Kate Mason

Development Editor: Deb Kaufmann

Editorial Assistant: Nora Heink

Senior Marketing Communications Manager:
Libby Shipp

Marketing Coordinator: Suellen Ruttkay

Content Product Manager: Matthew Hutchinson

Senior Art Director: Stacy Jenkins Shirley

Cover Designer: Itzhack Shelomi

Cover Image: iStock Images

Media Editor: Chris Valentine

Manufacturing Coordinator: Julio Esperas

Copyeditor: Andrea Schein

Proofreader: Foxxe Editorial

Indexer: Elizabeth Cunningham

Composition: GEX Publishing Services

© 2011 Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be
reproduced, transmitted, stored or used in any form or by any means graphic, electronic,
or mechanical, including but not limited to photocopying, recording, scanning, digitiz-
ing, taping, Web distribution, information networks, or information storage and retrieval
systems, except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the publisher.

Library of Congress Control Number: 2009936830

Student Edition Package

ISBN-13: 978-0-538-46968-5

ISBN-10: 0-538-46968-4

Student Edition (Book Only)

ISBN-13: 978-0-538-74884-1

ISBN-10: 0-538-74884-2

Instructor Edition

ISBN-13: 978-0-538-46806-0

ISBN-10: 0-538-46806-8

Cengage Learning
20 Channel Center Street

Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions with office loca-
tions around the globe, including Singapore, the United Kingdom, Australia, Mexico,
Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Course Technology, visit www.cengage.com/coursetechnology

To learn more about Cengage Learning, visit www.cengage.com.

Purchase any of our products at your local college store or at our preferred online store
www.ichapters.com

Printed in the United States of America
1 2 3 4 5 6 7 17 16 15 14 13 12 11

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Dedication
To the treasures in my life:To Victoria, for 20 wonderful years.Thank you for your unending
support, for being my angel, my sweetie and most importantly, my best friend. To Carlos
Anthony whose intelligence and wit is matched only by your good looks; you show us the way.
Thank you for your words of wisdom, contagious happiness and for bringing us shining days.
You are still young; your best times are still to come.To Gabriela Victoria who is the image of
brilliance, beauty, and faithfulness. Thank you for being the sunshine in my cloudy days. To
Christian Javier whose endless energy and delightful smiles keep us going every day. Thank you
for being the youthful reminder of life’s simple beauties.To my parents, Sarah and Carlos, thank
you for your sacrifice and example.To all of you, you are all my inspiration.“TQTATA.”

Carlos Coronel

To Pamela, from high school sweetheart through 20 years of marriage, the beautiful love of
my life who has supported, encouraged, and inspired me. More than anyone else, you are
responsible for whatever successes I have achieved. To my son, Alexander Logan, whose
depth of character is without measure.You are my pride and joy.To my daughter, Lauren
Elizabeth, whose beauty and intensity take my breath away. You are my heart and soul.
Thank you all for the sacrifices that you have made that enabled me to pursue this dream.
I love you so much more than I can express.To my mother, Florence Maryann, and to the
memory of my father, Alton Lamar,who together instilled in me the desire to learn and the
passion to achieve.To my mother-in-law, Connie Duke, and to the memory of my father-in-
law, Wayne Duke, who taught me to find joy in all things. To all of you, with all my love,
I dedicate this book.

Steven Morris

To Anne, who remains my best friend after 48 years of marriage.To our son, Peter William,
who turned out to be the man we hoped he would be and who proved his wisdom by
making Sheena our treasured daughter-in-law. To Sheena, who stole our hearts so many
years ago.To our grandsons, Adam Lee and Alan Henri, who are growing up to be the fine
human beings their parents are.To my mother-in-law, Nini Fontein, and to the memory of
my father-in-law,Henri Fontein—their life experiences in Europe and Southeast Asia would
fill a history book and they enriched my life by entrusting me with their daughter’s future.
To the memory of my parents, Hendrik and Hermine Rob, who rebuilt their lives after
World War II’s horrors, who did it again after a failed insurgency in Indonesia, and who
finally found their promised land in these United States. And to the memory of Heinz, who
taught me daily lessons about loyalty, uncritical acceptance, and boundless understanding.
I dedicate this book to you, with love.

Peter Rob

D
E

D
I

C
A

T
I

O
N

BRIEF CONTENTS

IV

PART I: Database Concepts

Chapter 1: Database Systems

Chapter 2: Data Models

PART II: Design Concepts

Chapter 3: The Relational Database Model

Chapter 4: Entity Relationship (ER) Modeling

Chapter 5: Advanced Data Modeling

Chapter 6: Normalization of Database Tables

PART III: Advanced Design and Implementation

Chapter 7: Introduction to Structured Query Language (SQL)

Chapter 8: Advanced SQL

Chapter 9: Database Design

PART IV: Advanced Database Concepts

Chapter 10: Transaction Management and Concurrency Control

Chapter 11: Database Performance Tuning and Query Optimization

Chapter 12: Distributed Database Management Systems

Chapter 13: Business Intelligence and Data Warehouses

PART V: Databases and the Internet

Chapter 14: Database Connectivity and Web Technologies

PART VI: Database Administration

Chapter 15: Database Administration and Security

GLOSSARY

INDEX

BRIEF CONTENTS

V

The following appendixes and answers to selected questions and problems are included in the Premium Website for
this text, found at cengage.com/mis/coronel.

Appendix A: Designing Databases with Visio Professional: A Tutorial

Appendix B: The University Lab: Conceptual Design

Appendix C: The University Lab: Conceptual Design Verification, Logical
Design, and Implementation

Appendix D: Converting an ER Model into a Database Structure

Appendix E: Comparison of ER Model Notations

Appendix F: Client/Server Systems

Appendix G: Object-Oriented Databases

Appendix H: Unified Modeling Language (UML)

Appendix I: Databases in Electronic Commerce

Appendix J: Web Database Development with ColdFusion

Appendix K: The Hierarchical Database Model

Appendix L: The Network Database Model

Appendix M: Microsoft® Access® Tutorial

Appendix N: Creating a New Database Using Oracle 11g

Answers to Selected Questions and Problems

TABLE OF CONTENTS

VI

PART I DATABASE CONCEPTS

Business Vignette: The Relational Revolution 3

Chapter 1 Database Systems 4

1.1 Why Databases? 5
1.2 Data vs. Information 5
1.3 Introducing the Database 7

1.3.1 Role and Advantages of the DBMS 7
1.3.2 Types of Databases 9

1.4 Why Database Design is Important 10
1.5 Evolution of File System Data Processing 11

1.5.1 Manual File Systems 11
1.5.2 Computerized File Systems 11
1.5.3 File System Redux: Modern End-User Productivity Tools 14

1.6 Problems with File System Data Processing 14
1.6.1 Structural and Data Dependence 15
1.6.2 Data Redundancy 16
1.6.3 Lack of Design and Data-Modeling Skills 17

1.7 Database Systems 17
1.7.1 The Database System Environment 18
1.7.2 DBMS Functions 20
1.7.3 Managing the Database System: A Shift in Focus 23

Summary 25
Key Terms 25
Review Questions 26
Problems 26

Chapter 2 Data Models 29

2.1 Data Modeling and Data Models 30
2.2 The Importance of Data Models 30
2.3 Data Model Basic Building Blocks 31
2.4 Business Rules 32

2.4.1 Discovering Business Rules 33
2.4.2 Translating Business Rules into Data Model Components 33
2.4.3 Naming Conventions 34

2.5 The Evolution of Data Models 34
2.5.1 Hierarchical and Network Models 35
2.5.2 The Relational Model 36
2.5.3 The Entity Relationship Model 38
2.5.4 The Object-Oriented (OO) Model 40
2.5.5 Newer Data Models: Object/Relational and XML 42
2.5.6 The Future of Data Models 43
2.5.7 Data Models: A Summary 43

2.6 Degrees of Data Abstraction 46
2.6.1 The External Model 46
2.6.2 The Conceptual Model 48
2.6.3 The Internal Model 49
2.6.4 The Physical Model 49

TABLE OF CONTENTS

VII

Summary 51
Key Terms 51
Review Questions 52
Problems 53

PART I I DESIGN CONCEPTS

Business Vignette: BP’s Data Modeling Initiative 61

Chapter 3 The Relational Database Model 58

3.1 A Logical View of Data 59
3.1.1 Tables and Their Characteristics 59

3.2 Keys 62
3.3 Integrity Rules 66
3.4 Relational Set Operators 68
3.5 The Data Dictionary and the System Catalog 74
3.6 Relationships within the Relational Database 76

3.6.1 The 1:M Relationship 76
3.6.2 The 1:1 Relationship 78
3.6.3 The M:N Relationship 78

3.7 Data Redundancy Revisited 84
3.8 Indexes 86
3.9 Codd’s Relational Database Rules 88
Summary 89
Key Terms 89
Review Questions 90
Problems 92

Chapter 4 Entity Relationship (ER) Modeling 99

4.1 The Entity Relationship Model (ERM) 100
4.1.1 Entities 100
4.1.2 Attributes 101
4.1.3 Relationships 105
4.1.4 Connectivity and Cardinality 107
4.1.5 Existence Dependence 108
4.1.6 Relationship Strength 108
4.1.7 Weak Entities 110
4.1.8 Relationship Participation 113
4.1.9 Relationship Degree 116
4.1.10 Recursive Relationships 117
4.1.11 Associative (Composite) Entities 121

4.2 Developing an ER Diagram 123
4.3 Database Design Challenges: Conflicting Goals 128
Summary 134
Key Terms 134
Review Questions 135
Problems 137
Cases 140

TABLE OF CONTENTS

VIII

Chapter 5 Advanced Data Modeling 147

5.1 The Extended Entity Relationship Model 148
5.1.1 Entity Supertypes and Subtypes 148
5.1.2 Specialization Hierarchy 149
5.1.3 Inheritance 150
5.1.4 Subtype Discriminator 151
5.1.5 Disjoint and Overlapping Constraints 151
5.1.6 Completeness Constraint 153
5.1.7 Specialization and Generalization 154

5.2 Entity Clustering 154
5.3 Entity Integrity: Selecting Primary Keys 155

5.3.1 Natural Keys and Primary Keys 156
5.3.2 Primary Key Guidelines 156
5.3.3 When to Use Composite Primary Keys 157
5.3.4 When to Use Surrogate Primary Keys 158

5.4 Design Cases: Learning Flexible Database Design 159
5.4.1 Design Case #1: Implementing 1:1 Relationships 160
5.4.2 Design Case #2: Maintaining History of Time-Variant Data 161
5.4.3 Design Case #3: Fan Traps 162
5.4.4 Design Case #4: Redundant Relationships 164

Summary 165
Key Terms 165
Review Questions 166
Problems 167
Cases 168

Chapter 6 Normalization of Database Tables 174

6.1 Database Tables and Normalization 175
6.2 The Need for Normalization 175
6.3 The Normalization Process 179

6.3.1 Conversion to First Normal Form 181
6.3.2 Conversion to Second Normal Form 184
6.3.3 Conversion to Third Normal Form 185

6.4 Improving the Design 187
6.5 Surrogate Key Considerations 191
6.6 Higher-Level Normal Forms 192

6.6.1 The Boyce-Codd Normal Form (BCNF) 192
6.6.2 Fourth Normal Form (4NF) 196

6.7 Normalization and Database Design 197
6.8 Denormalization 200
6.9 Data-Modeling Checklist 204
Summary 206
Key Terms 206
Review Questions 207
Problems 208

TABLE OF CONTENTS

IX

PART I I I ADVANCED DESIGN AND IMPLEMENTATION

Business Vignette: The Many Benefits of BI 219

Chapter 7 Introduction to Structured Query Language (SQL) 220

7.1 Introduction to SQL 221
7.2 Data Definition Commands 223

7.2.1 The Database Model 223
7.2.2 Creating the Database 225
7.2.3 The Database Schema 225
7.2.4 Data Types 226
7.2.5 Creating Table Structures 229
7.2.6 SQL Constraints 232
7.2.7 SQL Indexes 235

7.3 Data Manipulation Commands 237
7.3.1 Adding Table Rows 237
7.3.2 Saving Table Changes 238
7.3.3 Listing Table Rows 238
7.3.4 Updating Table Rows 240
7.3.5 Restoring Table Contents 240
7.3.6 Deleting Table Rows 241
7.3.7 Inserting Table Rows with a Select Subquery 242

7.4 SELECT Queries 242
7.4.1 Selecting Rows with Conditional Restrictions 242
7.4.2 Arithmetic Operators:The Rule of Precedence 247
7.4.3 Logical Operators: AND, OR, and NOT 247
7.4.4 Special Operators 249

7.5 Additional Data Definition Commands 253
7.5.1 Changing a Column’s Data Type 253
7.5.2 Changing a Column’s Data Characteristics 254
7.5.3 Adding a Column 254
7.5.4 Dropping a Column 255
7.5.5 Advanced Data Updates 255
7.5.6 Copying Parts of Tables 257
7.5.7 Adding Primary and Foreign Key Designations 258
7.5.8 Deleting a Table from the Database 259

7.6 Additional SELECT Query Keywords 259
7.6.1 Ordering a Listing 259
7.6.2 Listing Unique Values 261
7.6.3 Aggregate Functions 261
7.6.4 Grouping Data 266

7.7 Virtual Tables: Creating a View 269
7.8 Joining Database Tables 270

7.8.1 Joining Tables with an Alias 273
7.8.2 Recursive Joins 273
7.8.3 Outer Joins 274

Summary 276
Key Terms 277
Review Questions 277
Problems 278
Cases 287

TABLE OF CONTENTS

X

Chapter 8 Advanced SQL 297

8.1 Relational Set Operators 298
8.1.1 UNION 299
8.1.2 UNION ALL 300
8.1.3 INTERSECT 300
8.1.4 MINUS 301
8.1.5 Syntax Alternatives 303

8.2 SQL Join Operators 305
8.2.1 Cross Join 306
8.2.2 Natural Join 307
8.2.3 Join USING Clause 307
8.2.4 JOIN ON Clause 308
8.2.5 Outer Joins 309

8.3 Subqueries and Correlated Queries 312
8.3.1 WHERE Subqueries 314
8.3.2 IN Subqueries 315
8.3.3 HAVING Subqueries 316
8.3.4 Multirow Subquery Operators: ANY and ALL 317
8.3.5 FROM Subqueries 318
8.3.6 Attribute List Subqueries 319
8.3.7 Correlated Subqueries 321

8.4 SQL Functions 324
8.4.1 Date and Time Functions 324
8.4.2 Numeric Functions 327
8.4.3 String Functions 327
8.4.4 Conversion Functions 328

8.5 Oracle Sequences 330
8.6 Updatable Views 333
8.7 Procedural SQL 336

8.7.1 Triggers 341
8.7.2 Stored Procedures 350
8.7.3 PL/SQL Processing with Cursors 354
8.7.4 PL/SQL Stored Functions 357

8.8 Embedded SQL 358
Summary 363
Key Terms 364
Review Questions 364
Problems 365
Cases 369

Chapter 9 Database Design 372

9.1 The Information System 373
9.2 The Systems Development Life Cycle (SDLC) 375

9.2.1 Planning 376
9.2.2 Analysis 376
9.2.3 Detailed Systems Design 377
9.2.4 Implementation 377
9.2.5 Maintenance 377

9.3 The Database Life Cycle (DBLC) 378
9.3.1 The Database Initial Study 378
9.3.2 Database Design 382

TABLE OF CONTENTS

XI

9.3.3 Implementation and Loading 384
9.3.4 Testing and Evaluation 386
9.3.5 Operation 389
9.3.6 Maintenance and Evolution 389

9.4 Conceptual Design 390
9.4.1 Data Analysis and Requirements 391
9.4.2 Entity Relationship Modeling and Normalization 393
9.4.3 Data Model Verification 396
9.4.4 Distributed Database Design 399

9.5 DBMS Software Selection 399
9.6 Logical Design 400

9.6.1 Map the Conceptual Model to the Logical Model 400
9.6.2 Validate the Logical Model Using Normalization 402
9.6.3 Validate Logical Model Integrity Constraints 402
9.6.4 Validate the Logical Model against User Requirements 403

9.7 Physical Design 403
9.7.1 Define Data Storage Organization 403
9.7.2 Define Integrity and Security Measures 404
9.7.3 Determine Performance Measures 404

9.8 Database Design Strategies 405
9.9 Centralized vs. Decentralized Design 406
Summary 409
Key Terms 409
Review Questions 410
Problems 410

PART IV ADVANCED DATABASE CONCEPTS

Business Vignette: Combating Data Explosion 413

Chapter 10 Transaction Management and Concurrency Control 414

10.1 What Is a Transaction? 415
10.1.1 Evaluating Transaction Results 416
10.1.2 Transaction Properties 419
10.1.3 Transaction Management with SQL 419
10.1.4 The Transaction Log 420

10.2 Concurrency Control 421
10.2.1 Lost Updates 422
10.2.2 Uncommitted Data 423
10.2.3 Inconsistent Retrievals 424
10.2.4 The Scheduler 425

10.3 Concurrency Control with Locking Methods 426
10.3.1 Lock Granularity 427
10.3.2 Lock Types 430
10.3.3 Two-Phase Locking to Ensure Serializability 431
10.3.4 Deadlocks 432

10.4 Concurrency Control with Time Stamping Methods 433
10.4.1 Wait/Die and Wound/Wait Schemes 434

TABLE OF CONTENTS

XII

10.5 Concurrency Control with Optimistic Methods 435
10.6 Database Recovery Management 435

10.6.1 Transaction Recovery 436
Summary 440
Key Terms 441
Review Questions 441
Problems 442

Chapter 11 Database Performance Tuning and Query Optimization 445

11.1 Database Performance-Tuning Concepts 446
11.1.1 Performance Tuning: Client and Server 447
11.1.2 DBMS Architecture 447
11.1.3 Database Statistics 449

11.2 Query Processing 451
11.2.1 SQL Parsing Phase 452
11.2.2 SQL Execution Phase 453
11.2.3 SQL Fetching Phase 453
11.2.4 Query Processing Bottlenecks 453

11.3 Indexes and Query Optimization 454
11.4 Optimizer Choices 456

11.4.1 Using Hints to Affect Optimizer Choices 458
11.5 SQL Performance Tuning 459

11.5.1 Index Selectivity 459
11.5.2 Conditional Expressions 460

11.6 Query Formulation 462
11.7 DBMS Performance Tuning 463
11.8 Query Optimization Example 465
Summary 474
Key Terms 475
Review Questions 475
Problems 476

Chapter 12 Distributed Database Management Systems 480

12.1 The Evolution of Distributed Database Management Systems 481
12.2 DDBMS Advantages and Disadvantages 483
12.3 Distributed Processing and Distributed Databases 484
12.4 Characteristics of Distributed Database Management Systems 485
12.5 DDBMS Components 486
12.6 Levels of Data and Process Distribution 488

12.6.1 Single-Site Processing, Single-Site Data (SPSD) 488
12.6.2 Multiple-Site Processing, Single-Site Data (MPSD) 489
12.6.3 Multiple-Site Processing, Multiple-Site Data (MPMD) 490

12.7 Distributed Database Transparency Features 491
12.8 Distribution Transparency 492
12.9 Transaction Transparency 494

12.9.1 Distributed Requests and Distributed Transactions 494
12.9.2 Distributed Concurrency Control 498
12.9.3 Two-Phase Commit Protocol 498

TABLE OF CONTENTS

XIII

12.10 Performance Transparency and Query Optimization 499
12.11 Distributed Database Design 501

12.11.1 Data Fragmentation 501
12.11.2 Data Replication 504
12.11.3 Data Allocation 506

12.12 Client/Server vs. DDBMS 507
12.13 C. J. Date’s Twelve Commandments for Distributed Databases 508
Summary 509
Key Terms 510
Review Questions 510
Problems 511

Chapter 13 Business Intelligence and Data Warehouses 514

13.1 The Need for Data Analysis 515
13.2 Business Intelligence 515
13.3 Business Intelligence Architecture 517
13.4 Decision Support Data 521

13.4.1 Operational Data vs. Decision Support Data 521
13.4.2 Decision Support Database Requirements 523

13.5 The Data Warehouse 526
13.5.1 Twelve Rules that Define a Data Warehouse 528
13.5.2 Decision Support Architectural Styles 529

13.6 Online Analytical Processing 529
13.6.1 Multidimensional Data Analysis Techniques 529
13.6.2 Advanced Database Support 533
13.6.3 Easy-to-Use End-User Interface 533
13.6.4 Client/Server Architecture 533
13.6.5 OLAP Architecture 533
13.6.6 Relational OLAP 537
13.6.7 Multidimensional OLAP 539
13.6.8 Relational vs. Multidimensional OLAP 540

13.7 Star Schemas 541
13.7.1 Facts 541
13.7.2 Dimensions 542
13.7.3 Attributes 542
13.7.4 Attribute Hierarchies 544
13.7.5 Star Schema Representation 545
13.7.6 Performance-Improving Techniques for the Star Schema 548

13.8 Implementing a Data Warehouse 551
13.8.1 The Data Warehouse as an Active Decision Support Framework 551
13.8.2 A Company-Wide Effort that Requires User Involvement 552
13.8.3 Satisfy the Trilogy: Data,Analysis, and Users 552
13.8.4 Apply Database Design Procedures 552

13.9 Data Mining 553
13.10 SQL Extensions for OLAP 556

13.10.1 The ROLLUP Extension 557
13.10.2 The CUBE Extension 558
13.10.3 Materialized Views 559

Summary 564
Key Terms 565
Review Questions 565
Problems 566

TABLE OF CONTENTS

XIV

PART V DATABASES AND THE INTERNET

Business Vignette: KBB Transforms with Innovative Web Services 573

Chapter 14 Database Connectivity and Web Technologies 574

14.1 Database Connectivity 575
14.1.1 Native SQL Connectivity 575
14.1.2 ODBC, DAO, and RDO 575
14.1.3 OLE-DB 579
14.1.4 ADO.NET 581
14.1.5 Java Database Connectivity (JDBC) 583

14.2 Internet Databases 585
14.2.1 Web-to-Database Middleware: Server-Side Extensions 586
14.2.2 Web Server Interfaces 588
14.2.3 The Web Browser 589
14.2.4 Client-Side Extensions 590
14.2.5 Web Application Servers 591

14.3 Extensible Markup Language (XML) 592
14.3.1 Document Type Definitions (DTD) and XML Schemas 594
14.3.2 XML Presentation 596
14.3.3 XML Applications 597

14.4 SQL Data Services 600
Summary 602
Key Terms 603
Review Questions 603
Problems 604

PART VI DATABASE ADMINISTRATION

Business Vignette: The Rising SQL Injection Threat 607

Chapter 15 Database Administration and Security 608

15.1 Data as a Corporate Asset 609
15.2 The Need for and Role of a Database in an Organization 610
15.3 Introduction of a Database: Special Considerations 612
15.4 The Evolution of the Database Administration Function 613
15.5 The Database Environment’s Human Component 616

15.5.1 The DBA’s Managerial Role 618
15.5.2 The DBA’s Technical Role 623

15.6 Security 629
15.6.1 Security Policies 629
15.6.2 Security Vulnerabilities 630
15.6.3 Database Security 631

15.7 Database Administration Tools 633
15.7.1 The Data Dictionary 633
15.7.2 CASE Tools 635

TABLE OF CONTENTS

XV

15.8 Developing a Data Administration Strategy 637
15.9 The DBA at Work: Using Oracle for Database Administration 639

15.9.1 Oracle Database Administration Tools 640
15.9.2 The Default Login 640
15.9.3 Ensuring an Automatic RDBMS Start 641
15.9.4 Creating Tablespaces and Datafiles 642
15.9.5 Managing the Database Objects:Tables,Views,Triggers, and Procedures 643
15.9.6 Managing Users and Establishing Security 644
15.9.7 Customizing the Database Initialization Parameters 647

Summary 648
Key Terms 649
Review Questions 649

Glossary 653

Index 672

IN THE PREMIUM WEBSITE

The Premium Website can be found at cengage.com/mis/coronel. Locate your premium access card in the front of each new
book purchase, and click “Create My Account” to begin the registration process. If you’ve purchased a used book, please
search for Database Systems, Ninth Edition at www.ichapters.com where you can purchase instant access.

Appendix A Designing Databases with Visio Professional: A Tutorial

Appendix B The University Lab: Conceptual Design

Appendix C The University Lab: Conceptual Design Verification, Logical Design,
and Implementation

Appendix D Converting an ER Model into a Database Structure

Appendix E Comparison of ER Model Notations

Appendix F Client/Server Systems

Appendix G Object-Oriented Databases

Appendix H Unified Modeling Language (UML)

Appendix I Databases in Electronic Commerce

Appendix J Web Database Development with ColdFusion

Appendix K The Hierarchical Database Model

Appendix L The Network Database Model

Appendix M Microsoft® Access® Tutorial

Appendix N Creating a New Database with Oracle 11g

Answers to Selected Questions and Problems

PREFACE

XVI

This database systems book has been successful through eight editions because the authors, editors, and the publisher

paid attention to the impact of technology and to adopter questions and suggestions.We believe that this ninth edition

successfully reflects the same attention to such stimuli. Furthermore this ninth edition marks the addition of a new

co-author, Steven Morris. Steven brings his wealth of knowledge, teaching experience, and expertise to this work.

In many respects, rewriting a book is more difficult than writing it the first time. If the book is successful, as this one is,

a major concern is that the updates, inserts, and deletions will adversely affect writing style and continuity of coverage.

Fortunately, this edition benefits from the incorporation of a new co-author with fresh ideas and perspectives balanced

by the experience of the original authors to ensure continuity of writing style and quality of presentation. In addition, the

efforts of a combination of superb reviewers and editors, plus a wealth of feedback from adopters and students of the

previous editions, helped provide the guidance that make this new edition the best yet.

XVII

CHANGES TO THE NINTH EDITION

In this ninth edition, we have added some new features and we have reorganized some of the coverage to provide a
better flow of material. Aside from enhancing the already strong database design coverage, we have made other
improvements in the topical coverage. Here are a few of the highlights:

• Updated Business Vignettes showing the impact of database technologies in the real world.

• Strengthened the database design contents by more clearly differentiating among the conceptual, logi-
cal, and physical design stages.

• Streamlined and modernized the coverage of database evolution and the importance of database design
skills.

• Enhanced the coverage of data models by shifting the focus from a historical perspective to emerging
data technologies.

• Expanded end-of-chapter review questions and problems and introduced a new Cases section to
selected chapters.

• Formalized and improved consistency of normalization concepts.

• Improved readability and overall visual appeal of the book.

• Created a database design process guide and a data modeling checklist as cover inserts.

This ninth edition continues to provide a solid and practical foundation for the design, implementation, and manage-
ment of database systems. This foundation is built on the notion that, while databases are very practical things, their
successful creation depends on understanding the important concepts that define them. It’s not easy to come up with
the proper mix of theory and practice, but we are grateful that the previously mentioned feedback suggests that we
largely succeeded in our quest to maintain the proper balance.

THE APPROACH: A CONTINUED EMPHASIS ON DESIGN

As the title suggests, Database Systems: Design, Implementation, and Management covers three broad aspects of
database systems. However, for several important reasons, special attention is given to database design.

• The availability of excellent database software enables even database-inexperienced people to create
databases and database applications. Unfortunately, the “create without design” approach usually
paves the road to any number of database disasters. In our experience, many, if not most, database sys-
tem failures are traceable to poor design and cannot be solved with the help of even the best program-
mers and managers. Nor is better DBMS software likely to overcome problems created or magnified by
poor design. Using an analogy, even the best bricklayers and carpenters can’t create a good building
from a bad blueprint.

• Most of the vexing database system management problems seem to be triggered by poorly designed data-
bases. It hardly seems worthwhile to use scarce resources to develop excellent and extensive database sys-
tem management skills in order to exercise them on crises induced by poorly designed databases.

• Design provides an excellent means of communication. Clients are more likely to get what they need
when database system design is approached carefully and thoughtfully. In fact, clients may discover
how their organizations really function once a good database design is completed.

PREFACE

XVIII

• Familiarity with database design techniques promotes one’s understanding of current database tech-
nologies. For example, because data warehouses derive much of their data from operational databases,
data warehouse concepts, structures, and procedures make more sense when the operational data-
base’s structure and implementation are understood.

Because the practical aspects of database design are stressed, we have covered design concepts and procedures in
detail, making sure that the numerous end-of-chapter problems and cases are sufficiently challenging so students can
develop real and useful design skills. We also make sure that students understand the potential and actual conflicts
between database design elegance, information requirements, and transaction processing speed. For example, it
makes little sense to design databases that meet design elegance standards while they fail to meet end-user information
requirements. Therefore, we explore the use of carefully defined trade-offs to ensure that the databases are capable of
meeting end-user requirements while conforming to high design standards.

TOPICAL COVERAGE

The Systems View
The book’s title begins with Database Systems. Therefore, we examine the
database and design concepts covered in Chapters 1–6 as part of a larger
whole by placing them within the systems analysis framework of Chapter 9.
We believe that database designers who fail to understand that the database
is part of a larger system are likely to overlook important database design
requirements. In fact, Chapter 9, Database Design, provides the map for
the advanced database design developed in Appendixes B and C. Within
the larger systems framework, we can also explore issues such as transac-
tion management and concurrency control (Chapter 10), distributed data-
base management systems (Chapter 12), business intelligence and data
warehouses (Chapter 13), database connectivity and Web technologies
(Chapter 14), and database administration and security (Chapter 15).

Database Design
The first item in the
book’s subtitle is Design,
and our examination of
database design is com-
prehensive. For example, Chapters 1 and 2 examine the development
and future of databases and data models and illustrate the need for
design. Chapter 3 examines the details of the relational database
model; Chapter 4 provides extensive, in-depth, and practical database
design coverage; and Chapter 5 explores advanced database design
topics. Chapter 6 is devoted to critical normalization issues that affect
database efficiency and effectiveness. Chapter 9 examines database
design within the systems framework and maps the activities required
to successfully design and implement the complex real-world database

PREFACE

XIX

developed in Appendixes B and C. Appendix A, Designing Databases with Visio Professional: A Tutorial, provides a
good introductory tutorial for the use of a database design tool.

Because database design is affected by real-world transactions, the way data are distributed, and ever-increasing
information requirements, we examine major database features that must be supported in current-generation data-
bases and models. For example, Chapter 10, Transaction Management and Concurrency Control, focuses on the
characteristics of database transactions and how they affect database integrity and consistency. Chapter 11,
Database Performance Tuning and Query Optimization, illustrates the need for query efficiency in a real world that
routinely generates and uses terabyte-sized databases and tables with millions of records. Chapter 12, Distributed
Database Management Systems, focuses on data distribution, replication, and allocation. In Chapter 13, Business
Intelligence and Data Warehouses, we explore the characteristics of the databases that are used in decision support
and online analytical processing. Chapter 14, Database Connectivity and Web Technologies, covers the basic data-
base connectivity issues encountered in a Web-based data world, and it shows the development of Web-based data-
base front ends.

Implementation
The second portion of the subtitle is Implementation. We use Structured
Query Language (SQL) in Chapters 7 and 8 to show how databases are
implemented and managed. Appendix M, Microsoft Access Tutorial, pro-
vides a quick but comprehensive guide to MS Access database implemen-
tation. Appendixes B and C demonstrate the design of a database that was
fully implemented and they illustrate a wide range of implementation
issues. We had to deal with conflicting design goals: design elegance, infor-
mation requirements, and operational speed. Therefore, we carefully
audited the initial design (Appendix B) to check its ability to meet end-user
needs and to establish appropriate implementation protocols. The result of
this audit yielded the final, implementable design developed in Appendix
C. The special issues encountered in an Internet database environment are
addressed in Chapter 14, Database Connectivity and Web Technologies,

and in Appendix J, Web
Database Development
with ColdFusion.

Management
The final portion of the subtitle is Management. We deal with database
management issues in Chapter 10, Transaction Management and
Concurrency Control; Chapter 12, Distributed Database Management
Systems; and Chapter 15, Database Administration and Security.
Chapter 11, Database Performance Tuning and Query Optimization, is
a valuable resource that illustrates how a DBMS manages the data
retrieval operations. In addition, Appendix N, Creating a New Database
Using Oracle 11g, walks you through the process of setting up a new
database.

PREFACE

XX

TEACHING DATABASE: A MATTER OF FOCUS

Given the wealth of detailed coverage, instructors can “mix and match” chapters to produce the desired coverage.
Depending on where database courses fit into the curriculum, instructors may choose to emphasize database design or
database management. (See Figure 1.)

The hands-on nature of database design lends itself particularly well to class projects for which students use instructor-
selected software to prototype a student-designed system for the end user. Several of the end-of-chapter problems are
sufficiently complex to serve as projects, or an instructor may work with local businesses to give students hands-on
experience. Note that some elements of the database design track are also found in the database management track.
This is because it is difficult to manage database technologies that are not understood.

The options shown in Figure 1 serve only as a starting point. Naturally, instructors will tailor their coverage based on
their specific course requirements. For example, an instructor may decide to make Appendix I an outside reading
assignment and Appendix A a self-taught tutorial, then use that time to cover client/server systems or object-oriented
databases. The latter choice would serve as a gateway to UML coverage.

FIGURE
1

(1) Database Systems
(2) Data Models

(3) The Relational Database Model
(4) Entity Relationship (ER) Modeling
(6) Normalization of Database Tables

(7) Introduction to Structured Query Language (SQL)

(10) Transaction Management and Concurrency Control
(11) Database Performance Tuning and Query Optimization

(12) Distributed Database Management Systems
(13) The Data Warehouse

(15) Database Administration
(F) Client/Server Systems

(G) Object-Oriented Databases
(I) Databases in Electronic Commerce

 (9) Database Design
(A) Designing Databases with Visio Professional: A Tutorial

(D) Converting an ER Model into a Database Structure
(E) Comparison of ER Model Notations
(K) The Hierarchical Database Model

(L) The Network Database Model
(N) Creating a New Database Using Oracle 11g

(5) Advanced Data Modeling
(8) Advanced SQL

(9) Database Design
(D) Converting an ER Model into a Database Structure

(E) Comparison of ER Model Notations
(H) Unified Modeling Language (UML)

(11) Database Performance Tuning and Query Optimization
(14) Database Connectivity and Web Development
(J) Web Database Development with ColdFusion

 (A) Designing Databases with Visio Professional: A Tutorial
(B) The University Lab: Conceptual Design

(C) The University Lab: Conceptual Design Verification,
Logical Design, and Implementation

(F) Client/Server Systems
(L) The Network Database Model

(M) Microsoft Access Tutorial

Core Coverage

Database Design and Implementation Focus Database Management Focus

Supplementary Reading Supplementary Reading

PREFACE

XXI

FIGURE
1.9

Illustrating data storage management with Oracle

The ORALAB database is
actually stored in nine
datafiles located on the C:
drive of the database server
computer.

The Oracle DBA Studio
Management interface also
shows the amount of space
used by each of the datafiles
that constitute the single
logical database.

Database Name: ORALAB.MTSU.EDU

The Oracle DBA Studio Administrator GUI shows the data storage
management characteristics for the ORALAB database.

Note

Data that display data inconsistency are also referred to as data that lack data integrity. Data integrity is defined
as the condition in which all of the data in the database are consistent with the real-world events and conditions.
In other words, data integrity means that:

• Data are accurate—there are no data inconsistencies.

• Data are verifiable—the data will always yield consistent results.

Online Content boxes
draw attention to material
in the Premium Website
for this text and provide
ideas for incorporating
this content into the course.

Business Vignettes
highlight part topics in
a real-life setting.

Notes highlight impor-
tant facts about the con-
cepts introduced in the
chapter.

A variety of four-color
figures, including ER
models and implementa-
tions, tables, and illustra-
tions, clearly illustrate
difficult concepts.

O n l i n e C o n t e n t

The databases used in each chapter are available in the Premium Website for this book. Throughout the book,
Online Content boxes highlight material related to chapter content located in the Premium Website.

B
V

usiness
ignette

The Relational Revolution

Today, we take for granted the benefits brought to us by relational databases: the ability

to store, access, and change data quickly and easily on low-cost computers.Yet, until the

late 1970s, databases stored large amounts of data in a hierarchical structure that was

difficult to navigate and inflexible. Programmers needed to know what clients wanted to

do with the data before the database was designed.Adding or changing the way the data

was analyzed was a time-consuming and expensive process. As a result, you searched

through huge card catalogs to find a library book, you used road maps that didnt show

changes made in the last year, and you had to buy a newspaper to find information on

stock prices.

In 1970, Edgar “Ted” Codd, a mathematician employed by IBM, wrote an article that

would change all that. At the time, nobody realized that Codd’s obscure theories would

TEXT FEATURES

TEXT FEATURES

XXII

S u m m a r y

The ERM uses ERDs to represent the conceptual database as viewed by the end user. The ERM’s main components
are entities, relationships, and attributes. The ERD also includes connectivity and cardinality notations. An ERD can
also show relationship strength, relationship participation (optional or mandatory), and degree of relationship
(unary, binary, ternary, etc.).

Connectivity describes the relationship classification (1:1, 1:M, or M:N). Cardinality expresses the specific number
of entity occurrences associated with an occurrence of a related entity. Connectivities and cardinalities are usually
based on business rules.

In the ERM, a M:N relationship is valid at the conceptual level. However, when implementing the ERM in a
relational database, the M:N relationship must be mapped to a set of 1:M relationships through a composite entity.

K e y T e r m s

binary relationship, 118

cardinality, 109

composite attribute, 105

composite key, 105

derived attribute, 107

existence-dependent, 110

identifying relationship, 112

iterative process, 124

mandatory participation, 116

multivalued attribute, 106

non-identifying relationship, 111

optional participation, 116

relationship degree, 118

simple attribute, 106

single-valued attribute, 106

strong relationship, 112

ternary relationship, 118

unary relationship, 118

R e v i e w Q u e s t i o n s

1. What two conditions must be met before an entity can be classified as a weak entity? Give an example of a
weak entity.

2. What is a strong (or identifying) relationship, and how is it depicted in a Crow’s Foot ERD?

3. Given the business rule “an employee may have many degrees,” discuss its effect on attributes, entities, and
relationships. (Hint: Remember what a multivalued attribute is and how it might be implemented.)

4. What is a composite entity, and when is it used?

5. Suppose you are working within the framework of the conceptual model in Figure Q4.5.

P r o b l e m s

1. Given the following business rules, create the appropriate Crow’s Foot ERD.

a. A company operates many departments.

b. Each department employs one or more employees.

c. Each of the employees may or may not have one or more dependents.

d. Each employee may or may not have an employment history.

2. The Hudson Engineering Group (HEG) has contacted you to create a conceptual model whose application will
meet the expected database requirements for the company’s training program. The HEG administrator gives you

A robust Summary at
the end of each chap-
ter ties together the
major concepts and
serves as a quick
review for students.

Review Questions
challenge students to
apply the skills learned
in each chapter.

Problems become
progressively more
complex as students
draw on the lessons
learned from the com-
pletion of preceding
problems.

An alphabetic list of
Key Terms points to
the pages where terms
are first explained.

ADDITIONAL FEATURES

XXIII

PREMIUM WEBSITE

Single Sign On (SSO) provides a central location from which you can access Cengage Learning’s online learning solu-
tions with convenience and flexibility. You can:

• Gain access to online resources including robust Premium Website.

• Simplify your coursework by reducing human error and the need to keep track of multiple passwords.

See the insert card at the front of this book for instructions on how to access this text’s SSO site.

This Web resource, which you will find referenced throughout the book in the Online Content boxes, includes the fol-
lowing features:

Appendixes

Fourteen appendixes provide additional material on a variety of important areas, such as using Microsoft® Visio® and
Microsoft® Access®, ER model notations, UML, object-oriented databases, databases and electronic commerce, and
Adobe® ColdFusion®.

Answers to Selected Questions and Problems

The authors have provided answers to selected Review Questions and Problems from each chapter to help students
check their comprehension of chapter content and database skills.

Database, SQL Script, and ColdFusion Files

The Premium Website for this book includes all of the database structures and table contents used in the text. For students
using Oracle® and Microsoft SQL Server™, the SQL scripts to create and load all tables used in the SQL chapters (7 and 8)
are included. In addition, all ColdFusion scripts used to develop the Web interfaces shown Appendix J are included.

Video Tutorials

Custom-made video tutorials by Peter Rob and Carlos Coronel, exclusive to this textbook, provide clear explanations
of the essential concepts presented in the book. These unique tutorials will help the user gain a better understanding of
topics such as SQL, Oracle, ERDs, and ColdFusion.

Test Yourself on Database Systems

Brand new quizzes, created specifically for this site, allow users to test themselves on the content of each chapter and
immediately see what answers they answered right and wrong. For each question answered incorrectly, users are pro-
vided with the correct answer and the page in the text where that information is covered. Special testing software ran-
domly compiles a selection of questions from a large database, so students can take quizzes multiple times on a given
chapter, with some new questions each time.

Microsoft PowerPoint® Slides

Direct access is offered to the book’s PowerPoint presentations that cover the key points from each chapter. These
presentations are a useful study tool.

Useful Web Links

Students can access a chapter-by-chapter repository of helpful and relevant links for further research.

Glossary of Key Terms

Students can view a PDF file of the glossary from the book. They can also search for keywords and terms in this file;
it’s quick and easy to use!

Q & A

Helpful question-and-answer documents are available for download. Here you will find supporting material in areas
such as Data Dependency/Structural Dependency and Weak Entities/Strong Relationships.

ADDITIONAL FEATURES

XXIV

INSTRUCTOR RESOURCES

Database Systems: Design, Implementation, and Management, Ninth Edition, includes teaching tools to support
instructors in the classroom. The ancillaries that accompany the textbook are listed below. Most of the teaching tools
available with this book are provided to the instructor on a single CD-ROM; they are also available on the Web at
www.cengage.com/mis/coronel.

Instructor’s Manual

The authors have created this manual to help instructors make their classes informative and interesting. Because the
authors tackle so many problems in depth, instructors will find the Instructor’s Manual especially useful. The details of
the design solution process are shown in detail in the Instructor’s Manual as well as notes about alternative
approaches that may be used to solve a particular problem. Finally, the book’s questions and problems together with
their answers and solutions are included.

SQL Script Files for Instructors

The authors have provided teacher’s SQL script files to create and delete users. They have also provided SQL scripts
to let instructors cut and paste the SQL code into the SQL windows. (Scripts are provided for Oracle as well as for MS
SQL Server.) The SQL scripts, which have all been tested by Course Technology, are a major convenience for instruc-
tors. You won’t have to type in the SQL commands and the use of the scripts eliminates errors due to “typos” that are
sometimes difficult to trace.

ColdFusion Files for Instructors

The ColdFusion Web development solutions are provided. Instructors have access to a menu-driven system that lets
teachers show the code as well as the execution of that code.

Databases

Microsoft® Access® Instructor databases are available for many chapters that include features not found in the student
databases. For example, the databases that accompany Chapters 7 and 8 include many of the queries that produce the
problem solutions. Other Access databases, such as the ones accompanying Chapters 3, 4, 5, and 6, include the
implementation of the design problem solutions to let instructors illustrate the effect of design decisions. All the MS
Access files are in the Access 2000 format so that students can use them regardless of what version they have installed
on their computers. In addition, instructors have access to all the script files for both Oracle and MS SQL Server so that
all the databases and their tables can be converted easily and precisely.

ADDITIONAL FEATURES

XXV

Solutions

Instructors are provided with solutions to all Review Questions and Problems. Intermediate solution steps for the more
complex problems are shown to make the instructor’s job easier. Solutions may also be found on the Course
Technology Web site at www.cengage.com/mis/coronel. The solutions are password-protected.

ExamView®

This objective-based test generator lets the instructor create paper, LAN, or Web-based tests from test banks designed
specifically for this Course Technology text. Instructors can use the QuickTest Wizard to create tests in fewer than five
minutes by taking advantage of Course Technology’s question banks, or instructors can create customized exams.

PowerPoint® Presentations

Microsoft PowerPoint slides are included for each chapter. Instructors can use the slides in a variety of ways; for exam-
ple, as teaching aids during classroom presentations or as printed handouts for classroom distribution. Instructors can
modify the slides provided or include slides of their own for additional topics introduced to the class.

Figure Files

Figure files for solutions presented in the Instructor’s Manual allow instructors to create their own presentations.
Instructors can also manipulate these files to meet their particular needs.

WebTutor™

Whether you want to Web-enable your class or teach entirely online, WebTutor provides customizable, rich, text-spe-
cific content that can be used with both WebCT® and BlackBoard®. WebTutor allows instructors to easily blend, add,
edit, reorganize, or delete content. Each WebTutor product provides media assets, quizzing, Web links, discussion top-
ics, and more.

ACKNOWLEDGMENTS

XXVI

Regardless of how many editions of this book are published, they will always rest on the solid foundation created by the first
edition. We remain convinced that our work has become successful because that first edition was guided by Frank Ruggirello,
a former Wadsworth senior editor and publisher. Aside from guiding the book’s development, Frank also managed to solicit
the great Peter Keen’s evaluation (thankfully favorable) and subsequently convinced PK to write the foreword for the first edi-
tion. Although we sometimes found Frank to be an especially demanding taskmaster, we also found him to be a superb pro-
fessional and a fine friend. We suspect Frank will still see his fingerprints all over our current work. Many thanks.

A difficult task in rewriting a book is deciding what new approaches, topical coverage, and depth of coverage changes
can or cannot fit into a book that has successfully weathered the test of the marketplace. The comments and sugges-
tions made by the book’s adopters, students, and reviewers play a major role in deciding what coverage is desirable and
how that coverage is to be treated.

Some adopters became extraordinary reviewers, providing incredibly detailed and well-reasoned critiques even as they
praised the book’s coverage and style. Dr. David Hatherly, a superb database professional who is a senior lecturer in the
School of Information Technology, Charles Sturt University–Mitchell, Bathhurst, Australia, made sure that we knew precisely
what issues led to his critiques. Even better for us, he provided the suggestions that made it much easier for us to improve
the topical coverage in earlier editions. Dr. Hatherly’s recommendations continue to be reflected in this ninth edition. All of
his help was given freely and without prompting on our part. His efforts are much appreciated, and our thanks are heartfelt.

We also owe a debt of gratitude to Professor Emil T. Cipolla, who teaches at St. Mary College. Professor Cipolla’s wealth
of IBM experience turned out to be a valuable resource when we tackled the embedded SQL coverage in Chapter 8.

Every technical book receives careful scrutiny by several groups of reviewers selected by the publisher. We were fortu-
nate to face the scrutiny of reviewers who were superbly qualified to offer their critiques, comments, and suggestions—
many of which were used to strengthen this edition. While holding them blameless for any remaining shortcomings, we
owe these reviewers many thanks for their contributions:

Amita G. Chin, Virginia Commonwealth University

Samuel Conn, Regis University

Bill Hochstettler, Franklin University

Lionel M. Holguin, Jr., Athens State University

Larry Molloy, Oakland Community College

Bruce Myers, Austin Peay State University

Steven Robinett, Allegany College of Maryland

Ioulia Rytikova, George Mason University

Samuel Sambasivam, Azusa Pacific University

Kevin Scheibe, Iowa State University

Ganesan Shankaranarayanan, Boston University

Xingzhong (Frank) Shi, New Jersey Institute of Technology

Yingbing Yu, Austin Peay State Univeristy

XXVII

Because this ninth edition is build solidly on the foundation of the previous editions, we would also like to thank the
following reviewers for their efforts in helping to make the previous editions successful: Dr. Reza Barkhi, Pamplin
College of Business, Virginia Polytechnic Institute and State University; Dr. Vance Cooney, Xavier University; Harpal
S. Dillion, Southwestern Oklahoma State University; Janusz Szczypula, Carnegie Mellon University; Dr. Ahmad
Abuhejleh, University of Wisconsin, River Falls; Dr. Terence M. Baron, University of Toledo; Dr. Juan Estava, Eastern
Michigan University; Dr. Kevin Gorman, University of North Carolina, Charlotte; Dr. Jeff Hedrington, University of
Wisconsin, Eau Claire; Dr. Herman P. Hoplin, Syracuse University; Dr. Sophie Lee, University of Massachusetts,
Boston; Dr. Michael Mannino, University of Washington; Dr. Carol Chrisman, Illinois State University; Dr. Timothy
Heintz, Marquette University; Dr. Herman Hoplin, Syracuse University; Dr. Dean James, Embry-Riddle University;
Dr. Constance Knapp, Pace University; Dr. Mary Ann Robbert, Bentley College; Dr. Francis J. Van Wetering,
University of Nebraska; Dr. Joseph Walls, University of Southern California; Dr. Stephen C. Solosky, Nassau
Community College; Dr. Robert Chiang, Syracuse University; Dr. Crist Costa, Rhode Island College; Dr. Sudesh M.
Duggal, Northern Kentucky University; Dr. Chang Koh, University of North Carolina, Greensboro; Paul A. Seibert,
North Greenville College; Neil Dunlop, Vista Community College; Ylber Ramadani, George Brown College; Samuel
Sambasivam, Azusa Pacific University; Arjan Sadhwani, San Jose State University; Genard Catalano, Columbia
College; Craig Shaw, Central Community College; Lei-da Chen, Creighton University; Linda K. Lau, Longwood
University; Anita Lee-Post, University of Kentucky; Lenore Horowitz, Schenectady County Community College;
Dr. Scott L. Schneberger, Georgia State University; Tony Pollard, University of Western Sydney; Lejla Vrazalic,
University of Wollongong; and David Witzany, Parkland College.

In some respects, writing books resembles building construction: When 90 percent of the work seems done, 90 per-
cent of the work remains to be done. Fortunately for us, we had a great team on our side.

• How can we possibly pay sufficient homage to Deb Kaufmann’s many contributions? Even our best
superlatives don’t begin to paint a proper picture of our professional relationship with Deb
Kaufmann, our developmental editor since the fifth edition. Deb has that magic combination of good
judgment, intelligence, technical skill, and the rare ability to organize and sharpen an author’s writ-
ing without affecting its intent or its flow. And she does it all with style, class, and humor. She is the
best of the best.

• After writing so many books and eight editions of this book, we know just how difficult it can be to
transform the authors’ work into an attractive book. The production team, both at Course
Technology (Matt Hutchinson) and GEX Publishing Services (Louise Capulli and Marisa Taylor),
have done an excellent job.

• We also owe Kate Mason, our product manager, special thanks for her ability to guide this book to a
successful conclusion. Kate’s work touched all of the publication bases, and her managerial skills pro-
tected us from those publishing gremlins that might have become a major nuisance. Not to mention the
fact that her skills in dealing with occasionally cranky authors far exceed those of any diplomat we can
think of. And did we mention that Kate is, quite simply, a delightful person?

• Many thanks to Andrea Schein, our copyeditor. Given her ability to spot even the smallest discrepan-
cies, we suspect that her middle name is “Thorough.” We can only imagine the level of mental disci-
pline required to perform her job and we salute her.

ACKNOWLEDGMENTS

XXVII

We also thank our students for their comments and suggestions. They are the reason for writing this book in the first
place. One comment stands out in particular: “I majored in systems for four years, and I finally discovered why when I
took your course.” And one of our favorite comments by a former student was triggered by a question about the chal-
lenges created by a real-world information systems job: “Doc, it’s just like class, only easier. You really prepared me
well. Thanks!”

Last, and certainly not least, we thank our families for the solid home support. They graciously accepted the fact that
during more than a year’s worth of rewriting, there would be no free weekends, rare free nights, and even rarer free
days. We owe you much, and the dedication we wrote to you is but a small reflection of the important space you
occupy in our hearts.

Carlos Coronel, Steven Morris, and Peter Rob

ACKNOWLEDGMENTS

XXVIII

This page intentionally left blank

PART

I
DATABASE CONCEPTS

1Database Systems

2Data Models

B
V

usiness
ignette

The Relational Revolution

Today, we take for granted the benefits brought to us by relational databases: the ability

to store, access, and change data quickly and easily on low-cost computers.Yet, until the

late 1970s, databases stored large amounts of data in a hierarchical structure that was

difficult to navigate and inflexible. Programmers needed to know what clients wanted to

do with the data before the database was designed.Adding or changing the way the data

was analyzed was a time-consuming and expensive process. As a result, you searched

through huge card catalogs to find a library book, you used road maps that didn’t show

changes made in the last year, and you had to buy a newspaper to find information on

stock prices.

In 1970, Edgar “Ted” Codd, a mathematician employed by IBM, wrote an article that

would change all that. At the time, nobody realized that Codd’s obscure theories would

spark a technological revolution on par with the development of personal computers and

the Internet. Don Chamberlin, coinventor of SQL, the most popular computer language

used by database systems today, explains, “There was this guy Ted Codd who had some

kind of strange mathematical notation, but nobody took it very seriously.” Then Ted Codd

organized a symposium, and Chamberlin listened as Codd reduced complicated five-page

programs to one line. “And I said, ‘Wow,’” Chamberlin recalls.

The symposium convinced IBM to fund System R, a research project that built a

prototype of a relational database and that would eventually lead to the creation of SQL

and DB2. IBM, however, kept System R on the back burner for a number of crucial years.

The company had a vested interest in IMS, a reliable, high-end database system that had

come out in 1968. Unaware of the market potential of this research, IBM allowed its staff

to publish these papers publicly.

Among those reading these papers was Larry Ellison, who had just founded a small

company. Recruiting programmers from System R and the University of California, Ellison

was able to market the first SQL-based relational database in 1979, well before IBM. By

1983, the company had released a portable version of the database, grossed over

$5,000,000 annually, and changed its name to Oracle. Spurred on by competition, IBM

finally released SQL/DS, its first relational database, in 1980.

IBM has yet to catch up. By 2007, global sales of relational database management systems

rose to $18.8 billion. Oracle captured 48.6% of the market share, more than its two

closest competitors, IBM and Microsoft, combined.

Preview

Database Systems

In this chapter, you will learn:

� The difference between data and information

� What a database is, the various types of databases, and why they are valuable assets for
decision making

� The importance of database design

� How modern databases evolved from file systems

� About flaws in file system data management

� The main components of the database system

� The main functions of a database management system (DBMS)

Good decisions require good information that is derived from raw facts.These raw facts are

known as data. Data are likely to be managed most efficiently when they are stored in a

database. In this chapter, you will learn what a database is, what it does, and why it yields

better results than other data management methods.You will also learn about various types

of databases and why database design is so important.

Databases evolved from computer file systems. Although file system data management is

now largely outmoded, understanding the characteristics of file systems is important

because file systems are the source of serious data management limitations. In this chapter,

you will also learn how the database system approach helps eliminate most of the

shortcomings of file system data management.

1
O

N
E

1.1 WHY DATABASES?

Imagine trying to operate a business without knowing who your customers are, what products you are selling, who is
working for you, who owes you money, and whom you owe money. All businesses have to keep this type of data and
much more; and just as importantly, they must have those data available to decision makers when they need them. It
can be argued that the ultimate purpose of all business information systems is to help businesses use information as
an organizational resource. At the heart of all of these systems are the collection, storage, aggregation, manipulation,
dissemination, and management of data.

Depending on the type of information system and the characteristics of the business, these data could vary from a few
megabytes on just one or two topics to terabytes covering hundreds of topics within the business’s internal and external
environment. Telecommunications companies such as Sprint and AT&T are known to have systems that keep data on
trillions of phone calls, with new data being added to the system at speeds up to 70,000 calls per second!1 Not only
do these companies have to store and manage these immense collections of data, they have to be able to find any given
fact in that data quickly. Consider the case of Internet search staple Google. While Google is reluctant to disclose many
details about its data storage specifications, it is estimated that the company responds to over 91 million searches per
day across a collection of data that is several terabytes in size. Impressively, the results of these searches are available
nearly instantly.

How can these businesses process this much data? How can they store it all, and then quickly retrieve just the facts
that decision makers want to know, just when they want to know it? The answer is that they use databases. Databases,
as explained in detail throughout this book, are specialized structures that allow computer-based systems to store,
manage, and retrieve data very quickly. Virtually all modern business systems rely on databases; therefore, a good
understanding of how these structures are created and their proper use is vital for any information systems
professional. Even if your career does not take you down the amazing path of database design and development,
databases will be a key component underpinning the systems that you work with. In any case, it is very likely that, in
your career, you will be making decisions based on information generated from data. Thus, it is important that you
know the difference between data and information.

1.2 DATA VS. INFORMATION

To understand what drives database design, you must understand the difference between data and information. Data
are raw facts. The word raw indicates that the facts have not yet been processed to reveal their meaning. For example,
suppose that you want to know what the users of a computer lab think of its services. Typically, you would begin by
surveying users to assess the computer lab’s performance. Figure 1.1, Panel A, shows the Web survey form that
enables users to respond to your questions. When the survey form has been completed, the form’s raw data are saved
to a data repository, such as the one shown in Figure 1.1, Panel B. Although you now have the facts in hand, they
are not particularly useful in this format—reading page after page of zeros and ones is not likely to provide much
insight. Therefore, you transform the raw data into a data summary like the one shown in Figure 1.1, Panel C. Now
it’s possible to get quick answers to questions such as “What is the composition of our lab’s customer base?” In this
case, you can quickly determine that most of your customers are juniors (24.59%) and seniors (53.01%). Because
graphics can enhance your ability to quickly extract meaning from data, you show the data summary bar graph in
Figure 1.1, Panel D.

Information is the result of processing raw data to reveal its meaning. Data processing can be as simple as organizing
data to reveal patterns or as complex as making forecasts or drawing inferences using statistical modeling. To reveal
meaning, information requires context. For example, an average temperature reading of 105 degrees does not mean

1“Top Ten Largest Databases in the World,” Business Intelligence Lowdown, February 15, 2007, http://www.businessintelligencelowdown.com/
2007/02/top_10_largest_.html

5D A T A B A S E S Y S T E M S

much unless you also know its context: Is this in degrees Fahrenheit or Celsius? Is this a machine temperature, a body
temperature, or an outside air temperature? Information can be used as the foundation for decision making. For
example, the data summary for each question on the survey form can point out the lab’s strengths and weaknesses,
helping you to make informed decisions to better meet the needs of lab customers.

Keep in mind that raw data must be properly formatted for storage, processing, and presentation. For example, in
Panel C of Figure 1.1, the student classification is formatted to show the results based on the classifications Freshman,
Sophomore, Junior, Senior, and Graduate Student. The respondents’ yes/no responses might need to be converted
to a Y/N format for data storage. More complex formatting is required when working with complex data types, such
as sounds, videos, or images.

In this “information age,” production of accurate, relevant, and timely information is the key to good decision making.
In turn, good decision making is the key to business survival in a global market. We are now said to be entering the

a) Initial Survey Screen b) Raw Data

c) Information in Summary Format d) Information in Graphic Format

FIGURE
1.1

Transforming raw data into information

6 C H A P T E R 1

“knowledge age.”2 Data are the foundation of information, which is the bedrock of knowledge—that is, the body of
information and facts about a specific subject. Knowledge implies familiarity, awareness, and understanding of
information as it applies to an environment. A key characteristic of knowledge is that “new” knowledge can be derived
from “old” knowledge.

Let’s summarize some key points:

� Data constitute the building blocks of information.

� Information is produced by processing data.

� Information is used to reveal the meaning of data.

� Accurate, relevant, and timely information is the key to good decision making.

� Good decision making is the key to organizational survival in a global environment.

Timely and useful information requires accurate data. Such data must be properly generated and stored in a format
that is easy to access and process. And, like any basic resource, the data environment must be managed carefully. Data
management is a discipline that focuses on the proper generation, storage, and retrieval of data. Given the crucial
role that data play, it should not surprise you that data management is a core activity for any business, government
agency, service organization, or charity.

1.3 INTRODUCING THE DATABASE

Efficient data management typically requires the use of a computer database. A database is a shared, integrated
computer structure that stores a collection of:

� End-user data, that is, raw facts of interest to the end user.

� Metadata, or data about data, through which the end-user data are integrated and managed.

The metadata provide a description of the data characteristics and the set of relationships that links the data found
within the database. For example, the metadata component stores information such as the name of each data element,
the type of values (numeric, dates, or text) stored on each data element, whether or not the data element can be left
empty, and so on. The metadata provide information that complements and expands the value and use of the data.
In short, metadata present a more complete picture of the data in the database. Given the characteristics of metadata,
you might hear a database described as a “collection of self-describing data.”

A database management system (DBMS) is a collection of programs that manages the database structure and
controls access to the data stored in the database. In a sense, a database resembles a very well-organized electronic
filing cabinet in which powerful software, known as a database management system, helps manage the cabinet’s
contents.

1.3.1 Role and Advantages of the DBMS

The DBMS serves as the intermediary between the user and the database. The database structure itself is stored as a
collection of files, and the only way to access the data in those files is through the DBMS. Figure 1.2 emphasizes the
point that the DBMS presents the end user (or application program) with a single, integrated view of the data in the
database. The DBMS receives all application requests and translates them into the complex operations required to fulfill
those requests. The DBMS hides much of the database’s internal complexity from the application programs and users.
The application program might be written by a programmer using a programming language such as Visual Basic.NET,
Java, or C#, or it might be created through a DBMS utility program.

2Peter Drucker coined the phrase “knowledge worker” in 1959 in his book Landmarks of Tomorrow. In 1994, Ms. Esther Dyson, Mr. George
Keyworth, and Dr. Alvin Toffler introduced the concept of the “knowledge age.”

7D A T A B A S E S Y S T E M S

Having a DBMS between the end user’s applications and the database offers some important advantages. First, the
DBMS enables the data in the database to be shared among multiple applications or users. Second, the DBMS
integrates the many different users’ views of the data into a single all-encompassing data repository.

Because data are the crucial raw material from which information is derived, you must have a good method to manage
such data. As you will discover in this book, the DBMS helps make data management more efficient and effective. In
particular, a DBMS provides advantages such as:

� Improved data sharing. The DBMS helps create an environment in which end users have better access to
more and better-managed data. Such access makes it possible for end users to respond quickly to changes in
their environment.

� Improved data security. The more users access the data, the greater the risks of data security breaches.
Corporations invest considerable amounts of time, effort, and money to ensure that corporate data are used
properly. A DBMS provides a framework for better enforcement of data privacy and security policies.

� Better data integration. Wider access to well-managed data promotes an integrated view of the organization’s
operations and a clearer view of the big picture. It becomes much easier to see how actions in one segment
of the company affect other segments.

� Minimized data inconsistency. Data inconsistency exists when different versions of the same data appear
in different places. For example, data inconsistency exists when a company’s sales department stores a sales
representative’s name as “Bill Brown” and the company’s personnel department stores that same person’s
name as “William G. Brown,” or when the company’s regional sales office shows the price of a product as
$45.95 and its national sales office shows the same product’s price as $43.95. The probability of data
inconsistency is greatly reduced in a properly designed database.

� Improved data access. The DBMS makes it possible to produce quick answers to ad hoc queries. From a
database perspective, a query is a specific request issued to the DBMS for data manipulation—for example,
to read or update the data. Simply put, a query is a question, and an ad hoc query is a spur-of-the-moment
question. The DBMS sends back an answer (called the query result set) to the application. For example, end

End users

End users

Application
request

Data

Application
request Data

Database structure

DBMS
Database

Management System

Customers

Invoices

Products

Metadata

End-user
data

Single

Integrated

http://

FIGURE
1.2

The DBMS manages the interaction between the end user and the database

View of Data

8 C H A P T E R 1

users, when dealing with large amounts of sales data, might want quick answers to questions (ad hoc queries)
such as:

- What was the dollar volume of sales by product during the past six months?

- What is the sales bonus figure for each of our salespeople during the past three months?

- How many of our customers have credit balances of $3,000 or more?

� Improved decision making. Better-managed data and improved data access make it possible to generate
better-quality information, on which better decisions are based. The quality of the information generated
depends on the quality of the underlying data. Data quality is a comprehensive approach to promoting the
accuracy, validity, and timeliness of the data. While the DBMS does not guarantee data quality, it provides a
framework to facilitate data quality initiatives. Data quality concepts will be covered in more detail in Chapter
15, Database Administration and Security.

� Increased end-user productivity. The availability of data, combined with the tools that transform data into
usable information, empowers end users to make quick, informed decisions that can make the difference
between success and failure in the global economy.

The advantages of using a DBMS are not limited to the few just listed. In fact, you will discover many more advantages
as you learn more about the technical details of databases and their proper design.

1.3.2 Types of Databases

A DBMS can support many different types of databases. Databases can be classified according to the number of users,
the database location(s), and the expected type and extent of use.

The number of users determines whether the database is classified as single-user or multiuser. A single-user
database supports only one user at a time. In other words, if user A is using the database, users B and C must wait
until user A is done. A single-user database that runs on a personal computer is called a desktop database. In
contrast, a multiuser database supports multiple users at the same time. When the multiuser database supports a
relatively small number of users (usually fewer than 50) or a specific department within an organization, it is called a
workgroup database. When the database is used by the entire organization and supports many users (more than 50,
usually hundreds) across many departments, the database is known as an enterprise database.

Location might also be used to classify the database. For example, a database that supports data located at a single
site is called a centralized database. A database that supports data distributed across several different sites is called
a distributed database. The extent to which a database can be distributed and the way in which such distribution
is managed are addressed in detail in Chapter 12, Distributed Database Management Systems.

The most popular way of classifying databases today, however, is based on how they will be used and on the time
sensitivity of the information gathered from them. For example, transactions such as product or service sales,
payments, and supply purchases reflect critical day-to-day operations. Such transactions must be recorded accurately
and immediately. A database that is designed primarily to support a company’s day-to-day operations is classified as
an operational database (sometimes referred to as a transactional or production database). In contrast, a data
warehouse focuses primarily on storing data used to generate information required to make tactical or strategic
decisions. Such decisions typically require extensive “data massaging” (data manipulation) to extract information to
formulate pricing decisions, sales forecasts, market positioning, and so on. Most decision support data are based on
data obtained from operational databases over time and stored in data warehouses. Additionally, the data warehouse
can store data derived from many sources. To make it easier to retrieve such data, the data warehouse structure is quite
different from that of an operational or transactional database. The design, implementation, and use of data
warehouses are covered in detail in Chapter 13, Business Intelligence and Data Warehouses.

Databases can also be classified to reflect the degree to which the data are structured. Unstructured data are data
that exist in their original (raw) state, that is, in the format in which they were collected. Therefore, unstructured data
exist in a format that does not lend itself to the processing that yields information. Structured data are the result of

9D A T A B A S E S Y S T E M S

taking unstructured data and formatting (structuring) such data to facilitate storage, use, and the generation of
information. You apply structure (format) based on the type of processing that you intend to perform on the data.
Some data might not be ready (unstructured) for some types of processing, but they might be ready (structured) for
other types of processing. For example, the data value 37890 might refer to a zip code, a sales value, or a product
code. If this value represents a zip code or a product code and is stored as text, you cannot perform mathematical
computations with it. On the other hand, if this value represents a sales transaction, it is necessary to format it as
numeric.

To further illustrate the structure concept, imagine a stack of printed paper invoices. If you want to merely store these
invoices as images for future retrieval and display, you can scan them and save them in a graphic format. On the other
hand, if you want to derive information such as monthly totals and average sales, such graphic storage would not be
useful. Instead, you could store the invoice data in a (structured) spreadsheet format so that you can perform the
requisite computations. Actually, most data you encounter are best classified as semistructured. Semistructured data
are data that have already been processed to some extent. For example, if you look at a typical Web page, the data
are presented to you in a prearranged format to convey some information.

The database types mentioned thus far focus on the storage and management of highly structured data. However,
corporations are not limited to the use of structured data. They also use semistructured and unstructured data. Just
think of the very valuable information that can be found on company e-mails, memos, documents such as procedures
and rules, Web pages, and so on. Unstructured and semistructured data storage and management needs are being
addressed through a new generation of databases known as XML databases. Extensible Markup Language (XML)
is a special language used to represent and manipulate data elements in a textual format. An XML database supports
the storage and management of semistructured XML data.

Table 1.1 compares the features of several well-known database management systems.

TABLE
1.1

Types of Databases

PRODUCT
NUMBER OF USERS DATA LOCATION DATA USAGE XML
SINGLE
USER

MULTIUSER
CENTRALIZED DISTRIBUTED OPERATIONAL

DATA
WAREHOUSEWORKGROUP ENTERPRISE

MS Access X X X X
MS SQL
Server

X3 X X X X X X X

IBM DB2 X3 X X X X X X X
MySQL X X X X X X X X*
Oracle
RDBMS

X3 X X X X X X X

* Supports XML functions only. XML data are stored in large text objects.

1.4 WHY DATABASE DESIGN IS IMPORTANT

Database design refers to the activities that focus on the design of the database structure that will be used to store
and manage end-user data. A database that meets all user requirements does not just happen; its structure must be
designed carefully. In fact, database design is such a crucial aspect of working with databases that most of this book
is dedicated to the development of good database design techniques. Even a good DBMS will perform poorly with a
badly designed database.

Proper database design requires the designer to identify precisely the database’s expected use. Designing a
transactional database emphasizes accurate and consistent data and operational speed. Designing a data warehouse
database emphasizes the use of historical and aggregated data. Designing a database to be used in a centralized,

3Vendor offers single-user/personal DBMS version.

10 C H A P T E R 1

single-user environment requires a different approach from that used in the design of a distributed, multiuser database.
This book emphasizes the design of transactional, centralized, single-user, and multiuser databases. Chapters 12 and
13 also examine critical issues confronting the designer of distributed and data warehouse databases.

Designing appropriate data repositories of integrated information using the two-dimensional table structures found in
most databases is a process of decomposition. The integrated data must be decomposed properly into its constituent
parts, with each part stored in its own table. Further, the relationships between these tables must be carefully
considered and implemented so that the integrated view of the data can be re-created later as information for the end
user. A well-designed database facilitates data management and generates accurate and valuable information. A poorly
designed database is likely to become a breeding ground for difficult-to-trace errors that may lead to bad decision
making—and bad decision making can lead to the failure of an organization. Database design is simply too important
to be left to luck. That’s why college students study database design, why organizations of all types and sizes send
personnel to database design seminars, and why database design consultants often make an excellent living.

1.5 EVOLUTION OF FILE SYSTEM DATA PROCESSING

Understanding what a database is, what it does, and the proper way to use it can be clarified by considering what a
database is not. A brief explanation of the evolution of file system data processing can be helpful in understanding the
data access limitations that databases attempt to overcome. Understanding these limitations is relevant to database
designers and developers because database technologies do not make these problems magically disappear—database
technologies simply make it easier to create solutions that avoid these problems. Creating database designs that avoid
the pitfalls of earlier systems requires that the designer understand what the problems of the earlier systems were and
how to avoid them, or else the database technologies are no better (potentially even worse!) than the technologies and
techniques that they have replaced.

1.5.1 Manual File Systems

In order to be successful, an organization must come up with systems for handling core business tasks. Historically,
such systems were often manual, paper-and-pencil systems. The papers within these systems were organized in order
to facilitate the expected use of the data. Typically, this was accomplished through a system of file folders and filing
cabinets. As long as a data collection was relatively small and an organization’s business users had few reporting
requirements, the manual system served its role well as a data repository. However, as organizations grew and as
reporting requirements became more complex, keeping track of data in a manual file system became more difficult.
Therefore, companies looked to computer technology for help.

1.5.2 Computerized File Systems

Generating reports from manual file systems was slow and cumbersome. In fact, some business managers faced
government-imposed reporting requirements that required weeks of intensive effort each quarter, even when a
well-designed manual system was used. Therefore, a data processing (DP) specialist was hired to create a
computer-based system that would track data and produce required reports.

Initially, the computer files within the file system were similar to the manual files. A simple example of a customer data file
for a small insurance company is shown in Figure 1.3. (You will discover later that the file structure shown in Figure 1.3,
although typically found in early file systems, is unsatisfactory for a database.)

The description of computer files requires a specialized vocabulary. Every discipline develops its own jargon to enable
its practitioners to communicate clearly. The basic file vocabulary shown in Table 1.2 will help you to understand
subsequent discussions more easily.

11D A T A B A S E S Y S T E M S

TABLE
1.2

Basic File Terminology

TERM DEFINITION
Data “Raw” facts, such as a telephone number, a birth date, a customer name, and a year-to-date (YTD)

sales value. Data have little meaning unless they have been organized in some logical manner.
Field A character or group of characters (alphabetic or numeric) that has a specific meaning. A field is

used to define and store data.
Record A logically connected set of one or more fields that describes a person, place, or thing. For example,

the fields that constitute a record for a customer might consist of the customer’s name, address,
phone number, date of birth, credit limit, and unpaid balance.

File A collection of related records. For example, a file might contain data about the students currently
enrolled at Gigantic University.

Using the proper file terminology given in Table 1.2, you can identify the file components shown in Figure 1.3. The
CUSTOMER file shown in Figure 1.3 contains 10 records. Each record is composed of nine fields: C_NAME,
C_PHONE, C_ADDRESS, C_ZlP, A_NAME, A_PHONE, TP, AMT, and REN. The 10 records are stored in a named
file. Because the file in Figure 1.3 contains customer data for the insurance company, its filename is CUSTOMER.

When business users wanted data from the computerized file, they sent requests for the data to the DP specialist. For each
request, the DP specialist had to create programs to retrieve the data from the file, manipulate it in whatever manner the
user had requested, and present it as a printed report. If a request was for a report that had been previously run, the DP
specialist could rerun the existing program and provide the printed results to the user. As other business users saw the
new and innovative ways that the customer data were being reported, they wanted to be able to view their data in similar
fashions. This generated more requests for the DP specialist to create more computerized files of other business data,
which in turn meant that more data management programs had to be created, and more requests for reports. For
example, the sales department at the insurance company created a file named SALES, which helped track daily sales

C_NAME = Customer name A_NAME = Agent name
C_PHONE = Customer phone A_PHONE = Agent phone
C_ADDRESS = Customer address TP = Insurance type
C_ZIP = Customer zip code AMT = Insurance policy amount, in thousands of $

REN = Insurance renewal date

FIGURE
1.3

Contents of the CUSTOMER file

O n l i n e C o n t e n t

The databases used in each chapter are available in the Premium Website for this book. Throughout the book,
Online Content boxes highlight material related to chapter content located in the Premium Website.

12 C H A P T E R 1

efforts. The sales department’s success was so obvious that the personnel department manager demanded access to the
DP specialist to automate payroll processing and other personnel functions. Consequently, the DP specialist was asked
to create the AGENT file shown in Figure 1.4. The data in the AGENT file were used to write checks, keep track of taxes
paid, and summarize insurance coverage, among other tasks.

As more and more computerized files were developed, the problems with this type of file system became apparent.
While these problems are explored in detail in the next section, briefly, the problems centered on having lots of data
files that contained related, often overlapping, data with no means of controlling or managing the data consistently
across all of the files. As shown in Figure 1.5, each file in the system used its own application program to store,
retrieve, and modify data. And each file was owned by the individual or the department that commissioned its creation.

The advent of computer files to store company data was significant; it not only established a landmark in the use of
computer technologies but also represented a huge step forward in a business’s ability to process data. Previously, users
had direct, hands-on access to all of the business data. But they didn’t have the tools to convert those data into the
information that they needed. The creation of computerized file systems gave them improved tools for manipulating
the company data that allowed them to create new information. However, it had the additional effect of introducing

A_NAME = Agent name YTD_PAY = Year-to-date pay
A_PHONE = Agent phone YTD_FIT = Year-to-date federal income tax paid
A_ADDRESS = Agent address YTD_FICA = Year-to-date Social Security taxes paid
ZIP = Agent zip code YTD_SLS = Year-to-date sales
HIRED = Agent date of hire DEP = Number of dependents

FIGURE
1.4

Contents of the AGENT file

Sales department Personnel department

File
Management

Programs

File
Management

Programs

File
Report

Programs

File
Report

Programs

AGENT
file

SALES
file

CUSTOMER
file

FIGURE
1.5

A simple file system

13D A T A B A S E S Y S T E M S

a schism between the end users and their data. The desire to close the gap between the end users and the data
influenced the development of all types of computer technologies, system designs, and uses (and misuse) of many
technologies and techniques. However, such developments also created a split between the ways DP specialists and
end users viewed the data.

� From the DP specialist’s perspective, the computer files within the file system were created to be similar to the
manual files. Data management programs were created to add to, update, and delete data from the file.

� From the end user’s perspective, the systems separated the users from the data. As the users’ competitive
environment pushed them to make more and more decisions in less and less time, the delay from when the
users conceived of a new way to create information from the data to when the DP specialist could create the
programs to generate that information was a source of great frustration.

1.5.3 File System Redux: Modern End-User Productivity Tools

The users’ desire for direct, hands-on access to the data helped to fuel the adoption of personal computers for business
use. Although not directly related to file system evolution, the ubiquitous use of personal productivity tools can
introduce the same problems as the old file systems.

Personal computer spreadsheet programs such as Microsoft Excel are widely used by business users, and allow the user
to enter data in a series of rows and columns so that the data can be manipulated using a wide range of functions. The
popularity of spreadsheet applications has enabled users to conduct sophisticated analysis of data that has greatly
enhanced their ability to understand the data and make better decisions. Unfortunately, as in the old adage “When the
only tool you have is a hammer, every problem looks like a nail,” users have become so adept at working with
spreadsheets, they tend to use them to complete tasks for which spreadsheets are not appropriate.

One of the common misuses of spreadsheets is as a substitute for a database. Interestingly, end users often take the
limited data to which they have direct access and place it in a spreadsheet in a format similar to that of the traditional,
manual data storage systems—which is precisely what the early DP specialists did when creating computerized data
files. Due to the large number of users with spreadsheets, each making separate copies of the data, the resulting “file
system” of spreadsheets suffers from the same problems as the file systems created by the early DP specialists, which
are outlined in the next section.

1.6 PROBLEMS WITH FILE SYSTEM DATA PROCESSING

The file system method of organizing and managing data was a definite improvement over the manual system, and the
file system served a useful purpose in data management for over two decades—a very long time in the computer era.
Nonetheless, many problems and limitations became evident in this approach. A critique of the file system method
serves two major purposes:

� Understanding the shortcomings of the file system enables you to understand the development of modern
databases.

� Many of the problems are not unique to file systems. Failure to understand such problems is likely to lead to
their duplication in a database environment, even though database technology makes it easy to avoid them.

The following problems associated with file systems, whether created by DP specialists or through a series of
spreadsheets, severely challenge the types of information that can be created from the data as well as the accuracy of
the information:

� Lengthy development times. The first and most glaring problem with the file system approach is that even
the simplest data-retrieval task requires extensive programming. With the older file systems, programmers had
to specify what must be done and how it was to be done. As you will learn in upcoming chapters, modern
databases use a nonprocedural data manipulation language that allows the user to specify what must be done
without specifying how it must be done.

14 C H A P T E R 1

� Difficulty of getting quick answers. The need to write programs to produce even the simplest reports makes
ad hoc queries impossible. Harried DP specialists who work with mature file systems often receive numerous
requests for new reports. They are often forced to say that the report will be ready “next week” or even “next
month.” If you need the information now, getting it next week or next month will not serve your information
needs.

� Complex system administration. System administration becomes more difficult as the number of files in the
system expands. Even a simple file system with a few files requires creating and maintaining several file
management programs (each file must have its own file management programs that allow the user to add,
modify, and delete records; to list the file contents; and to generate reports). Because ad hoc queries are not
possible, the file reporting programs can multiply quickly. The problem is compounded by the fact that each
department in the organization “owns” its data by creating its own files.

� Lack of security and limited data sharing. Another fault of a file system data repository is a lack of security
and limited data sharing. Data sharing and security are closely related. Sharing data among multiple
geographically dispersed users introduces a lot of security risks. In terms of spreadsheet data, while many
spreadsheet programs provide rudimentary security options, they are not always used, and even when they are
used, they are insufficient for robust data sharing among users. In terms of the creation of data management
and reporting programs, security and data-sharing features are difficult to program and are, therefore, often
omitted in a file system environment. Such features include effective password protection, the ability to lock out
parts of files or parts of the system itself, and other measures designed to safeguard data confidentiality. Even
when an attempt is made to improve system and data security, the security devices tend to be limited in scope
and effectiveness.

� Extensive programming. Making changes to an existing file structure can be difficult in a file system environ-
ment. For example, changing just one field in the original CUSTOMER file would require a program that:

1. Reads a record from the original file.

2. Transforms the original data to conform to the new structure’s storage requirements.

3. Writes the transformed data into the new file structure.

4. Repeats steps 2 to 4 for each record in the original file.

In fact, any change to a file structure, no matter how minor, forces modifications in all of the programs that use the
data in that file. Modifications are likely to produce errors (bugs), and additional time is spent using a debugging process
to find those errors. Those limitations, in turn, lead to problems of structural and data dependence.

1.6.1 Structural and Data Dependence

A file system exhibits structural dependence, which means that access to a file is dependent on its structure. For
example, adding a customer date-of-birth field to the CUSTOMER file shown in Figure 1.3 would require the four steps
described in the previous section. Given this change, none of the previous programs will work with the new
CUSTOMER file structure. Therefore, all of the file system programs must be modified to conform to the new file
structure. In short, because the file system application programs are affected by change in the file structure, they exhibit
structural dependence. Conversely, structural independence exists when it is possible to make changes in the file
structure without affecting the application program’s ability to access the data.

Even changes in the characteristics of data, such as changing a field from integer to decimal, require changes in all the
programs that access the file. Because all data access programs are subject to change when any of the file’s data
storage characteristics change (that is, changing the data type), the file system is said to exhibit data dependence.
Conversely, data independence exists when it is possible to make changes in the data storage characteristics without
affecting the application program’s ability to access the data.

The practical significance of data dependence is the difference between the logical data format (how the human
being views the data) and the physical data format (how the computer must work with the data). Any program that
accesses a file system’s file must tell the computer not only what to do but also how to do it. Consequently, each

15D A T A B A S E S Y S T E M S

program must contain lines that specify the opening of a specific file type, its record specification, and its field
definitions. Data dependence makes the file system extremely cumbersome from the point of view of a programmer
and database manager.

1.6.2 Data Redundancy

The file system’s structure makes it difficult to combine data from multiple sources, and its lack of security renders the
file system vulnerable to security breaches. The organizational structure promotes the storage of the same basic data
in different locations. (Database professionals use the term islands of information for such scattered data locations.)
The dispersion of data is exacerbated by the use of spreadsheets to store data. In a file system, the entire sales
department would share access to the SALES data file through the data management and reporting programs created
by the DP specialist. With the use of spreadsheets, it is possible for each member of the sales department to create
his or her own copy of the sales data. Because it is unlikely that data stored in different locations will always be updated
consistently, the islands of information often contain different versions of the same data. For example, in Figures 1.3
and 1.4, the agent names and phone numbers occur in both the CUSTOMER and the AGENT files. You only need
one correct copy of the agent names and phone numbers. Having them occur in more than one place produces data
redundancy. Data redundancy exists when the same data are stored unnecessarily at different places.

Uncontrolled data redundancy sets the stage for:

� Poor data security. Having multiple copies of data increases the chances for a copy of the data to be
susceptible to unauthorized access. Chapter 15, Database Administration and Security, explores the issues and
techniques associated with securing data.

� Data inconsistency. Data inconsistency exists when different and conflicting versions of the same data appear
in different places. For example, suppose you change an agent’s phone number or address in the AGENT file.
If you forget to make corresponding changes in the CUSTOMER file, the files contain different data for the
same agent. Reports will yield inconsistent results that depend on which version of the data is used.

Data entry errors are more likely to occur when complex entries (such as 10-digit phone numbers) are made
in several different files and/or recur frequently in one or more files. In fact, the CUSTOMER file shown in
Figure 1.3 contains just such an entry error: the third record in the CUSTOMER file has a transposed digit in
the agent’s phone number (615-882-2144 rather than 615-882-1244).

It is possible to enter a nonexistent sales agent’s name and phone number into the CUSTOMER file, but
customers are not likely to be impressed if the insurance agency supplies the name and phone number of an
agent who does not exist. Should the personnel manager allow a nonexistent agent to accrue bonuses and
benefits? In fact, a data entry error such as an incorrectly spelled name or an incorrect phone number yields
the same kind of data integrity problems.

� Data anomalies. The dictionary defines anomaly as “an abnormality.” Ideally, a field value change should be
made in only a single place. Data redundancy, however, fosters an abnormal condition by forcing field value
changes in many different locations. Look at the CUSTOMER file in Figure 1.3. If agent Leah F. Hahn decides
to get married and move, the agent name, address, and phone number are likely to change. Instead of making
just a single name and/or phone/address change in a single file (AGENT), you must also make the change each
time that agent’s name, phone number, and address occur in the CUSTOMER file. You could be faced with

Note

Data that display data inconsistency are also referred to as data that lack data integrity.Data integrity is defined
as the condition in which all of the data in the database are consistent with the real-world events and conditions.
In other words, data integrity means that:

• Data are accurate—there are no data inconsistencies.

• Data are verifiable—the data will always yield consistent results.

16 C H A P T E R 1

the prospect of making hundreds of corrections, one for each of the customers served by that agent! The same
problem occurs when an agent decides to quit. Each customer served by that agent must be assigned a new
agent. Any change in any field value must be correctly made in many places to maintain data integrity. A data
anomaly develops when not all of the required changes in the redundant data are made successfully. The data
anomalies found in Figure 1.3 are commonly defined as follows:

- Update anomalies. If agent Leah F. Hahn has a new phone number, that number must be entered in each
of the CUSTOMER file records in which Ms. Hahn’s phone number is shown. In this case, only three
changes must be made. In a large file system, such a change might occur in hundreds or even thousands
of records. Clearly, the potential for data inconsistencies is great.

- Insertion anomalies. If only the CUSTOMER file existed, to add a new agent, you would also add a dummy
customer data entry to reflect the new agent’s addition. Again, the potential for creating data inconsistencies
would be great.

- Deletion anomalies. If you delete the customers Amy B. O’Brian, George Williams, and Olette K. Smith,
you will also delete John T. Okon’s agent data. Clearly, this is not desirable.

1.6.3 LACK OF DESIGN AND DATA-MODELING SKILLS

A new problem that has evolved with the use of personal productivity tools (such as spreadsheet and desktop databases)
is that users typically lack the knowledge of proper design and data-modeling skills. People naturally have an integrated
view of the data in their environment. For example, consider a student’s class schedule. The schedule probably contains
the student’s identification number and name, class code, class description, class credit hours, the name of the instructor
teaching the class, the class meeting days and times, and the class room number. In the mind of the student, these various
data items compose a single unit. If a student organization wanted to keep a record of the schedules of all of the
organization members, an end user might make a spreadsheet to store the schedule information. Even if the student makes
a foray into the realm of desktop databases, he or she is likely to create a structure composed of a single table that mimics
the structure of the schedule. As you will learn in the coming chapters, forcing this type of integrated data into a single
two-dimensional table structure is a poor data design that leads to a large degree of redundancy for several data items.

Data-modeling skills are also a vital part of the design process. It is important that the design that is created be properly
documented. Design documentation is necessary to facilitate communication among the database designer, the end
user, and the developer. Data modeling, as introduced later in this text, is the most common method of documenting
database designs. Using a standardized data-modeling technique ensures that the data model fulfills its role in facilitating
communication among the designer, user, and developer. The data model also provides an invaluable resource when
maintaining or modifying a database as business requirements change. The data designs created by end users are rarely
documented and never with an appropriate standardized data-modeling technique. On a positive note, however, if you
are reading this book, then you are engaged in the type of training that is necessary to develop the skills in database
design and data modeling that it takes to successfully design a database that ensures consistency of the data, enforces
integrity, and provides a stable and flexible platform for providing users with timely, accurate information.

1.7 DATABASE SYSTEMS

The problems inherent in file systems make using a database system very desirable. Unlike the file system, with its
many separate and unrelated files, the database system consists of logically related data stored in a single logical data
repository. (The “logical” label reflects the fact that, although the data repository appears to be a single unit to the end
user, its contents may actually be physically distributed among multiple data storage facilities and/or locations.) Because
the database’s data repository is a single logical unit, the database represents a major change in the way end-user data
are stored, accessed, and managed. The database’s DBMS, shown in Figure 1.6, provides numerous advantages over
file system management, shown in Figure 1.5, by making it possible to eliminate most of the file system’s data
inconsistency, data anomaly, data dependence, and structural dependence problems. Better yet, the current generation

17D A T A B A S E S Y S T E M S

of DBMS software stores not only the data structures, but also the relationships between those structures and the
access paths to those structures—all in a central location. The current generation of DBMS software also takes care
of defining, storing, and managing all required access paths to those components.

Remember that the DBMS is just one of several crucial components of a database system. The DBMS may even be
referred to as the database system’s heart. However, just as it takes more than a heart to make a human being function,
it takes more than a DBMS to make a database system function. In the sections that follow, you’ll learn what a database
system is, what its components are, and how the DBMS fits into the database system picture.

1.7.1 The Database System Environment

The term database system refers to an organization of components that define and regulate the collection, storage,
management, and use of data within a database environment. From a general management point of view, the database
system is composed of the five major parts shown in Figure 1.7: hardware, software, people, procedures, and data.

Let’s take a closer look at the five components shown in Figure 1.7:

� Hardware. Hardware refers to all of the system’s physical devices; for example, computers (PCs, workstations,
servers, and supercomputers), storage devices, printers, network devices (hubs, switches, routers, fiber optics),
and other devices (automated teller machines, ID readers, and so on).

A Database System

Personnel dept.

A File System

Sales dept. Accounting dept.

Database

Accounts
Inventory

Sales
Customers
Employees

AccountsEmployees Customers Sales

DBMS

Personnel dept.

Sales dept.

Accounting dept.

FIGURE
1.6

Contrasting database and file systems

18 C H A P T E R 1

� Software. Although the most readily identified software is the DBMS itself, to make the database system
function fully, three types of software are needed: operating system software, DBMS software, and application
programs and utilities.

- Operating system software manages all hardware components and makes it possible for all other software
to run on the computers. Examples of operating system software include Microsoft Windows, Linux, Mac
OS, UNIX, and MVS.

- DBMS software manages the database within the database system. Some examples of DBMS software
include Microsoft’s SQL Server, Oracle Corporation’s Oracle, Sun’s MySQL, and IBM’s DB2.

- Application programs and utility software are used to access and manipulate data in the DBMS and to
manage the computer environment in which data access and manipulation take place. Application
programs are most commonly used to access data found within the database to generate reports,
tabulations, and other information to facilitate decision making. Utilities are the software tools used to help
manage the database system’s computer components. For example, all of the major DBMS vendors now
provide graphical user interfaces (GUIs) to help create database structures, control database access, and
monitor database operations.

� People. This component includes all users of the database system. On the basis of primary job functions, five
types of users can be identified in a database system: system administrators, database administrators, database
designers, system analysts and programmers, and end users. Each user type, described below, performs both
unique and complementary functions.

- System administrators oversee the database system’s general operations.

- Database administrators, also known as DBAs, manage the DBMS and ensure that the database is
functioning properly. The DBA’s role is sufficiently important to warrant a detailed exploration in Chapter
15, Database Administration and Security.

- Database designers design the database structure. They are, in effect, the database architects. If the
database design is poor, even the best application programmers and the most dedicated DBAs cannot
produce a useful database environment. Because organizations strive to optimize their data resources, the
database designer’s job description has expanded to cover new dimensions and growing responsibilities.

DBMS

DBMS utilities

Analysts

ProgrammersEnd users

use write

designs

Database
designer

Database
administrator

manages

access

Hardware

System
administrator

writes
and

enforces

Application
programs

Procedures
and standards

Data

supervises

FIGURE
1.7

The database system environment

19D A T A B A S E S Y S T E M S

- System analysts and programmers design and implement the application programs. They design and
create the data entry screens, reports, and procedures through which end users access and manipulate the
database’s data.

- End users are the people who use the application programs to run the organization’s daily operations. For
example, salesclerks, supervisors, managers, and directors are all classified as end users. High-level end
users employ the information obtained from the database to make tactical and strategic business decisions.

� Procedures. Procedures are the instructions and rules that govern the design and use of the database system.
Procedures are a critical, although occasionally forgotten, component of the system. Procedures play an
important role in a company because they enforce the standards by which business is conducted within the
organization and with customers. Procedures are also used to ensure that there is an organized way to monitor
and audit both the data that enter the database and the information that is generated through the use of
those data.

� Data. The word data covers the collection of facts stored in the database. Because data are the raw material
from which information is generated, the determination of what data are to be entered into the database and
how those data are to be organized is a vital part of the database designer’s job.

A database system adds a new dimension to an organization’s management structure. Just how complex this
managerial structure is depends on the organization’s size, its functions, and its corporate culture. Therefore, database
systems can be created and managed at different levels of complexity and with varying adherence to precise standards.
For example, compare a local movie rental system with a national insurance claims system. The movie rental system
may be managed by two people, the hardware used is probably a single PC, the procedures are probably simple, and
the data volume tends to be low. The national insurance claims system is likely to have at least one systems
administrator, several full-time DBAs, and many designers and programmers; the hardware probably includes several
servers at multiple locations throughout the United States; the procedures are likely to be numerous, complex, and
rigorous; and the data volume tends to be high.

In addition to the different levels of database system complexity, managers must also take another important fact into
account: database solutions must be cost-effective as well as tactically and strategically effective. Producing a
million-dollar solution to a thousand-dollar problem is hardly an example of good database system selection or of good
database design and management. Finally, the database technology already in use is likely to affect the selection of a
database system.

1.7.2 DBMS Functions

A DBMS performs several important functions that guarantee the integrity and consistency of the data in the database.
Most of those functions are transparent to end users, and most can be achieved only through the use of a DBMS. They
include data dictionary management, data storage management, data transformation and presentation, security
management, multiuser access control, backup and recovery management, data integrity management, database
access languages and application programming interfaces, and database communication interfaces. Each of these
functions is explained below.

� Data dictionary management. The DBMS stores definitions of the data elements and their relationships
(metadata) in a data dictionary. In turn, all programs that access the data in the database work through the
DBMS. The DBMS uses the data dictionary to look up the required data component structures and
relationships, thus relieving you from having to code such complex relationships in each program. Additionally,
any changes made in a database structure are automatically recorded in the data dictionary, thereby freeing you
from having to modify all of the programs that access the changed structure. In other words, the DBMS
provides data abstraction, and it removes structural and data dependence from the system. For example,
Figure 1.8 shows how Microsoft SQL Server Express presents the data definition for the CUSTOMER table.

� Data storage management. The DBMS creates and manages the complex structures required for data storage,
thus relieving you from the difficult task of defining and programming the physical data characteristics. A

20 C H A P T E R 1

modern DBMS provides storage not only for the data, but also for related data entry forms or screen
definitions, report definitions, data validation rules, procedural code, structures to handle video and picture
formats, and so on. Data storage management is also important for database performance tuning.
Performance tuning relates to the activities that make the database perform more efficiently in terms of
storage and access speed. Although the user sees the database as a single data storage unit, the DBMS actually
stores the database in multiple physical data files. (See Figure 1.9.) Such data files may even be stored on
different storage media. Therefore, the DBMS doesn’t have to wait for one disk request to finish before the
next one starts. In other words, the DBMS can fulfill database requests concurrently. Data storage management
and performance tuning issues are addressed in Chapter 11, Database Performance Tuning and Query
Optimization.

� Data transformation and presentation. The DBMS transforms entered data to conform to required data
structures. The DBMS relieves you of the chore of making a distinction between the logical data format and
the physical data format. That is, the DBMS formats the physically retrieved data to make it conform to the
user’s logical expectations. For example, imagine an enterprise database used by a multinational company. An
end user in England would expect to enter data such as July 11, 2010, as “11/07/2010.” In contrast, the
same date would be entered in the United States as “07/11/2010.” Regardless of the data presentation
format, the DBMS must manage the date in the proper format for each country.

� Security management. The DBMS creates a security system that enforces user security and data privacy.
Security rules determine which users can access the database, which data items each user can access, and
which data operations (read, add, delete, or modify) the user can perform. This is especially important in

FIGURE
1.8

Illustrating metadata with Microsoft SQL Server Express

Metadata

21D A T A B A S E S Y S T E M S

multiuser database systems. Chapter 15, Database Administration and Security, examines data security and
privacy issues in greater detail. All database users may be authenticated to the DBMS through a username and
password or through biometric authentication such as a fingerprint scan. The DBMS uses this information to
assign access privileges to various database components such as queries and reports.

� Multiuser access control. To provide data integrity and data consistency, the DBMS uses sophisticated
algorithms to ensure that multiple users can access the database concurrently without compromising the
integrity of the database. Chapter 10, Transaction Management and Concurrency Control, covers the details
of the multiuser access control.

� Backup and recovery management. The DBMS provides backup and data recovery to ensure data safety and
integrity. Current DBMS systems provide special utilities that allow the DBA to perform routine and special
backup and restore procedures. Recovery management deals with the recovery of the database after a failure,
such as a bad sector in the disk or a power failure. Such capability is critical to preserving the database’s
integrity. Chapter 15 covers backup and recovery issues.

� Data integrity management. The DBMS promotes and enforces integrity rules, thus minimizing data
redundancy and maximizing data consistency. The data relationships stored in the data dictionary are used to
enforce data integrity. Ensuring data integrity is especially important in transaction-oriented database systems.
Data integrity and transaction management issues are addressed in Chapter 7, Introduction to Structured
Query Language (SQL), and Chapter 10.

� Database access languages and application programming interfaces. The DBMS provides data access through
a query language. A query language is a nonprocedural language—one that lets the user specify what must
be done without having to specify how it is to be done. Structured Query Language (SQL) is the de facto

FIGURE
1.9

Illustrating data storage management with Oracle

The ORALAB database is
actually stored in nine
datafiles located on the C:
drive of the database server
computer.

The Oracle DBA Studio
Management interface also
shows the amount of space
used by each of the datafiles
that constitute the single
logical database.

Database Name: ORALAB.MTSU.EDU

The Oracle DBA Studio Administrator GUI shows the data storage
management characteristics for the ORALAB database.

22 C H A P T E R 1

query language and data access standard supported by the majority of DBMS vendors. Chapter 7, Introduction
to Structured Query Language (SQL), and Chapter 8, Advanced SQL, address the use of SQL. The DBMS also
provides application programming interfaces to procedural languages such as COBOL, C, Java, Visual
Basic.NET, and C#. In addition, the DBMS provides administrative utilities used by the DBA and the database
designer to create, implement, monitor, and maintain the database.

� Database communication interfaces. Current-generation DBMSs accept end-user requests via multiple,
different network environments. For example, the DBMS might provide access to the database via the Internet
through the use of Web browsers such as Mozilla Firefox or Microsoft Internet Explorer. In this environment,
communications can be accomplished in several ways:

- End users can generate answers to queries by filling in screen forms through their preferred Web browser.

- The DBMS can automatically publish predefined reports on a Website.

- The DBMS can connect to third-party systems to distribute information via e-mail or other productivity
applications.

Database communication interfaces are examined in greater detail in Chapter 12, Distributed Database Management
Systems, in Chapter 14, Database Connectivity and Web Technologies, and in Appendix I, Databases in Electronic
Commerce. (Appendixes are found in the Premium Website.)

1.7.3 Managing the Database System: A Shift in Focus

The introduction of a database system over the file system provides a framework in which strict procedures and
standards can be enforced. Consequently, the role of the human component changes from an emphasis on
programming (in the file system) to a focus on the broader aspects of managing the organization’s data resources and
on the administration of the complex database software itself.

The database system makes it possible to tackle far more sophisticated uses of the data resources, as long as the database
is designed to make use of that available power. The kinds of data structures created within the database and the extent
of the relationships among them play a powerful role in determining the effectiveness of the database system.

Although the database system yields considerable advantages over previous data management approaches, database
systems do carry significant disadvantages. For example:

� Increased costs. Database systems require sophisticated hardware and software and highly skilled personnel.
The cost of maintaining the hardware, software, and personnel required to operate and manage a database
system can be substantial. Training, licensing, and regulation compliance costs are often overlooked when
database systems are implemented.

� Management complexity. Database systems interface with many different technologies and have a significant
impact on a company’s resources and culture. The changes introduced by the adoption of a database system
must be properly managed to ensure that they help advance the company’s objectives. Given the fact that
database systems hold crucial company data that are accessed from multiple sources, security issues must be
assessed constantly.

NOTE

Why a Spreadsheet Is Not a Database

While a spreadsheet allows for the creation of multiple tables, it does not support even the most basic database
functionality such as support for self-documentation through metadata, enforcement of data types or domains
to ensure consistency of data within a column, defined relationships among tables, or constraints to ensure
consistency of data across related tables. Most users lack the necessary training to recognize the limitations of
spreadsheets for these types of tasks.

23D A T A B A S E S Y S T E M S

� Maintaining currency. To maximize the efficiency of the database system, you must keep your system current.
Therefore, you must perform frequent updates and apply the latest patches and security measures to all
components. Because database technology advances rapidly, personnel training costs tend to be significant.

� Vendor dependence. Given the heavy investment in technology and personnel training, companies might be
reluctant to change database vendors. As a consequence, vendors are less likely to offer pricing point
advantages to existing customers, and those customers might be limited in their choice of database system
components.

� Frequent upgrade/replacement cycles. DBMS vendors frequently upgrade their products by adding new
functionality. Such new features often come bundled in new upgrade versions of the software. Some of these
versions require hardware upgrades. Not only do the upgrades themselves cost money, but it also costs money
to train database users and administrators to properly use and manage the new features.

Now that we have considered what a database and DBMS are, and why they are necessary, it is natural for our
thoughts to turn to developing the skills of database design. However, before we can create a design, we must know
what tools are at our disposal. Throughout this chapter, we have generalized the discussion of database technology
such that it appears that there is a single, common approach to database design. As a database designer and developer,
however, you need to understand that there are different approaches, and you need to know how these approaches
influence the designs that you can create and how those designs are modeled.

24 C H A P T E R 1

S u m m a r y

◗ Data are raw facts. Information is the result of processing data to reveal its meaning. Accurate, relevant, and timely
information is the key to good decision making, and good decision making is the key to organizational survival in
a global environment.

◗ Data are usually stored in a database. To implement a database and to manage its contents, you need a database
management system (DBMS). The DBMS serves as the intermediary between the user and the database. The
database contains the data you have collected and “data about data,” known as metadata.

◗ Database design defines the database structure. A well-designed database facilitates data management and
generates accurate and valuable information. A poorly designed database can lead to bad decision making, and bad
decision making can lead to the failure of an organization.

◗ Databases evolved from manual and then computerized file systems. In a file system, data are stored in independent
files, each requiring its own data management programs. Although this method of data management is largely
outmoded, understanding its characteristics makes database design easier to comprehend.

◗ Some limitations of file system data management are that it requires extensive programming, system administration
can be complex and difficult, making changes to existing structures is difficult, and security features are likely to be
inadequate. Also, independent files tend to contain redundant data, leading to problems of structural and data
dependence.

◗ Database management systems were developed to address the file system’s inherent weaknesses. Rather than
depositing data in independent files, a DBMS presents the database to the end user as a single data repository. This
arrangement promotes data sharing, thus eliminating the potential problem of islands of information. In addition,
the DBMS enforces data integrity, eliminates redundancy, and promotes data security.

K e y T e r m s

ad hoc query, 8

centralized database, 9

data, 5

data anomaly, 17

data dependence, 15

data dictionary, 20

data inconsistency, 8

data independence, 15

data integrity, 16

data management, 7

data processing (DP) specialist, 11

data quality, 9

data redundancy, 16

data warehouse, 9

database, 7

database design, 10

database management
system (DBMS), 7

database system, 18

desktop database, 9

distributed database, 9

enterprise database, 9

Extensible Markup
Language (XML), 10

field, 12

file, 12

information, 5

islands of information, 16

knowledge, 7

logical data format, 15

metadata, 7

multiuser database, 9

operational database, 9

performance tuning, 21

physical data format, 15

production database, 9

query, 8

query language, 22

query result set, 8

record, 12

semistructured data, 10

single-user database, 9

structural dependence, 15

structural independence, 15

structured data, 9

Structured Query
Language (SQL), 22

transactional database, 9

unstructured data, 9

workgroup database, 9

XML database, 10

25D A T A B A S E S Y S T E M S

R e v i e w Q u e s t i o n s

1. Define each of the following terms:

a. data

b. field

c. record

d. file

2. What is data redundancy, and which characteristics of the file system can lead to it?

3. What is data independence, and why is it lacking in file systems?

4. What is a DBMS, and what are its functions?

5. What is structural independence, and why is it important?

6. Explain the difference between data and information.

7. What is the role of a DBMS, and what are its advantages? What are its disadvantages?

8. List and describe the different types of databases.

9. What are the main components of a database system?

10. What are metadata?

11. Explain why database design is important.

12. What are the potential costs of implementing a database system?

13. Use examples to compare and contrast unstructured and structured data. Which type is more prevalent in a
typical business environment?

14. What are some basic database functions that a spreadsheet cannot perform?

15. What common problems does a collection of spreadsheets created by end users share with the typical file system?

16. Explain the significance of the loss of direct, hands-on access to business data that end users experienced with
the advent of computerized data repositories.

P r o b l e m s

O n l i n e C o n t e n t

Answers to selected ReviewQuestions and Problems for this chapter are contained in the PremiumWebsite for
this book.

O n l i n e C o n t e n t

The file structures you see in this problem set are simulated in a Microsoft Access database named
Ch01_Problems, available in the Premium Website for this book.

26 C H A P T E R 1

Given the file structure shown in Figure P1.1, answer Problems 1−4.

1. How many records does the file contain? How many fields are there per record?

2. What problem would you encounter if you wanted to produce a listing by city? How would you solve this problem
by altering the file structure?

3. If you wanted to produce a listing of the file contents by last name, area code, city, state, or zip code, how would
you alter the file structure?

4. What data redundancies do you detect? How could those redundancies lead to anomalies?

5. Identify and discuss the serious data redundancy problems exhibited by the file structure shown in Figure P1.5.

6. Looking at the EMP_NAME and EMP_PHONE contents in Figure P1.5, what change(s) would you recommend?

7. Identify the various data sources in the file you examined in Problem 5.

8. Given your answer to Problem 7, what new files should you create to help eliminate the data redundancies found
in the file shown in Figure P1.5?

FIGURE
P1.1

The file structure for Problems 1–4

FIGURE
P1.5

The file structure for Problems 5–8

27D A T A B A S E S Y S T E M S

9. Identify and discuss the serious data redundancy problems exhibited by the file structure shown in Figure P1.9.
(The file is meant to be used as a teacher class assignment schedule. One of the many problems with data
redundancy is the likely occurrence of data inconsistencies—two different initials have been entered for the
teacher named Maria Cordoza.)

10. Given the file structure shown in Figure P1.9, what problem(s) might you encounter if building KOM were deleted?

FIGURE
P1.9

The file structure for Problems 9–10

28 C H A P T E R 1

Preview

Data Models

In this chapter, you will learn:

� About data modeling and why data models are important

� About the basic data-modeling building blocks

� What business rules are and how they influence database design

� How the major data models evolved

� How data models can be classified by level of abstraction

This chapter examines data modeling. Data modeling is the first step in the database design

journey, serving as a bridge between real-world objects and the database that resides in the

computer.

One of the most vexing problems of database design is that designers, programmers, and

end users see data in different ways. Consequently, different views of the same data can lead

to database designs that do not reflect an organization’s actual operation, thus failing to

meet end-user needs and data efficiency requirements. To avoid such failures, database

designers must obtain a precise description of the nature of the data and of the many uses

of that data within the organization. Communication among database designers, program-

mers, and end users should be frequent and clear. Data modeling clarifies such communi-

cation by reducing the complexities of database design to more easily understood

abstractions that define entities and the relations among them.

First, you will learn what some of the basic data-modeling concepts are and how current

data models developed from earlier models. Tracing the development of those database

models will help you understand the database design and implementation issues that are

addressed in the rest of this book. Second, you will be introduced to the entity

relationship diagram (ERD) as a data-modeling tool. ER diagrams can be drawn using a

variety of notations. Within this chapter, you will be introduced to the traditional Chen

notation, the more current Crow’s Foot notation, and the newer class diagram notation,

which is part of the Unified Modeling Language (UML). Finally, you will learn how various

degrees of data abstraction help reconcile varying views of the same data.

2

T
W

O

2.1 DATA MODELING AND DATA MODELS

Database design focuses on how the database structure will be used to store and manage end-user data. Data modeling,
the first step in designing a database, refers to the process of creating a specific data model for a determined problem
domain. (A problem domain is a clearly defined area within the real-world environment, with well-defined scope and
boundaries, that is to be systematically addressed.) A data model is a relatively simple representation, usually
graphical, of more complex real-world data structures. In general terms, a model is an abstraction of a more complex
real-world object or event. A model’s main function is to help you understand the complexities of the real-world
environment. Within the database environment, a data model represents data structures and their characteristics,
relations, constraints, transformations, and other constructs with the purpose of supporting a specific problem domain.

Data modeling is an iterative, progressive process. You start with a simple understanding of the problem domain, and
as your understanding of the problem domain increases, so does the level of detail of the data model. Done properly,
the final data model is in effect a “blueprint” containing all the instructions to build a database that will meet all end-user
requirements. This blueprint is narrative and graphical in nature, meaning that it contains both text descriptions in
plain, unambiguous language and clear, useful diagrams depicting the main data elements.

Traditionally, database designers relied on good judgment to help them develop a good data model. Unfortunately,
good judgment is often in the eye of the beholder, and it often develops after much trial and error. For example, if each
of the students in this class has to create a data model for a video store, it’s very likely that each of them will come
up with a different model. Which one would be the correct one? The simple answer is “the one that meets all the
end-user requirements,” and there may be more than one correct solution! Fortunately, database designers make use
of existing data-modeling constructs and powerful database design tools that substantially diminish the potential for
errors in database modeling. In the following sections, you will learn how existing data models are used to represent
real-world data and how the different degrees of data abstraction facilitate data modeling. For example, if each student
in a class has to create a data model for a video store, it’s very likely that each will come up with a different model.

2.2 THE IMPORTANCE OF DATA MODELS

Data models can facilitate interaction among the designer, the applications programmer, and the end user. A
well-developed data model can even foster improved understanding of the organization for which the database design
is developed. In short, data models are a communication tool. This important aspect of data modeling was summed
up neatly by a client whose reaction was as follows: “I created this business, I worked with this business for years, and
this is the first time I’ve really understood how all the pieces really fit together.”

Note

The terms data model and database model are often used interchangeably. In this book, the term database
model is used to refer to the implementation of a data model in a specific database system.

Note

An implementation-ready data model should contain at least the following components:

• A description of the data structure that will store the end-user data.

• A set of enforceable rules to guarantee the integrity of the data.

• A data manipulation methodology to support the real-world data transformations.

30 C H A P T E R 2

The importance of data modeling cannot be overstated. Data constitute the most basic information units employed by
a system. Applications are created to manage data and to help transform data into information. But data are viewed
in different ways by different people. For example, contrast the (data) view of a company manager with that of a
company clerk. Although the manager and the clerk both work for the same company, the manager is more likely to
have an enterprise-wide view of company data than the clerk.

Even different managers view data differently. For example, a company president is likely to take a universal view of
the data because he or she must be able to tie the company’s divisions to a common (database) vision. A purchasing
manager in the same company is likely to have a more restricted view of the data, as is the company’s inventory
manager. In effect, each department manager works with a subset of the company’s data. The inventory manager is
more concerned about inventory levels, while the purchasing manager is more concerned about the cost of items and
about personal/business relationships with the suppliers of those items.

Applications programmers have yet another view of data, being more concerned with data location, formatting, and
specific reporting requirements. Basically, applications programmers translate company policies and procedures from
a variety of sources into appropriate interfaces, reports, and query screens.

The different users and producers of data and information often reflect the “blind people and the elephant” analogy: the
blind person who felt the elephant’s trunk had quite a different view of the elephant from the one who felt the elephant’s
leg or tail. What is needed is a view of the whole elephant. Similarly, a house is not a random collection of rooms; if
someone is going to build a house, he or she should first have the overall view that is provided by blueprints. Likewise, a
sound data environment requires an overall database blueprint based on an appropriate data model.

When a good database blueprint is available, it does not matter that an applications programmer’s view of the data is
different from that of the manager and/or the end user. Conversely, when a good database blueprint is not available,
problems are likely to ensue. For instance, an inventory management program and an order entry system may use
conflicting product-numbering schemes, thereby costing the company thousands (or even millions) of dollars.

Keep in mind that a house blueprint is an abstraction; you cannot live in the blueprint. Similarly, the data model is an
abstraction; you cannot draw the required data out of the data model. Just as you are not likely to build a good house
without a blueprint, you are equally unlikely to create a good database without first creating an appropriate data model.

2.3 DATA MODEL BASIC BUILDING BLOCKS

The basic building blocks of all data models are entities, attributes, relationships, and constraints. An entity is anything
(a person, a place, a thing, or an event) about which data are to be collected and stored. An entity represents a
particular type of object in the real world. Because an entity represents a particular type of object, entities are
“distinguishable”—that is, each entity occurrence is unique and distinct. For example, a CUSTOMER entity would have
many distinguishable customer occurrences, such as John Smith, Pedro Dinamita, Tom Strickland, etc. Entities may
be physical objects, such as customers or products, but entities may also be abstractions, such as flight routes or musical
concerts.

An attribute is a characteristic of an entity. For example, a CUSTOMER entity would be described by attributes such
as customer last name, customer first name, customer phone, customer address, and customer credit limit. Attributes
are the equivalent of fields in file systems.

A relationship describes an association among entities. For example, a relationship exists between customers and
agents that can be described as follows: an agent can serve many customers, and each customer may be served by one
agent. Data models use three types of relationships: one-to-many, many-to-many, and one-to-one. Database designers
usually use the shorthand notations 1:M or 1..*, M:N or *..*, and 1:1 or 1..1, respectively. (Although the M:N notation
is a standard label for the many-to-many relationship, the label M:M may also be used.) The following examples
illustrate the distinctions among the three.

31D A T A M O D E L S

� One-to-many (1:M or 1..*) relationship. A painter paints many different paintings, but each one of them
is painted by only one painter. Thus, the painter (the “one”) is related to the paintings (the “many”). Therefore,
database designers label the relationship “PAINTER paints PAINTING” as 1:M. (Note that entity names are
often capitalized as a convention, so they are easily identified.) Similarly, a customer (the “one”) may generate
many invoices, but each invoice (the “many”) is generated by only a single customer. The “CUSTOMER
generates INVOICE” relationship would also be labeled 1:M.

� Many-to-many (M:N or *..*) relationship. An employee may learn many job skills, and each job skill may
be learned by many employees. Database designers label the relationship “EMPLOYEE learns SKILL” as M:N.
Similarly, a student can take many classes and each class can be taken by many students, thus yielding the M:N
relationship label for the relationship expressed by “STUDENT takes CLASS.”

� One-to-one (1:1 or 1..1) relationship. A retail company’s management structure may require that each of
its stores be managed by a single employee. In turn, each store manager, who is an employee, manages only
a single store. Therefore, the relationship “EMPLOYEE manages STORE” is labeled 1:1.

The preceding discussion identified each relationship in both directions; that is, relationships are bidirectional:

� One CUSTOMER can generate many INVOICEs.

� Each of the many INVOICEs is generated by only one CUSTOMER.

A constraint is a restriction placed on the data. Constraints are important because they help to ensure data integrity.
Constraints are normally expressed in the form of rules. For example:

� An employee’s salary must have values that are between 6,000 and 350,000.

� A student’s GPA must be between 0.00 and 4.00.

� Each class must have one and only one teacher.

How do you properly identify entities, attributes, relationships, and constraints? The first step is to clearly identify the
business rules for the problem domain you are modeling.

2.4 BUSINESS RULES

When database designers go about selecting or determining the entities, attributes, and relationships that will be used
to build a data model, they might start by gaining a thorough understanding of what types of data are in an
organization, how the data are used, and in what time frames they are used. But such data and information do not,
by themselves, yield the required understanding of the total business. From a database point of view, the collection of
data becomes meaningful only when it reflects properly defined business rules. A business rule is a brief, precise,
and unambiguous description of a policy, procedure, or principle within a specific organization. In a sense, business
rules are misnamed: they apply to any organization, large or small—a business, a government unit, a religious group,
or a research laboratory—that stores and uses data to generate information.

Business rules, derived from a detailed description of an organization’s operations, help to create and enforce actions
within that organization’s environment. Business rules must be rendered in writing and updated to reflect any change
in the organization’s operational environment.

Properly written business rules are used to define entities, attributes, relationships, and constraints. Any time you see
relationship statements such as “an agent can serve many customers, and each customer can be served by only one
agent,” you are seeing business rules at work. You will see the application of business rules throughout this book,
especially in the chapters devoted to data modeling and database design.

32 C H A P T E R 2

To be effective, business rules must be easy to understand and widely disseminated, to ensure that every person in the
organization shares a common interpretation of the rules. Business rules describe, in simple language, the main and
distinguishing characteristics of the data as viewed by the company. Examples of business rules are as follows:

� A customer may generate many invoices.

� An invoice is generated by only one customer.

� A training session cannot be scheduled for fewer than 10 employees or for more than 30 employees.

Note that those business rules establish entities, relationships, and constraints. For example, the first two business rules
establish two entities (CUSTOMER and INVOICE) and a 1:M relationship between those two entities. The third
business rule establishes a constraint (no fewer than 10 people and no more than 30 people), two entities (EMPLOYEE
and TRAINING), and a relationship between EMPLOYEE and TRAINING.

2.4.1 Discovering Business Rules

The main sources of business rules are company managers, policy makers, department managers, and written
documentation such as a company’s procedures, standards, and operations manuals. A faster and more direct source
of business rules is direct interviews with end users. Unfortunately, because perceptions differ, end users are sometimes
a less reliable source when it comes to specifying business rules. For example, a maintenance department mechanic
might believe that any mechanic can initiate a maintenance procedure, when actually only mechanics with inspection
authorization can perform such a task. Such a distinction might seem trivial, but it can have major legal consequences.
Although end users are crucial contributors to the development of business rules, it pays to verify end-user
perceptions. Too often, interviews with several people who perform the same job yield very different perceptions of
what the job components are. While such a discovery may point to “management problems,” that general diagnosis
does not help the database designer. The database designer’s job is to reconcile such differences and verify the results
of the reconciliation to ensure that the business rules are appropriate and accurate.

The process of identifying and documenting business rules is essential to database design for several reasons:

� They help to standardize the company’s view of data.

� They can be a communications tool between users and designers.

� They allow the designer to understand the nature, role, and scope of the data.

� They allow the designer to understand business processes.

� They allow the designer to develop appropriate relationship participation rules and constraints and to create
an accurate data model.

Of course, not all business rules can be modeled. For example, a business rule that specifies that “no pilot can fly more
than 10 hours within any 24-hour period” cannot be modeled. However, such a business rule can be enforced by
application software.

2.4.2 Translating Business Rules into Data Model Components

Business rules set the stage for the proper identification of entities, attributes, relationships, and constraints. In the real
world, names are used to identify objects. If the business environment wants to keep track of the objects, there will be
specific business rules for them. As a general rule, a noun in a business rule will translate into an entity in the model,
and a verb (active or passive) associating nouns will translate into a relationship among the entities. For example, the
business rule “a customer may generate many invoices” contains two nouns (customer and invoices) and a verb
(generate) that associates the nouns. From this business rule, you could deduce that:

� Customer and invoice are objects of interest for the environment and should be represented by their respective
entities.

� There is a “generate” relationship between customer and invoice.

33D A T A M O D E L S

To properly identify the type of relationship, you should consider that relationships are bidirectional; that is, they go
both ways. For example, the business rule “a customer may generate many invoices” is complemented by the business
rule “an invoice is generated by only one customer.” In that case, the relationship is one-to-many (1:M). Customer is
the “1” side, and invoice is the “many” side.

As a general rule, to properly identify the relationship type, you should ask two questions:

� How many instances of B are related to one instance of A?

� How many instances of A are related to one instance of B?

For example, you can assess the relationship between student and class by asking two questions:

� In how many classes can one student enroll? Answer: many classes.

� How many students can enroll in one class? Answer: many students.

Therefore, the relationship between student and class is many-to-many (M:N). You will have many opportunities to
determine the relationships between entities as you proceed through this book, and soon the process will become
second nature.

2.4.3 Naming Conventions

During the translation of business rules to data model components, you identify entities, attributes, relationships, and
constraints. This identification process includes naming the object in a way that makes the object unique and
distinguishable from other objects in the problem domain. Therefore, it is important that you pay special attention to
how you name the objects you are discovering.

Entity names should be descriptive of the objects in the business environment, and use terminology that is familiar to
the users. An attribute name should also be descriptive of the data represented by that attribute. It is also a good
practice to prefix the name of an attribute with the name of the entity (or an abbreviation of the entity name) in which
it occurs. For example, in the CUSTOMER entity, the customer’s credit limit may be called CUS_CREDIT_LIMIT. The
CUS indicates that the attribute is descriptive of the CUSTOMER entity, while CREDIT_LIMIT makes it easy to
recognize the data that will be contained in the attribute. This will become increasingly important in later chapters when
we discuss the need to use common attributes to specify relationships between entities. The use of a proper naming
convention will improve the data model’s ability to facilitate communication among the designer, application
programmer, and the end user. In fact, a proper naming convention can go a long way toward making your model
self-documenting.

2.5 THE EVOLUTION OF DATA MODELS

The quest for better data management has led to several models that attempt to resolve the file system’s critical
shortcomings. These models represent schools of thought as to what a database is, what it should do, the types of
structures that it should employ, and the technology that would be used to implement these structures. Perhaps
confusingly, these models are called data models just as are the graphical data models that we have been discussing.
This section gives an overview of the major data models in roughly chronological order. You will discover that many
of the “new” database concepts and structures bear a remarkable resemblance to some of the “old” data model
concepts and structures. Table 2.1 traces the evolution of the major data models.

34 C H A P T E R 2

TABLE
2.1

Evolution of Major Data Models

GENERATION TIME DATA MODEL EXAMPLES COMMENTS
First 1960s−1970s File system VMS/VSAM Used mainly on IBM mainframe

systems
Managed records, not relationships

Second 1970s Hierarchical and
network

IMS
ADABAS
IDS-II

Early database systems
Navigational access

Third Mid-1970s to
present

Relational DB2
Oracle
MS SQL-Server
MySQL

Conceptual simplicity
Entity relationship (ER) modeling and
support for relational data modeling

Fourth Mid-1980s to
present

Object-oriented
Object/relational
(O/R)

Versant
Objectivity/DB
DB/2 UDB
Oracle 11g

Object/relational supports object
data types
Star Schema support for data
warehousing
Web databases become common

Next
generation

Present to
future

XML
Hybrid DBMS

dbXML
Tamino
DB2 UDB
Oracle 11g
MS SQL Server

Unstructured data support
O/R model supports XML documents
Hybrid DBMS adds an object front
end to relational databases

2.5.1 Hierarchical and Network Models

The hierarchical model was developed in the 1960s to manage large amounts of data for complex manufacturing
projects such as the Apollo rocket that landed on the moon in 1969. Its basic logical structure is represented by an
upside-down tree. The hierarchical structure contains levels, or segments. A segment is the equivalent of a file
system’s record type. Within the hierarchy, a higher layer is perceived as the parent of the segment directly beneath
it, which is called the child. The hierarchical model depicts a set of one-to-many (1:M) relationships between a parent
and its children segments. (Each parent can have many children, but each child has only one parent.)

The network model was created to represent complex data relationships more effectively than the hierarchical
model, to improve database performance, and to impose a database standard. In the network model, the user
perceives the network database as a collection of records in 1:M relationships. However, unlike the hierarchical model,
the network model allows a record to have more than one parent. While the network database model is generally not
used today, the definitions of standard database concepts that emerged with the network model are still used by
modern data models. Some important concepts that were defined at this time are:

� The schema, which is the conceptual organization of the entire database as viewed by the database
administrator.

O n l i n e C o n t e n t

The hierarchical and network models are largely of historical interest, yet they do contain some elements and
features that interest current database professionals. The technical details of those two models are discussed in
detail in Appendixes K and L, respectively, in the PremiumWebsite for this book. Appendix G is devoted to the
object-oriented (OO) model. However, given the dominant market presence of the relational model, most of
the book focuses on that model.

35D A T A M O D E L S

� The subschema, which defines the portion of the database “seen” by the application programs that actually
produce the desired information from the data contained within the database.

� A data management language (DML), which defines the environment in which data can be managed and
to work with the data in the database.

� A schema data definition language (DDL), which enables the database administrator to define the schema
components.

As information needs grew and as more sophisticated databases and applications were required, the network model
became too cumbersome. The lack of ad hoc query capability put heavy pressure on programmers to generate the
code required to produce even the simplest reports. And although the existing databases provided limited data
independence, any structural change in the database could still produce havoc in all application programs that drew
data from the database. Because of the disadvantages of the hierarchical and network models, they were largely
replaced by the relational data model in the 1980s.

2.5.2 The Relational Model

The relational model was introduced in 1970 by E. F. Codd (of IBM) in his landmark paper “A Relational Model of
Data for Large Shared Databanks” (Communications of the ACM, June 1970, pp. 377−387). The relational model
represented a major breakthrough for both users and designers. To use an analogy, the relational model produced an
“automatic transmission” database to replace the “standard transmission” databases that preceded it. Its conceptual
simplicity set the stage for a genuine database revolution.

The relational model foundation is a mathematical concept known as a relation. To avoid the complexity of abstract
mathematical theory, you can think of a relation (sometimes called a table) as a matrix composed of intersecting rows
and columns. Each row in a relation is called a tuple. Each column represents an attribute. The relational model also
describes a precise set of data manipulation constructs based on advanced mathematical concepts.

In 1970, Codd’s work was considered ingenious but impractical. The relational model’s conceptual simplicity was
bought at the expense of computer overhead; computers at that time lacked the power to implement the relational
model. Fortunately, computer power grew exponentially, as did operating system efficiency. Better yet, the cost of
computers diminished rapidly as their power grew. Today even PCs, costing a fraction of what their mainframe
ancestors did, can run sophisticated relational database software such as Oracle, DB2, Microsoft SQL Server, MySQL,
and other mainframe relational software.

The relational data model is implemented through a very sophisticated relational database management system
(RDBMS). The RDBMS performs the same basic functions provided by the hierarchical and network DBMS systems,
in addition to a host of other functions that make the relational data model easier to understand and implement.

Arguably the most important advantage of the RDBMS is its ability to hide the complexities of the relational model
from the user. The RDBMS manages all of the physical details, while the user sees the relational database as a
collection of tables in which data are stored. The user can manipulate and query the data in a way that seems intuitive
and logical.

Tables are related to each other through the sharing of a common attribute (value in a column). For example, the
CUSTOMER table in Figure 2.1 might contain a sales agent’s number that is also contained in the AGENT table.

Note

The relational database model presented in this chapter is an introduction and an overview. A more detailed
discussion is in Chapter 3, The Relational Database Model. In fact, the relational model is so important that
it will serve as the basis for discussions in most of the remaining chapters.

36 C H A P T E R 2

The common link between the CUSTOMER and AGENT tables enables you to match the customer to his or her sales
agent, even though the customer data are stored in one table and the sales representative data are stored in another
table. For example, you can easily determine that customer Dunne’s agent is Alex Alby because for customer Dunne,
the CUSTOMER table’s AGENT_CODE is 501, which matches the AGENT table’s AGENT_CODE for Alex Alby.
Although the tables are independent of one another, you can easily associate the data between tables. The relational
model provides a minimum level of controlled redundancy to eliminate most of the redundancies commonly found in
file systems.

The relationship type (1:1, 1:M, or M:N) is often shown
in a relational schema, an example of which is shown in
Figure 2.2. A relational diagram is a representation of
the relational database’s entities, the attributes within
those entities, and the relationships between those
entities.

In Figure 2.2, the relational diagram shows the connecting
fields (in this case, AGENT_CODE) and the relationship
type, 1:M. Microsoft Access, the database software appli-
cation used to generate Figure 2.2, employs the � (infinity)
symbol to indicate the “many” side. In this example, the
CUSTOMER represents the “many” side because an
AGENT can have many CUSTOMERs. The AGENT rep-
resents the “1” side because each CUSTOMER has only
one AGENT.

Database name: Ch02_InsureCoTable name: AGENT (first six attributes)

Table name: CUSTOMER

Link through AGENT_CODE

FIGURE
2.1

Linking relational tables

O n l i n e C o n t e n t

This chapter’s databases can be found in the Premium Website. For example, the contents of the AGENT and
CUSTOMER tables shown in Figure 2.1 are found in the database named Ch02_InsureCo.

FIGURE
2.2

A relational diagram

37D A T A M O D E L S

A relational table stores a collection of related entities. In this respect, the relational database table resembles a file. But
there is one crucial difference between a table and a file: A table yields complete data and structural independence
because it is a purely logical structure. How the data are physically stored in the database is of no concern to the user
or the designer; the perception is what counts. And this property of the relational data model, explored in depth in
the next chapter, became the source of a real database revolution.

Another reason for the relational data model’s rise to dominance is its powerful and flexible query language. For most
relational database software, the query language is Structured Query Language (SQL), which allows the user to specify
what must be done without specifying how it must be done. The RDBMS uses SQL to translate user queries into
instructions for retrieving the requested data. SQL makes it possible to retrieve data with far less effort than any other
database or file environment.

From an end-user perspective, any SQL-based relational database application involves three parts: a user interface, a
set of tables stored in the database, and the SQL “engine.” Each of these parts is explained below.

� The end-user interface. Basically, the interface allows the end user to interact with the data (by auto-generating
SQL code). Each interface is a product of the software vendor’s idea of meaningful interaction with the data.
You can also design your own customized interface with the help of application generators that are now
standard fare in the database software arena.

� A collection of tables stored in the database. In a relational database, all data are perceived to be stored in
tables. The tables simply “present” the data to the end user in a way that is easy to understand. Each table is
independent. Rows in different tables are related by common values in common attributes.

� SQL engine. Largely hidden from the end user, the SQL engine executes all queries, or data requests. Keep
in mind that the SQL engine is part of the DBMS software. The end user uses SQL to create table structures
and to perform data access and table maintenance. The SQL engine processes all user requests—largely
behind the scenes and without the end user’s knowledge. Hence, it’s said that SQL is a declarative language
that tells what must be done but not how it must be done. (You will learn more about the SQL engine in
Chapter 11, Database Performance Tuning and Query Optimization.)

Because the RDBMS performs the behind-the-scenes tasks, it is not necessary to focus on the physical aspects of the
database. Instead, the chapters that follow concentrate on the logical portion of the relational database and its design.
Furthermore, SQL is covered in detail in Chapter 7, Introduction to Structured Query Language (SQL), and in Chapter 8,
Advanced SQL.

2.5.3 The Entity Relationship Model

The conceptual simplicity of relational database technology triggered the demand for RDBMSs. In turn, the rapidly
increasing requirements for transaction and information created the need for more complex database implementation
structures, thus creating the need for more effective database design tools. (Building a skyscraper requires more detailed
design activities than building a doghouse, for example.)

Complex design activities require conceptual simplicity to yield successful results. Although the relational model was a
vast improvement over the hierarchical and network models, it still lacked the features that would make it an effective
database design tool. Because it is easier to examine structures graphically than to describe them in text, database
designers prefer to use a graphical tool in which entities and their relationships are pictured. Thus, the entity
relationship (ER) model, or ERM, has become a widely accepted standard for data modeling.

Peter Chen first introduced the ER data model in 1976; it was the graphical representation of entities and their
relationships in a database structure that quickly became popular because it complemented the relational data model
concepts. The relational data model and ERM combined to provide the foundation for tightly structured database
design. ER models are normally represented in an entity relationship diagram (ERD), which uses graphical
representations to model database components.

38 C H A P T E R 2

The ER model is based on the following components:

� Entity. Earlier in this chapter, an entity was defined as anything about which data are to be collected and
stored. An entity is represented in the ERD by a rectangle, also known as an entity box. The name of the entity,
a noun, is written in the center of the rectangle. The entity name is generally written in capital letters and is
written in the singular form: PAINTER rather than PAINTERS, and EMPLOYEE rather than EMPLOYEES.
Usually, when applying the ERD to the relational model, an entity is mapped to a relational table. Each row
in the relational table is known as an entity instance or entity occurrence in the ER model.

Each entity is described by a set of attributes that describes particular characteristics of the entity. For example,
the entity EMPLOYEE will have attributes such as a Social Security number, a last name, and a first name.
(Chapter 4 explains how attributes are included in the ERD.)

� Relationships. Relationships describe associations among data. Most relationships describe associations
between two entities. When the basic data model components were introduced, three types of relationships
among data were illustrated: one-to-many (1:M), many-to-many (M:N), and one-to-one (1:1). The ER model
uses the term connectivity to label the relationship types. The name of the relationship is usually an active
or passive verb. For example, a PAINTER paints many PAINTINGs; an EMPLOYEE learns many SKILLs; an
EMPLOYEE manages a STORE.

Figure 2.3 shows the different types of relationships using two ER notations: the original Chen notation and the more
current Crow’s Foot notation.

The left side of the ER diagram shows the Chen notation, based on Peter Chen’s landmark paper. In this notation, the
connectivities are written next to each entity box. Relationships are represented by a diamond connected to the related
entities through a relationship line. The relationship name is written inside the diamond.

The right side of Figure 2.3 illustrates the Crow’s Foot notation. The name “Crow’s Foot” is derived from the
three-pronged symbol used to represent the “many” side of the relationship. As you examine the basic Crow’s Foot
ERD in Figure 2.3, note that the connectivities are represented by symbols. For example, the “1” is represented by
a short line segment, and the “M” is represented by the three-pronged “crow’s foot.” In this example, the relationship
name is written above the relationship line.

In Figure 2.3, entities and relationships are shown in a horizontal format, but they may also be oriented vertically. The
entity location and the order in which the entities are presented are immaterial; just remember to read a 1:M
relationship from the “1” side to the “M” side.

The Crow’s Foot notation is used as the design standard in this book. However, the Chen notation is used to illustrate
some of the ER modeling concepts whenever necessary. Most data modeling tools let you select the Crow’s Foot
notation. Microsoft Visio Professional software was used to generate the Crow’s Foot designs you will see in
subsequent chapters.

Note

Because this chapter’s objective is to introduce data-modeling concepts, a simplified ERD is discussed in this
section. You will learn how to use ERDs to design databases in Chapter 4, Entity Relationship (ER) Modeling.

Note

A collection of like entities is known as an entity set. For example, you can think of the AGENT file in Figure 2.1
as a collection of three agents (entities) in the AGENT entity set. Technically speaking, the ERD depicts entity
sets. Unfortunately, ERD designers use the word entity as a substitute for entity set, and this book will conform
to that established practice when discussing any ERD and its components.

39D A T A M O D E L S

Its exceptional visual simplicity makes the ER model the dominant database modeling and design tool. Nevertheless,
the search for better data-modeling tools continues as the data environment continues to evolve.

2.5.4 The Object-Oriented (OO) Model

Increasingly complex real-world problems demonstrated a need for a data model that more closely represented the real
world. In the object-oriented data model (OODM), both data and their relationships are contained in a single
structure known as an object. In turn, the OODM is the basis for the object-oriented database management
system (OODBMS).

FIGURE
2.3

The Chen and Crow’s Foot notations

Note

Many-to-many (M:N) relationships exist at a conceptual level, and you should know how to recognize them.
However, you will learn in Chapter 3 that M:N relationships are not appropriate in a relational model. For that
reason, Microsoft Visio does not support the M:N relationship directly. Therefore, to illustrate the existence of
aM:N relationship using Visio, you have to change the line style of the connector (see Appendix A, Designing
Databases with Visio Professional: A Tutorial, in the Premium Website).

O n l i n e C o n t e n t

Aside from the Chen and Crow’s Foot notations, there are other ER model notations. For a summary of the
symbols used by several additional ERmodel notations, see Appendix D, Comparison of ER Model Notations,
in the Premium Website.

40 C H A P T E R 2

An OODM reflects a very different way to define and use entities. Like the relational model’s entity, an object is
described by its factual content. But quite unlike an entity, an object includes information about relationships between
the facts within the object, as well as information about its relationships with other objects. Therefore, the facts within
the object are given greater meaning. The OODM is said to be a semantic data model because semantic indicates
meaning.

Subsequent OODM development has allowed an object to also contain all operations that can be performed on it, such
as changing its data values, finding a specific data value, and printing data values. Because objects include data, various
types of relationships, and operational procedures, the object becomes self-contained, thus making the object—at least
potentially—a basic building block for autonomous structures.

The OO data model is based on the following components:

� An object is an abstraction of a real-world entity. In general terms, an object may be considered equivalent to
an ER model’s entity. More precisely, an object represents only one occurrence of an entity. (The object’s
semantic content is defined through several of the items in this list.)

� Attributes describe the properties of an object. For example, a PERSON object includes the attributes Name,
Social Security Number, and Date of Birth.

� Objects that share similar characteristics are grouped in classes. A class is a collection of similar objects with
shared structure (attributes) and behavior (methods). In a general sense, a class resembles the ER model’s entity
set. However, a class is different from an entity set in that it contains a set of procedures known as methods.
A class’s method represents a real-world action such as finding a selected PERSON’s name, changing a
PERSON’s name, or printing a PERSON’s address. In other words, methods are the equivalent of procedures
in traditional programming languages. In OO terms, methods define an object’s behavior.

� Classes are organized in a class hierarchy. The class hierarchy resembles an upside-down tree in which each
class has only one parent. For example, the CUSTOMER class and the EMPLOYEE class share a parent
PERSON class. (Note the similarity to the hierarchical data model in this respect.)

� Inheritance is the ability of an object within the class hierarchy to inherit the attributes and methods of the
classes above it. For example, two classes, CUSTOMER and EMPLOYEE, can be created as subclasses from
the class PERSON. In this case, CUSTOMER and EMPLOYEE will inherit all attributes and methods from
PERSON.

Object-oriented data models are typically depicted using Unified Modeling Language (UML) class diagrams. Unified
Modeling Language (UML) is a language based on OO concepts that describes a set of diagrams and symbols that
can be used to graphically model a system. UML class diagrams are used to represent data and their relationships
within the larger UML object-oriented system’s modeling language. For a more complete description of UML see
Appendix H, Unified Modeling Language (UML).

To illustrate the main concepts of the object-oriented data model, let’s use a simple invoicing problem. In this case,
invoices are generated by customers, each invoice references one or more lines, and each line represents an item
purchased by a customer. Figure 2.4 illustrates the object representation for this simple invoicing problem, as well as
the equivalent UML class diagram and ER model. The object representation is a simple way to visualize a single object
occurrence.

O n l i n e C o n t e n t

This chapter introduces only basic OO concepts. You’ll have a chance to examine object-orientation concepts
and principles in detail in Appendix G, Object-Oriented Databases, in the Premium Website.

41D A T A M O D E L S

As you examine Figure 2.4, note that:

� The object representation of the INVOICE includes all related objects within the same object box. Note that
the connectivities (1 and M) indicate the relationship of the related objects to the INVOICE. For example, the
1 next to the CUSTOMER object indicates that each INVOICE is related to only one CUSTOMER. The M next
to the LINE object indicates that each INVOICE contains many LINEs.

� The UML class diagram uses three separate object classes (CUSTOMER, INVOICE, and LINE) and two
relationships to represent this simple invoicing problem. Note that the relationship connectivities are
represented by the 1..1, 0..*, and 1..* symbols and that the relationships are named in both ends to represent
the different “roles” that the objects play in the relationship.

� The ER model also uses three separate entities and two relationships to represent this simple invoice problem.

The OODM advances were felt in many areas, from system modeling to programming. The added semantics of the
OODM allowed for a richer representation of complex objects. This in turn enabled applications to support
increasingly complex objects in innovative ways. As you will see in the next section, such evolutionary advances also
affected the relational model.

2.5.5 Newer Data Models: Object/Relational and XML

Facing the demand to support more complex data representations, the relational model’s main vendors evolved the
model further and created the extended relational data model (ERDM). The ERDM adds many of the OO model’s
features within the inherently simpler relational database structure. The ERDM gave birth to a new generation of
relational databases supporting OO features such as objects (encapsulated data and methods), extensible data types
based on classes, and inheritance. That’s why a DBMS based on the ERDM is often described as an object/relational
database management system (O/R DBMS).

The use of complex objects received a boost with the Internet revolution. When organizations integrated their business
models with the Internet, they realized the potential of the Internet to access, distribute, and exchange critical business
information. This resulted in the widespread adoption of the Internet as a business communication tool. It is in this
environment that Extensible Markup Language (XML) emerged as the de facto standard for the efficient and effective
exchange of structured, semistructured, and unstructured data. Organizations using XML data soon realized there was a
need to manage the large amounts of unstructured data such as word-processing documents, Web pages, e-mails,
diagrams, etc., found in most of today’s organizations. To address this need, XML databases emerged to manage
unstructured data within a native XML format (see Chapter 14, Database Connectivity and Web Technologies, for more

FIGURE
2.4

A comparison of OO, UML, and ER models

INVOICE

INV_DATE
INV_NUMBER
INV_SHIP_DATE
INV_TOTAL

CUSTOMER

LINE

1

M

ER ModelObject Representation UML Class Diagram

CUSTOMER INVOICE

LINE

+INV_NUMBER : Integer
+INV_DATE : Date
+INV_SHIP_DATE : Date
+INV_TOTAL : Double

1..1 0..*

+generates +belongs to

1..1

1..* +belongs to

+generates

42 C H A P T E R 2

information about XML). At the same time, O/R DBMSs added support for XML-based documents within their relational
data structure.

2.5.6 The Future of Data Models

Today the O/R DBMS is the dominant database for business applications. Its success could be attributed to the model’s
conceptual simplicity, easy-to-use query language, high transaction performance, high availability, security, scalability,
and expandability. In contrast, the OO DBMS is popular in niche markets such as computer-aided drawing/computer-
aided manufacturing (CAD/CAM), geographic information systems (GIS), telecommunications, and multimedia, which
require support for complex objects.

The OO and the relational data models have two totally different approaches. The OO data model was created to
address very specific engineering needs, not the wide-ranging needs of general data management tasks. The relational
model was created with a focus on better data management based on a sound mathematical foundation. Given these
differences, it is not surprising that the growth of the OO market has been slow compared to the rapid growth of the
relational data model.

One area in which OO concepts have been very influential is systems development and programming languages. Most
contemporary programming languages are object-oriented (Java, Ruby, Perl, C#, .NET, to name a few). Also, there
is an increasing need to manage an organization’s unstructured data.

It is difficult to speculate on the future development of database models. Will unstructured data management overcome
structured data management? We think that each approach complements and augments the other. O/R databases have
proven to efficiently support structured and unstructured data management. Furthermore, history has shown that O/R
DBMS are remarkably adaptable in supporting ever-evolving data management needs. Two examples of this evolution are:

� Hybrid DBMSs are emerging that retain the advantages of the relational model and at the same time provide
programmers with an object-oriented view of the underlying data. These types of databases preserve the
performance characteristics of the relational model and the semantically rich programmatic support of the
object-oriented model.

� SQL data services, such as Microsoft SQL Data Services (SDS) on its Azure Services Platform, are becoming
a critical component of relational database vendors’ Internet service strategies. These “cloud-based” (that is,
remotely processed and Internet-based) data services make it possible for companies of any size to store their
data in relational databases without incurring expensive hardware, software, and personnel costs, while having
access to high-end database features such as failover, backup, high transaction rates, and global data
distribution. Companies can use a “pay as you go” system based primarily on their storage and bandwidth
utilization and the features used.

2.5.7 Data Models: A Summary

The evolution of DBMSs has always been driven by the search for new ways of modeling increasingly complex
real-world data. A summary of the most commonly recognized data models is shown in Figure 2.5.

In the evolution of data models, there are some common characteristics that data models must have in order to be
widely accepted:

� A data model must show some degree of conceptual simplicity without compromising the semantic
completeness of the database. It does not make sense to have a data model that is more difficult to
conceptualize than the real world.

� A data model must represent the real world as closely as possible. This goal is more easily realized by adding
more semantics to the model’s data representation. (Semantics concern the dynamic data behavior, while data
representation constitutes the static aspect of the real-world scenario.)

� Representation of the real-world transformations (behavior) must be in compliance with the consistency and
integrity characteristics of any data model.

43D A T A M O D E L S

Each new data model addresses the shortcomings of previous models. The network model replaced the hierarchical
model because the former made it much easier to represent complex (many-to-many) relationships. In turn, the relational
model offers several advantages over the hierarchical and network models through its simpler data representation,
superior data independence, and easy-to-use query language; these features made it the preferred data model for business
applications. The OO data model introduced support for complex data within a rich semantic framework. The ERDM
added many of the OO features to the relational model and allowed it to maintain its strong market share within the
business environment. And in recent years, successful data models have facilitated the development of database products
that incorporate unstructured data as well as provide support for easy data exchanges via XML.

It is important to note that not all data models are created equal; some data models are better suited than others for
some tasks. For example, conceptual models are better suited for high-level data modeling, while implementation
models are better for managing stored data for implementation purposes. The entity relationship model is an example
of a conceptual model, while the hierarchical and network models are examples of implementation models. At the
same time, some models, such as the relational model and the OODM, could be used as both conceptual and
implementation models. Table 2.2 summarizes the advantages and disadvantages of the various database models.

FIGURE
2.5

The evolution of data models

most

least

Semantics in
Data Model

Comments

Hierarchical

Network

Relational

Entity Relationship

Semantic

Object-Oriented Extended Relational
(O/R DBMS)

• Difficult to represent M:N relationships
 (hierarchical only)
• Structural level dependence
• No ad hoc queries (record-at-a-time access)
• Access path predefined (navigational access)

• Conceptual simplicity (structual independence)
• Provides ad hoc queries (SQL)
• Set-oriented access

• Easy to understand (more semantics)
• Limited to conceptual modeling
 (no implementation component)

• More semantics in data model
• Support for complex objects
• Inheritance (class hierarchy)
• Behavior
• Unstructured data (XML)
• XML data exchanges

44 C H A P T E R 2

TA
BL

E
2.

2
Ad

va
nt

ag
es

an
d

D
is

ad
va

nt
ag

es
of

Va
ri

ou
s

D
at

ab
as

e
M

od
el

s

D
AT

A
M

O
D

EL
D

AT
A

IN
D

EP
EN

D
EN

C
E

ST
RU

C
TU

RA
L

IN
D

EP
EN

D
EN

C
E

AD
VA

N
TA

G
ES

D
IS

AD
VA

N
TA

G
ES

H
ie
ra
rc
hi
ca
l

Ye
s

N
o

1.
It
pr
om
ot
es
da
ta
sh
ar
in
g.

2.
Pa
re
nt

/C
hi
ld
re
la
tio
ns
hi
p
pr
om
ot
es
co
nc
ep
tu
al
sim
pl
ic
ity
.

3.
D
at
ab
as
e
se
cu
rit
y
is
pr
ov
id
ed
an
d
en
fo
rc
ed
by
D

BM
S.

4.
Pa
re
nt

/C
hi
ld
re
la
tio
ns
hi
p
pr
om
ot
es
da
ta
in
te
gr
ity
.

5.
It
is
ef
fic
ie
nt
w
ith

1:
M
re
la
tio
ns
hi
ps
.

1.
C
om
pl
ex
im
pl
em
en
ta
tio
n
re

qu
ire
s
kn
ow
le
dg
e
of
ph
ys
ic
al
da
ta

st
or
ag
e
ch
ar
ac
te
ris
tic
s.

2.
N
av
ig
at
io
na
ls
ys
te
m
yi
el
ds
co
m
pl
ex
ap
pl
ic
at
io
n
de
ve
lo
pm
en
t,

m
an
ag
em
en
t,
an
d
us
e;
re

qu
ire
s
kn
ow
le
dg
e
of
hi
er
ar
ch
ic
al
pa
th
.

3.
C
ha
ng
es
in
str
uc
tu
re
re

qu
ire
ch
an
ge
s
in
al
la
pp
lic
at
io
n
pr
og
ra
m
s.

4.
Th
er
e
ar
e
im
pl
em
en
ta
tio
n
lim
ita
tio
ns

(n
o
m
ul
tip
ar
en
to
rM
:N

re
la
tio
ns
hi
ps

).
5.
Th
er
e
is
no
da
ta
de
fin
iti
on
or
da
ta
m
an
ip
ul
at
io
n
la
ng
ua
ge
in

th
e
D

BM
S.

6.
Th
er
e
is
a
la
ck
of
sta
nd
ar
ds
.

N
et
w
or
k

Ye
s

N
o

1.
C
on
ce
pt
ua
ls
im
pl
ic
ity
is
at
le
as
te

qu
al
to
th
at
of
th
e

hi
er
ar
ch
ic
al
m
od
el
.

2.
It
ha
nd
le
s
m
or
e
re
la
tio
ns
hi
p
ty
pe
s,
su
ch
as

M
:N
an
d
m
ul
tip
ar
en
t.

3.
D
at
a
ac
ce
ss
is
m
or
e
fle
xi
bl
e
th
an
in
hi
er
ar
ch
ic
al
an
d
fil
e
sy
ste
m

m
od
el
s.

4.
D
at
a
O
w
ne
r/M
em
be
rr
el
at
io
ns
hi
p
pr
om
ot
es
da
ta
in
te
gr
ity
.

5.
Th
er
e
is
co
nf
or
m
an
ce
to
sta
nd
ar
ds
.

6.
It
in
cl
ud
es
da
ta
de
fin
iti
on
la
ng
ua
ge

(D
D

L)
an
d
da
ta
m
an
ip
ul
at
io
n

la
ng
ua
ge

(D
M

L)
in
D

BM
S.

1 .
Sy
ste
m
co
m
pl
ex
ity
lim
its
ef
fic
ie
nc
y—
sti
ll
a
na
vi
ga
tio
na
ls
ys
te
m
.

2.
N
av
ig
at
io
na
ls
ys
te
m
yi
el
ds
co
m
pl
ex
im
pl
em
en
ta
tio
n,
ap
pl
ic
at
io
n

de
ve
lo
pm
en
t,
an
d
m
an
ag
em
en
t.

3.
St
ru
ct
ur
al
ch
an
ge
s
re

qu
ire
ch
an
ge
s
in
al
la
pp
lic
at
io
n
pr
og
ra
m
s.

Re
la
tio
na
l

Ye
s

Ye
s

1.
St
ru
ct
ur
al
in
de
pe
nd
en
ce
is
pr
om
ot
ed
by
th
e
us
e
of
in
de
pe
nd
en
t

ta
bl
es
.C
ha
ng
es
in
a
ta
bl
e’
s
str
uc
tu
re
do
no
ta
ffe
ct
da
ta
ac
ce
ss
or

ap
pl
ic
at
io
n
pr
og
ra
m
s.

2.
Ta
bu
la
rv
ie
w
su
bs
ta
nt
ia
lly
im
pr
ov
es
co
nc
ep
tu
al
sim
pl
ic
ity
,t
he
re
by

pr
om
ot
in
g
ea
sie
rd
at
ab
as
e
de
sig
n,
im
pl
em
en
ta
tio
n,
m
an
ag
em
en
t,

an
d
us
e.

3.
Ad
ho
c

qu
er
y
ca
pa
bi
lit
y
is
ba
se
d
on

SQ
L.

4.
Po
w
er
fu
lR
D

BM
S
iso
la
te
s
th
e
en
d
us
er
fro
m
ph
ys
ic
al

-le
ve
ld
et
ai
ls

an
d
im
pr
ov
es
im
pl
em
en
ta
tio
n
an
d
m
an
ag
em
en
ts
im
pl
ic
ity
.

1.
Th
e

RD
BM

S
re

qu
ire
s
su
bs
ta
nt
ia
lh
ar
dw
ar
e
an
d
sy
ste
m
so
ftw
ar
e

ov
er
he
ad
.

2.
C
on
ce
pt
ua
ls
im
pl
ic
ity
gi
ve
s
re
la
tiv
el
y
un
tra
in
ed
pe
op
le
th
e
to
ol
s
to

us
e
a
go
od
sy
ste
m
po
or
ly,
an
d
if
un
ch
ec
ke
d,
it
m
ay
pr
od
uc
e
th
e

sa
m
e
da
ta
an
om
al
ie
s
fo
un
d
in
fil
e
sy
ste
m
s.

3.
It
m
ay
pr
om
ot
e

“i
sla
nd
s
of
in
fo
rm
at
io
n”
pr
ob
le
m
s
as
in
di
vi
du
al
s

an
d
de
pa
rtm
en
ts
ca
n
ea
sil
y
de
ve
lo
p
th
ei
ro
w
n
ap
pl
ic
at
io
ns
.

En
tit
y

re
la
tio
ns
hi
p

Ye
s

Ye
s

1.
Vi
su
al
m
od
el
in
g
yi
el
ds
ex
ce
pt
io
na
lc
on
ce
pt
ua
ls
im
pl
ic
ity
.

2.
Vi
su
al
re
pr
es
en
ta
tio
n
m
ak
es
it
an
ef
fe
ct
iv
e
co
m
m
un
ic
at
io
n
to
ol
.

3.
It
is
in
te
gr
at
ed
w
ith
do
m
in
an
tr
el
at
io
na
lm
od
el
.

1.
Th
er
e
is
lim
ite
d
co
ns
tra
in
tr
ep
re
se
nt
at
io
n.

2.
Th
er
e
is
lim
ite
d
re
la
tio
ns
hi
p
re
pr
es
en
ta
tio
n.

3.
Th
er
e
is
no
da
ta
m
an
ip
ul
at
io
n
la
ng
ua
ge
.

4.
Lo
ss
of
in
fo
rm
at
io
n
co
nt
en
to
cc
ur
s
w
he
n
at
tri
bu
te
s
ar
e
re
m
ov
ed

fro
m
en
tit
ie
s
to
av
oi
d
cr
ow
de
d
di
sp
la
ys
.(
Th
is
lim
ita
tio
n
ha
s
be
en

ad
dr
es
se
d
in
su
bs
eq
ue
nt
gr
ap
hi
ca
lv
er
sio
ns
.)

O
bj
ec
t-

or
ie
nt
ed

Ye
s

Ye
s

1.
Se
m
an
tic
co
nt
en
ti
s
ad
de
d.

2.
Vi
su
al
re
pr
es
en
ta
tio
n
in
cl
ud
es
se
m
an
tic
co
nt
en
t.

3.
In
he
rit
an
ce
pr
om
ot
es
da
ta
in
te
gr
ity
.

1.
Sl
ow

de
ve
lo
pm
en
to
fs
ta
nd
ar
ds
ca
us
ed
ve
nd
or
s
to
su
pp
ly
th
ei
r

ow
n
en
ha
nc
em
en
ts,
th
us
el
im
in
at
in
g
a
w
id
el
y
ac
ce
pt
ed
sta
nd
ar
d.

2.
It
is
a
co
m
pl
ex
na
vi
ga
tio
na
ls
ys
te
m
.

3.
Th
er
e
is
a
ste
ep
le
ar
ni
ng
cu
rv
e.

4.
H
ig
h
sy
ste
m
ov
er
he
ad
slo
w
s
tra
ns
ac
tio
ns
.

N
ot

e:
Al

ld
at
ab
as
es
as
su
m
e
th
e
us
e
of
a
co
m
m
on
da
ta
po
ol
w
ith
in
th
e
da
ta
ba
se
.
Th
er
ef
or
e,

al
ld
at
ab
as
e
m
od
el
s
pr
om
ot
e
da
ta
sh
ar
in
g,
th
us
el
im
in
at
in
g
th
e
po
te
nt
ia
l

pr
ob
le
m
of
isl
an
ds
of
in
fo
rm
at
io
n.

45D A T A M O D E L S

Thus far, you have been introduced to the basic constructs of the more prominent data models. Each model uses such
constructs to capture the meaning of the real-world data environment. Table 2.3 shows the basic terminology used by
the various data models.

TABLE
2.3

Data Model Basic Terminology Comparison

REAL
WORLD

EXAMPLE FILE
PROCESSING

HIERARCHICAL
MODEL

NETWORK
MODEL

RELATIONAL
MODEL

ER MODEL OO
MODEL

A group of
vendors

Vendor
file cabinet

File Segment
type

Record
type

Table Entity
Set

Class

A single
vendor

Global
supplies

Record Segment
occurrence

Current
record

Row
(tuple)

Entity
occurrence

Object
instance

The contact
name

Johnny
Ventura

Field Segment
field

Record
field

Table
attribute

Entity
Attribute

Object
attribute

The vendor
identifier

G12987 Index Sequence
field

Record
key

Key Entity
Identifier

Object
identifier

Note: For additional information about the terms used in this table, please consult the corresponding chapters and online appen-
dixes accompanying this book. For example, if you want to know more about the OO model, refer to Appendix G, Object-Oriented
Databases.

2.6 DEGREES OF DATA ABSTRACTION

If you ask 10 database designers what a data model is, you will end up with 10 different answers—depending on the
degree of data abstraction. To illustrate the meaning of data abstraction, consider the example of automotive design.
A car designer begins by drawing the concept of the car that is to be produced. Next, engineers design the details that
help transfer the basic concept into a structure that can be produced. Finally, the engineering drawings are translated
into production specifications to be used on the factory floor. As you can see, the process of producing the car begins
at a high level of abstraction and proceeds to an ever-increasing level of detail. The factory floor process cannot
proceed unless the engineering details are properly specified, and the engineering details cannot exist without the basic
conceptual framework created by the designer. Designing a usable database follows the same basic process. That is,
a database designer starts with an abstract view of the overall data environment and adds details as the design comes
closer to implementation. Using levels of abstraction can also be very helpful in integrating multiple (and sometimes
conflicting) views of data as seen at different levels of an organization.

In the early 1970s, the American National Standards Institute (ANSI) Standards Planning and Requirements
Committee (SPARC) defined a framework for data modeling based on degrees of data abstraction. The ANSI/SPARC
architecture (as it is often referred to) defines three levels of data abstraction: external, conceptual, and internal. You
can use this framework to better understand database models, as shown in Figure 2.6. In the figure, the ANSI/SPARC
framework has been expanded with the addition of a physical model to explicitly address physical-level implementation
details of the internal model.

2.6.1 The External Model

The external model is the end users’ view of the data environment. The term end users refers to people who use
the application programs to manipulate the data and generate information. End users usually operate in an
environment in which an application has a specific business unit focus. Companies are generally divided into several
business units, such as sales, finance, and marketing. Each business unit is subject to specific constraints and
requirements, and each one uses a data subset of the overall data in the organization. Therefore, end users working
within those business units view their data subsets as separate from or external to other units within the organization.

46 C H A P T E R 2

Because data are being modeled, ER diagrams will be used to represent the external views. A specific representation
of an external view is known as an external schema. To illustrate the external model’s view, examine the data
environment of Tiny College. Figure 2.7 presents the external schemas for two Tiny College business units: student
registration and class scheduling. Each external schema includes the appropriate entities, relationships, processes, and
constraints imposed by the business unit. Also note that although the application views are isolated from each other,
each view shares a common entity with the other view. For example, the registration and scheduling external
schemas share the entities CLASS and COURSE.

Note the entity relationships represented in Figure 2.7. For example:

� A PROFESSOR may teach many CLASSes, and each CLASS is taught by only one PROFESSOR; that is,
there is a 1:M relationship between PROFESSOR and CLASS.

� A CLASS may ENROLL many students, and each student may ENROLL in many CLASSes, thus creating an
M:N relationship between STUDENT and CLASS. (You will learn about the precise nature of the ENROLL
entity in Chapter 4.)

� Each COURSE may generate many CLASSes, but each CLASS references a single COURSE. For example,
there may be several classes (sections) of a database course having a course code of CIS-420. One of those classes
might be offered on MWF from 8:00 a.m. to 8:50 a.m., another might be offered on MWF from 1:00 p.m. to
1:50 p.m., while a third might be offered on Thursdays from 6:00 p.m. to 8:40 p.m. Yet all three classes have
the course code CIS-420.

� Finally, a CLASS requires one ROOM, but a ROOM may be scheduled for many CLASSes. That is, each
classroom may be used for several classes: one at 9:00 a.m., one at 11:00 a.m., and one at 1 p.m., for
example. In other words, there is a 1:M relationship between ROOM and CLASS.

FIGURE
2.6

Data abstraction levels

End-User View End-User View

External
Model

External
Model

Conceptual
Model

Internal
Model

Physical
Model

Designer’s
View

DBMS
View

Physical independence

Logical independence

Degree of
Abstraction Characteristics

High ER

Relational

Network
HierarchicalLow

Medium

Hardware-independent
Software-independent

Hardware-independent
Software-dependent

Hardware-dependent
Software-dependent

Object-Oriented

47D A T A M O D E L S

The use of external views representing subsets of the database has some important advantages:

� It makes it easy to identify specific data required to support each business unit’s operations.

� It makes the designer’s job easy by providing feedback about the model’s adequacy. Specifically, the model can
be checked to ensure that it supports all processes as defined by their external models, as well as all operational
requirements and constraints.

� It helps to ensure security constraints in the database design. Damaging an entire database is more difficult
when each business unit works with only a subset of data.

� It makes application program development much simpler.

2.6.2 The Conceptual Model

Having identified the external views, a conceptual model is used, graphically represented by an ERD (as in Figure 2.8),
to integrate all external views into a single view. The conceptual model represents a global view of the entire
database as viewed by the entire organization. That is, the conceptual model integrates all external views (entities,
relationships, constraints, and processes) into a single global view of the data in the enterprise. Also known as a
conceptual schema, it is the basis for the identification and high-level description of the main data objects (avoiding
any database model–specific details).

The most widely used conceptual model is the ER model. Remember that the ER model is illustrated with the help of the
ERD, which is, in effect, the basic database blueprint. The ERD is used to graphically represent the conceptual schema.

The conceptual model yields some very important advantages. First, it provides a relatively easily understood bird’s-eye
(macro level) view of the data environment. For example, you can get a summary of Tiny College’s data environment
by examining the conceptual model presented in Figure 2.8.

Second, the conceptual model is independent of both software and hardware. Software independence means that
the model does not depend on the DBMS software used to implement the model. Hardware independence means
that the model does not depend on the hardware used in the implementation of the model. Therefore, changes in

FIGURE
2.7

External models for Tiny College

48 C H A P T E R 2

either the hardware or the DBMS software will
have no effect on the database design at the
conceptual level. Generally, the term logical
design is used to refer to the task of creating a
conceptual data model that could be imple-
mented in any DBMS.

2.6.3 The Internal Model

Once a specific DBMS has been selected, the
internal model maps the conceptual model to
the DBMS. The internal model is the repre-
sentation of the database as “seen” by the
DBMS. In other words, the internal model
requires the designer to match the conceptual
model’s characteristics and constraints to those
of the selected implementation model. An
internal schema depicts a specific representa-
tion of an internal model, using the database
constructs supported by the chosen database.

Because this book focuses on the relational model, a relational database was chosen to implement the internal model.
Therefore, the internal schema should map the conceptual model to the relational model constructs. In particular, the
entities in the conceptual model are mapped to tables in the relational model. Likewise, because a relational database
has been selected, the internal schema is expressed using SQL, the standard language for relational databases. In the
case of the conceptual model for Tiny College depicted in Figure 2.8, the internal model was implemented by creating
the tables PROFESSOR, COURSE, CLASS, STUDENT, ENROLL, and ROOM. A simplified version of the internal
model for Tiny College is shown in Figure 2.9.

The development of a detailed internal model is especially important to database designers who work with hierarchical
or network models because those models require very precise specification of data storage location and data access
paths. In contrast, the relational model requires less detail in its internal model because most RDBMSs handle data
access path definition transparently; that is, the designer need not be aware of the data access path details.
Nevertheless, even relational database software usually requires data storage location specification, especially in a
mainframe environment. For example, DB2 requires that you specify the data storage group, the location of the
database within the storage group, and the location of the tables within the database.

Because the internal model depends on specific database software, it is said to be software-dependent. Therefore, a
change in the DBMS software requires that the internal model be changed to fit the characteristics and requirements
of the implementation database model. When you can change the internal model without affecting the conceptual
model, you have logical independence. However, the internal model is still hardware-independent because it is
unaffected by the choice of the computer on which the software is installed. Therefore, a change in storage devices
or even a change in operating systems will not affect the internal model.

2.6.4 The Physical Model

The physical model operates at the lowest level of abstraction, describing the way data are saved on storage media
such as disks or tapes. The physical model requires the definition of both the physical storage devices and the (physical)
access methods required to reach the data within those storage devices, making it both software- and hardware-
dependent. The storage structures used are dependent on the software (the DBMS and the operating system) and on
the type of storage devices that the computer can handle. The precision required in the physical model’s definition
demands that database designers who work at this level have a detailed knowledge of the hardware and software used
to implement the database design.

FIGURE
2.8

Conceptual model for Tiny College

49D A T A M O D E L S

Early data models forced the database designer to take the details of the physical model’s data storage requirements
into account. However, the now dominant relational model is aimed largely at the logical rather than the physical level;
therefore, it does not require the physical-level details common to its predecessors.

Although the relational model does not require the designer to be concerned about the data’s physical storage
characteristics, the implementation of a relational model may require physical-level fine-tuning for increased
performance. Fine-tuning is especially important when very large databases are installed in a mainframe environment.
Yet even such performance fine-tuning at the physical level does not require knowledge of physical data storage
characteristics.

As noted earlier, the physical model is dependent on the DBMS, methods of accessing files, and types of hardware
storage devices supported by the operating system. When you can change the physical model without affecting the
internal model, you have physical independence. Therefore, a change in storage devices or methods and even a
change in operating system will not affect the internal model.

A summary of the levels of data abstraction is given in Table 2.4.

TABLE
2.4

Levels of Data Abstraction

MODEL
DEGREE OF
ABSTRACTION FOCUS INDEPENDENT OF

External High End-user views Hardware and software
Conceptual Global view of data

(database model−independent)
Hardware and software

Internal Specific database model Hardware

Physical Low Storage and access methods Neither hardware nor software

FIGURE
2.9

Internal model for Tiny College

50 C H A P T E R 2

S u m m a r y

◗ A data model is an abstraction of a complex real-world data environment. Database designers use data models to
communicate with applications programmers and end users. The basic data-modeling components are entities,
attributes, relationships, and constraints. Business rules are used to identify and define the basic modeling
components within a specific real-world environment.

◗ The hierarchical and network data models were early data models that are no longer used, but some of the concepts
are found in current data models. The hierarchical model depicts a set of one-to-many (1:M) relationships between a
parent and its children segments. The network model uses sets to represent 1:M relationships between record types.

◗ The relational model is the current database implementation standard. In the relational model, the end user
perceives the data as being stored in tables. Tables are related to each other by means of common values in
common attributes. The entity relationship (ER) model is a popular graphical tool for data modeling that
complements the relational model. The ER model allows database designers to visually present different views of
the data—as seen by database designers, programmers, and end users—and to integrate the data into a common
framework.

◗ The object-oriented data model (OODM) uses objects as the basic modeling structure. An object resembles an entity
in that it includes the facts that define it. But unlike an entity, the object also includes information about
relationships between the facts, as well as relationships with other objects, thus giving its data more meaning.

◗ The relational model has adopted many object-oriented (OO) extensions to become the extended relational data
model (ERDM). Object/relational database management systems (O/R DBMS) were developed to implement the
ERDM. At this point, the OODM is largely used in specialized engineering and scientific applications, while the
ERDM is primarily geared to business applications. Although the most likely future scenario is an increasing merger
of OODM and ERDM technologies, both are overshadowed by the need to develop Internet access strategies for
databases. Usually OO data models are depicted using Unified Modeling Language (UML) class diagrams.

◗ Data-modeling requirements are a function of different data views (global vs. local) and the level of data abstraction.
The American National Standards Institute Standards Planning and Requirements Committee (ANSI/SPARC)
describes three levels of data abstraction: external, conceptual, and internal. There is also a fourth level of data
abstraction, the physical level. This lowest level of data abstraction is concerned exclusively with physical storage
methods.

K e y T e r m s

American National Standards
Institute (ANSI), 46

attribute, 31

business rule, 32

Chen notation, 39

class, 41

class diagram, 41

class hierarchy, 41

conceptual model, 48

conceptual schema, 48

connectivity, 39

constraint, 32

Crow’s Foot notation, 39

data definition language (DDL), 36

data management language
(DML), 36

data model, 30

entity, 31

entity instance, 39

entity occurrence, 39

entity relationship diagram
(ERD), 38

entity relationship (ER) model
(ERM), 38

entity set, 39

extended relational data model
(ERDM), 42

external model, 46

external schema, 47

hardware independence, 48

hierarchical model, 35

hybrid DBMS , 43

inheritance, 41

internal model, 49

internal schema, 49

logical design, 49

logical independence, 49

51D A T A M O D E L S

many-to-many (M:N or *..*)
relationship, 32

method, 41

network model, 35

object, 40

object-oriented data model
(OODM), 40

object-oriented database
management system
(OODBMS), 40

object/relational database
management system
(O/R DBMS), 42

one-to-many (1:M or 1..*)
relationship, 32

one-to-one (1:1 or 1..1)
relationship, 32

physical independence, 50

physical model, 49

relation, 36

relational database management
system (RDBMS), 36

relational diagram, 37

relational model, 36

relationship, 31

schema, 35

segment, 35

semantic data model, 41

software independence, 48

subschema, 36

SQL data services, 43

table, 36

tuple, 36

Unified Modeling Language
(UML), 41

R e v i e w Q u e s t i o n s

1. Discuss the importance of data modeling.

2. What is a business rule, and what is its purpose in data modeling?

3. How do you translate business rules into data model components?

4. What languages emerged to standardize the basic network data model, and why was such standardization
important to users and designers?

5. Describe the basic features of the relational data model and discuss their importance to the end user and the designer.

6. Explain how the entity relationship (ER) model helped produce a more structured relational database design
environment.

7. Use the scenario described by “A customer can make many payments, but each payment is made by only one
customer” as the basis for an entity relationship diagram (ERD) representation.

8. Why is an object said to have greater semantic content than an entity?

9. What is the difference between an object and a class in the object-oriented data model (OODM)?

10. How would you model Question 7 with an OODM? (Use Figure 2.4 as your guide.)

11. What is an ERDM, and what role does it play in the modern (production) database environment?

12. In terms of data and structural independence, compare file system data management with the five data models
discussed in this chapter.

13. What is a relationship, and what three types of relationships exist?

14. Give an example of each of the three types of relationships.

15. What is a table, and what role does it play in the relational model?

16. What is a relational diagram? Give an example.

17. What is logical independence?

18. What is physical independence?

19. What is connectivity? (Use a Crow’s Foot ERD to illustrate connectivity.)

O n l i n e C o n t e n t

Answers to selected ReviewQuestions and Problems for this chapter are contained in the PremiumWebsite for
this book.

52 C H A P T E R 2

P r o b l e m s

Use the contents of Figure 2.1 to work Problems 1−3.

1. Write the business rule(s) that govern the relationship between AGENT and CUSTOMER.

2. Given the business rule(s) you wrote in Problem 1, create the basic Crow’s Foot ERD.

3. Using the ERD you drew in Problem 2, create the equivalent object representation and UML class diagram. (Use
Figure 2.4 as your guide.)

Using Figure P2.4 as your guide, work Problems 4–5. The DealCo relational diagram shows the initial entities and
attributes for the DealCo stores, located in two regions of the country.

4. Identify each relationship type and write all of the business rules.

5. Create the basic Crow’s Foot ERD for DealCo.

Using Figure P2.6 as your guide, work Problems 6−8. The Tiny College relational diagram shows the initial entities
and attributes for Tiny College.

6. Identify each relationship type and write all of the business rules.

FIGURE
P2.4

The DealCo relational diagram

FIGURE
P2.6

The Tiny College relational diagram

53D A T A M O D E L S

7. Create the basic Crow’s Foot ERD for Tiny College.

8. Create the UML class diagram that reflects the entities and relationships you identified in the relational diagram.

9. Typically, a patient staying in a hospital receives medications that have been ordered by a particular doctor.
Because the patient often receives several medications per day, there is a 1:M relationship between PATIENT and
ORDER. Similarly, each order can include several medications, creating a 1:M relationship between ORDER and
MEDICATION.

a. Identify the business rules for PATIENT, ORDER, and MEDICATION.

b. Create a Crow’s Foot ERD that depicts a relational database model to capture these business rules.

10. United Broke Artists (UBA) is a broker for not-so-famous artists. UBA maintains a small database to track
painters, paintings, and galleries. A painting is painted by a particular artist, and that painting is exhibited in a
particular gallery. A gallery can exhibit many paintings, but each painting can be exhibited in only one gallery.
Similarly, a painting is painted by a single painter, but each painter can paint many paintings. Using PAINTER,
PAINTING, and GALLERY, in terms of a relational database:

a. What tables would you create, and what would the table components be?

b. How might the (independent) tables be related to one another?

11. Using the ERD from Problem 10, create the relational schema. (Create an appropriate collection of attributes for
each of the entities. Make sure you use the appropriate naming conventions to name the attributes.)

12. Convert the ERD from Problem 10 into the corresponding UML class diagram.

13. Describe the relationships (identify the business rules) depicted in the Crow’s Foot ERD shown in Figure P2.13.

14. Create a Crow’s Foot ERD to include the following business rules for the ProdCo company:

a. Each sales representative writes many invoices.

b. Each invoice is written by one sales representative.

c. Each sales representative is assigned to one department.

d. Each department has many sales representatives.

e. Each customer can generate many invoices.

f. Each invoice is generated by one customer.

FIGURE
P2.13

The Crow’s Foot ERD
for Problem 13

54 C H A P T E R 2

15. Write the business rules that are reflected in the ERD shown in Figure P2.15. (Note that the ERD reflects some
simplifying assumptions. For example, each book is written by only one author. Also, remember that the ERD
is always read from the “1” to the “M” side, regardless of the orientation of the ERD components.)

16. Create a Crow’s Foot ERD for each of the following descriptions. (Note: The word many merely means “more
than one” in the database modeling environment.)

a. Each of the MegaCo Corporation’s divisions is composed of many departments. Each department has many
employees assigned to it, but each employee works for only one department. Each department is managed
by one employee, and each of those managers can manage only one department at a time.

b. During some period of time, a customer can rent many videotapes from the BigVid store. Each of BigVid’s
videotapes can be rented to many customers during that period of time.

c. An airliner can be assigned to fly many flights, but each flight is flown by only one airliner.

d. The KwikTite Corporation operates many factories. Each factory is located in a region. Each region can be
“home” to many of KwikTite’s factories. Each factory employs many employees, but each of those
employees is employed by only one factory.

e. An employee may have earned many degrees, and each degree may have been earned by many employees.

FIGURE
P2.15

The Crow’s Foot ERD
for Problem 15

55D A T A M O D E L S

PART

II
Design Concepts

3The Relational Database Model

4Entity Relationship (ER) Modeling

5Advanced Data Modeling

6Normalization of Database Tables

B
V

usiness
ignette

BP’s Data Modeling Initiative

British Petroleum is one of the largest energy companies in the world, engaged in fuel

exploration and production in 29 countries and actively developing alternative energy

sources such as solar and wind energy and biofuels. In this large, diverse corporation,

management is decentralized and IT expenditure and infrastructure development has

historically been project-driven. As a result, BP’s Information Technology and Services

(IT&S) division was unable to implement uniform IT standards and platforms throughout

the company. The company had adopted well over 5,000 software applications.

The decentralized company structure strongly impacted database development. Each

project created its own data models.The extent and approach to data modeling differed

with each project. Project managers used a large variety of data modeling tools, including

System Architecture, ERWin, ARIS, Enterprise Architecture, Visio, and even PowerPoint.

Moreover, there was no central repository where models and data definitions could be

stored. Once a project was finished, these models were frequently lost. So, BP suffered

from inconsistent data definitions, data duplication, and quality problems.

In 2003, BP decided to change all that. The company set a goal to manage data and

information “as a shared corporate asset that is easily accessible.” It created an Enterprise

Architecture team to identify common IT standards. By the end of 2005, the team had

conducted a cross-company data modeling study and created a list of agreed upon

requirements.The idea was to establish “data modeling as a service” to all business units.

The function of the Enterprise Architecture team would not be to enforce standards and

procedures, but to train, support, and provide resources.

Since potential users were located all over the globe, the team decided to build a data

modeling portal that would house all data modeling related resources: standards and

guidelines, discussion boards, registration for trainings, and a large data model repository

where data models are automatically uploaded and shared. To support this effort, BP

adopted a single data modeling tool, ER/Studio. Users could work in ER/Studio and the

data models would automatically be published to Microsoft SharePoint. By 2009, the

repository contained 235 models for over 50,000 entities.

The response from users has been very positive. A recent survey found that nearly all

users agree that they are benefiting from the use of a common modeling tool, a common

repository, and common standards and guidelines. In addition, the number of employees

using the portal has increased. These two indicators strongly suggest that BP’s “data

modeling as a service” strategy is overcoming the disadvantages created by its policies of

decentralized management and voluntary adoption.

Preview

The Relational Database Model

In this chapter, you will learn:

� That the relational database model offers a logical view of data

� About the relational model’s basic component: relations

� That relations are logical constructs composed of rows (tuples) and columns (attributes)

� That relations are implemented as tables in a relational DBMS

� About relational database operators, the data dictionary, and the system catalog

� How data redundancy is handled in the relational database model

� Why indexing is important

In Chapter 2, Data Models, you learned that the relational data model’s structural and data

independence allow you to examine the model’s logical structure without considering the

physical aspects of data storage and retrieval. You also learned that entity relationship

diagrams (ERDs) may be used to depict entities and their relationships graphically. In this

chapter, you will learn some important details about the relational model’s logical structure

and more about how the ERD can be used to design a relational database.

You will also learn how the relational database’s basic data components fit into a logical

construct known as a table.You will discover that one important reason for the relational

database model’s simplicity is that its tables can be treated as logical rather than physical

units.You will also learn how the independent tables within the database can be related to

one another.

After learning about tables, their components, and their relationships, you will be introduced

to the basic concepts that shape the design of tables. Because the table is such an integral

part of relational database design, you will also learn the characteristics of well-designed and

poorly designed tables.

Finally, you will be introduced to some basic concepts that will become your gateway to the

next few chapters. For example, you will examine different kinds of relationships and the

way those relationships might be handled in the relational database environment.

3
T

H
R

E
E

3.1 A LOGICAL VIEW OF DATA

In Chapter 1, Database Systems, you learned that a database stores and manages both data and metadata. You also
learned that the DBMS manages and controls access to the data and the database structure. Such an arrangement—
placing the DBMS between the application and the database—eliminates most of the file system’s inherent limitations.
The result of such flexibility, however, is a far more complex physical structure. In fact, the database structures required
by both the hierarchical and network database models often become complicated enough to diminish efficient database
design. The relational data model changed all of that by allowing the designer to focus on the logical representation
of the data and its relationships, rather than on the physical storage details. To use an automotive analogy, the
relational database uses an automatic transmission to relieve you of the need to manipulate clutch pedals and
gearshifts. In short, the relational model enables you to view data logically rather than physically.

The practical significance of taking the logical view is that it serves as a reminder of the simple file concept of data
storage. Although the use of a table, quite unlike that of a file, has the advantages of structural and data independence,
a table does resemble a file from a conceptual point of view. Because you can think of related records as being stored
in independent tables, the relational database model is much easier to understand than the hierarchical and network
models. Logical simplicity tends to yield simple and effective database design methodologies.

Because the table plays such a prominent role in the relational model, it deserves a closer look. Therefore, our
discussion begins with an exploration of the details of table structure and contents.

3.1.1 Tables and Their Characteristics

The logical view of the relational database is facilitated by the creation of data relationships based on a logical construct
known as a relation. Because a relation is a mathematical construct, end users find it much easier to think of a relation
as a table. A table is perceived as a two-dimensional structure composed of rows and columns. A table is also called
a relation because the relational model’s creator, E. F. Codd, used the term relation as a synonym for table. You can
think of a table as a persistent representation of a logical relation, that is, a relation whose contents can be
permanently saved for future use. As far as the table’s user is concerned, a table contains a group of related entity
occurrences, that is, an entity set. For example, a STUDENT table contains a collection of entity occurrences, each
representing a student. For that reason, the terms entity set and table are often used interchangeably.

Note

The relational model, introduced by E. F. Codd in 1970, is based on predicate logic and set theory. Predicate logic,
used extensively in mathematics, provides a framework in which an assertion (statement of fact) can be verified as
either true or false. For example, suppose that a student with a student ID of 12345678 is namedMelissa Sanduski.
This assertion can easily be demonstrated to be true or false. Set theory is a mathematical science that deals with
sets, or groups of things, and is used as the basis for data manipulation in the relational model. For example,
assume that set A contains three numbers: 16, 24, and 77. This set is represented as A(16, 24, 77). Furthermore,
set B contains four numbers: 44, 77, 90, and 11, and so is represented as B(44, 77, 90, 11).Given this information,
you can conclude that the intersection of A and B yields a result set with a single number, 77. This result can be
expressed as A � B = 77. In other words, A and B share a common value, 77.

Based on these concepts, the relational model has three well-defined components:

1. A logical data structure represented by relations (Sections 3.1, 3.2, and 3.5).

2. A set of integrity rules to enforce that the data are and remain consistent over time (Sections 3.3, 3.6, 3.7,
and 3.8).

3. A set of operations that defines how data are manipulated (Section 3.4).

59T H E R E L A T I O N A L D A T A B A S E M O D E L

You will discover that the table view of data makes it easy to spot and define entity relationships, thereby greatly
simplifying the task of database design. The characteristics of a relational table are summarized in Table 3.1.

TABLE
3.1

Characteristics of a Relational Table

1 A table is perceived as a two-dimensional structure composed of rows and columns.
2 Each table row (tuple) represents a single entity occurrence within the entity set.
3 Each table column represents an attribute, and each column has a distinct name.
4 Each row/column intersection represents a single data value.
5 All values in a column must conform to the same data format.
6 Each column has a specific range of values known as the attribute domain.
7 The order of the rows and columns is immaterial to the DBMS.
8 Each table must have an attribute or a combination of attributes that uniquely identifies each row.

The table shown in Figure 3.1 illustrates the characteristics listed in Table 3.1.

Note

The word relation, also known as a dataset in Microsoft Access, is based on the mathematical set theory from
which Codd derived his model. Because the relational model uses attribute values to establish relationships
among tables, many database users incorrectly assume that the term relation refers to such relationships. Many
then incorrectly conclude that only the relational model permits the use of relationships.

Database name: Ch03_TinyCollege

STU_NUM = Student number
STU_LNAME = Student last name
STU_FNAME = Student first name
STU_INIT = Student middle initial
STU_DOB = Student date of birth
STU_HRS = Credit hours earned
STU_CLASS = Student classification
STU_GPA = Grade point average
STU_TRANSFER = Student transferred from another institution
DEPT_CODE = Department code
STU_PHONE = 4-digit campus phone extension
PROF_NUM = Number of the professor who is the student’s advisor

Table name: STUDENT

FIGURE
3.1

STUDENT table attribute values

60 C H A P T E R 3

Using the STUDENT table shown in Figure 3.1, you can draw the following conclusions corresponding to the points
in Table 3.1:

1. The STUDENT table is perceived to be a two-dimensional structure composed of eight rows (tuples) and twelve
columns (attributes).

2. Each row in the STUDENT table describes a single entity occurrence within the entity set. (The entity set is
represented by the STUDENT table.) For example, row 4 in Figure 3.1 describes a student named Walter H.
Oblonski. Given the table contents, the STUDENT entity set includes eight distinct entities (rows), or students.

3. Each column represents an attribute, and each column has a distinct name.

4. All of the values in a column match the attribute’s characteristics. For example, the grade point average
(STU_GPA) column contains only STU_GPA entries for each of the table rows. Data must be classified
according to their format and function. Although various DBMSs can support different data types, most
support at least the following:

a. Numeric. Numeric data are data on which you can perform meaningful arithmetic procedures. For
example, in Figure 3.1, STU_HRS and STU_GPA are numeric attributes.

b. Character. Character data, also known as text data or string data, can contain any character or symbol not
intended for mathematical manipulation. In Figure 3.1, STU_CLASS and STU_PHONE are examples of
character attributes.

c. Date. Date attributes contain calendar dates stored in a special format known as the Julian date format.
For example, STU_DOB in Figure 3.1 is a date attribute.

d. Logical. Logical data can only have true or false (yes or no) values. In Figure 3.1, the STU_TRANSFER
attribute uses a logical data format.

5. The column’s range of permissible values is known as its domain. Because the STU_GPA values are limited
to the range 0–4, inclusive, the domain is [0,4].

6. The order of rows and columns is immaterial to the user.

7. Each table must have a primary key. In general terms, the primary key (PK) is an attribute (or a combination
of attributes) that uniquely identifies any given row. In this case, STU_NUM (the student number) is the primary
key. Using the data presented in Figure 3.1, observe that a student’s last name (STU_LNAME) would not be

Note

Relational database terminology is very precise. Unfortunately, file system terminology sometimes creeps into
the database environment. Thus, rows are sometimes referred to as records and columns are sometimes labeled
as fields. Occasionally, tables are labeled files. Technically speaking, this substitution of terms is not always
appropriate; the database table is a logical rather than a physical concept, and the terms file, record, and field
describe physical concepts. Nevertheless, as long as you recognize that the table is actually a logical rather than
a physical construct, you may (at the conceptual level) think of table rows as records and of table columns as
fields. In fact, many database software vendors still use this familiar file system terminology.

O n l i n e C o n t e n t

All of the databases used to illustrate the material in this chapter are found in the PremiumWebsite for this book.
The database names used in the folder match the database names used in the figures. For example, the source
of the tables shown in Figure 3.1 is the Ch03_TinyCollege database.

61T H E R E L A T I O N A L D A T A B A S E M O D E L

a good primary key because it is possible to find several students whose last name is Smith. Even the
combination of the last name and first name (STU_FNAME) would not be an appropriate primary key because,
as Figure 3.1 shows, it is quite possible to find more than one student named John Smith.

3.2 KEYS

In the relational model, keys are important because they are used to ensure that each row in a table is uniquely
identifiable. They are also used to establish relationships among tables and to ensure the integrity of the data.
Therefore, a proper understanding of the concept and use of keys in the relational model is very important. A key
consists of one or more attributes that determine other attributes. For example, an invoice number identifies all of the
invoice attributes, such as the invoice date and the customer name.

One type of key, the primary key, has already been introduced. Given the structure of the STUDENT table shown in
Figure 3.1, defining and describing the primary key seem simple enough. However, because the primary key plays such
an important role in the relational environment, you will examine the primary key’s properties more carefully. In this
section, you also will become acquainted with superkeys, candidate keys, and secondary keys.

The key’s role is based on a concept known as determination. In the context of a database table, the statement “A
determines B” indicates that if you know the value of attribute A, you can look up (determine) the value of attribute
B. For example, knowing the STU_NUM in the STUDENT table (see Figure 3.1) means that you are able to look up
(determine) that student’s last name, grade point average, phone number, and so on. The shorthand notation for “A
determines B” is A → B. If A determines B, C, and D, you write A → B, C, D. Therefore, using the attributes of the
STUDENT table in Figure 3.1, you can represent the statement “STU_NUM determines STU_LNAME” by writing:

STU_NUM → STU_LNAME

In fact, the STU_NUM value in the STUDENT table determines all of the student’s attribute values. For example, you
can write:

STU_NUM → STU_LNAME, STU_FNAME, STU_INIT

and

STU_NUM → STU_LNAME, STU_FNAME, STU_INIT, STU_DOB, STU_TRANSFER

In contrast, STU_NUM is not determined by STU_LNAME because it is quite possible for several students to have the
last name Smith.

The principle of determination is very important because it is used in the definition of a central relational database
concept known as functional dependence. The term functional dependence can be defined most easily this way: the
attribute B is functionally dependent on A if A determines B. More precisely:

The attribute B is functionally dependent on the attribute A if each value in column A determines
one and only one value in column B.

Using the contents of the STUDENT table in Figure 3.1, it is appropriate to say that STU_PHONE is functionally
dependent on STU_NUM. For example, the STU_NUM value 321452 determines the STU_PHONE value 2134. On
the other hand, STU_NUM is not functionally dependent on STU_PHONE because the STU_PHONE value 2267 is
associated with two STU_NUM values: 324274 and 324291. (This could happen when roommates share a single land
line phone number.) Similarly, the STU_NUM value 324273 determines the STU_LNAME value Smith. But the
STU_NUM value is not functionally dependent on STU_LNAME because more than one student may have the last
name Smith.

62 C H A P T E R 3

The functional dependence definition can be generalized to cover the case in which the determining attribute values
occur more than once in a table. Functional dependence can then be defined this way:1

Attribute A determines attribute B (that is, B is functionally dependent on A) if all of the rows in the
table that agree in value for attribute A also agree in value for attribute B.

Be careful when defining the dependency’s direction. For example, Gigantic State University determines its student
classification based on hours completed; these are shown in Table 3.2.

Therefore, you can write:

STU_HRS → STU_CLASS

But the specific number of hours is not dependent on the
classification. It is quite possible to find a junior with 62
completed hours or one with 84 completed hours. In other
words, the classification (STU_CLASS) does not determine
one and only one value for completed hours (STU_HRS).

Keep in mind that it might take more than a single attribute
to define functional dependence; that is, a key may be composed of more than one attribute. Such a multiattribute key
is known as a composite key.

Any attribute that is part of a key is known as a key attribute. For instance, in the STUDENT table, the student’s
last name would not be sufficient to serve as a key. On the other hand, the combination of last name, first name, initial,
and phone is very likely to produce unique matches for the remaining attributes. For example, you can write:

STU_LNAME, STU_FNAME, STU_INIT, STU_PHONE → STU_HRS, STU_CLASS

or

STU_LNAME, STU_FNAME, STU_INIT, STU_PHONE → STU_HRS, STU_CLASS, STU_GPA

or

STU_LNAME, STU_FNAME, STU_INIT, STU_PHONE → STU_HRS, STU_CLASS, STU_GPA, STU_DOB

Given the possible existence of a composite key, the notion of functional dependence can be further refined by
specifying full functional dependence:

If the attribute (B) is functionally dependent on a composite key (A) but not on any subset of that
composite key, the attribute (B) is fully functionally dependent on (A).

Within the broad key classification, several specialized keys can be defined. For example, a superkey is any key that
uniquely identifies each row. In short, the superkey functionally determines all of a row’s attributes. In the STUDENT
table, the superkey could be any of the following:

STU_NUM

STU_NUM, STU_LNAME

STU_NUM, STU_LNAME, STU_INIT

In fact, STU_NUM, with or without additional attributes, can be a superkey even when the additional attributes are
redundant.

1 SQL:2003 ANSI standard specification. ISO/IEC 9075-2:2003 – SQL/Foundation.

TABLE
3.2

Student Classification

HOURS COMPLETED CLASSIFICATION
Less than 30 Fr
30−59 So
60−89 Jr
90 or more Sr

63T H E R E L A T I O N A L D A T A B A S E M O D E L

A candidate key can be described as a superkey without unnecessary attributes, that is, a minimal superkey. Using
this distinction, note that the composite key

STU_NUM, STU_LNAME

is a superkey, but it is not a candidate key because STU_NUM by itself is a candidate key! The combination

STU_LNAME, STU_FNAME, STU_INIT, STU_PHONE

might also be a candidate key, as long as you discount the possibility that two students share the same last name, first
name, initial, and phone number.

If the student’s Social Security number had been included as one of the attributes in the STUDENT table in
Figure 3.1—perhaps named STU_SSN—both it and STU_NUM would have been candidate keys because either one
would uniquely identify each student. In that case, the selection of STU_NUM as the primary key would be driven by
the designer’s choice or by end-user requirements. In short, the primary key is the candidate key chosen to be the
unique row identifier. Note, incidentally, that a primary key is a superkey as well as a candidate key.

Within a table, each primary key value must be unique to ensure that each row is uniquely identified by the primary
key. In that case, the table is said to exhibit entity integrity. To maintain entity integrity, a null (that is, no data entry
at all) is not permitted in the primary key.

Nulls can never be part of a primary key, and they should be avoided—to the greatest extent possible—in other
attributes, too. There are rare cases in which nulls cannot be reasonably avoided when you are working with nonkey
attributes. For example, one of an EMPLOYEE table’s attributes is likely to be the EMP_INITIAL. However, some
employees do not have a middle initial. Therefore, some of the EMP_INITIAL values may be null. You will also discover
later in this section that there may be situations in which a null exists because of the nature of the relationship between
two entities. In any case, even if nulls cannot always be avoided, they must be used sparingly. In fact, the existence of
nulls in a table is often an indication of poor database design.

Nulls, if used improperly, can create problems because they have many different meanings. For example, a null can
represent:

� An unknown attribute value.

� A known, but missing, attribute value.

� A “not applicable” condition.

Depending on the sophistication of the application development software, nulls can create problems when functions
such as COUNT, AVERAGE, and SUM are used. In addition, nulls can create logical problems when relational tables
are linked.

Controlled redundancy makes the relational database work. Tables within the database share common attributes that
enable the tables to be linked together. For example, note that the PRODUCT and VENDOR tables in Figure 3.2 share
a common attribute named VEND_CODE. And note that the PRODUCT table’s VEND_CODE value 232 occurs more
than once, as does the VEND_CODE value 235. Because the PRODUCT table is related to the VENDOR table
through these VEND_CODE values, the multiple occurrence of the values is required to make the 1:M relationship
between VENDOR and PRODUCT work. Each VEND_CODE value in the VENDOR table is unique—the VENDOR
is the “1” side in the VENDOR-PRODUCT relationship. But any given VEND_CODE value from the VENDOR table

Note

A null is no value at all. It does not mean a zero or a space. A null is created when you press the Enter key or
the Tab key to move to the next entry without making a prior entry of any kind. Pressing the Spacebar creates
a blank (or a space).

64 C H A P T E R 3

may occur more than once in the PRODUCT table, thus providing evidence that PRODUCT is the “M” side of the
VENDOR-PRODUCT relationship. In database terms, the multiple occurrences of the VEND_CODE values in the
PRODUCT table are not redundant because they are required to make the relationship work. You should recall from
Chapter 2 that data redundancy exists only when there is unnecessary duplication of attribute values.

As you examine Figure 3.2, note that the VEND_CODE value in one table can be used to point to the corresponding
value in the other table. For example, the VEND_CODE value 235 in the PRODUCT table points to vendor Henry
Ortozo in the VENDOR table. Consequently, you discover that the product “Houselite chain saw, 16-in. bar” is
delivered by Henry Ortozo and that he can be contacted by calling 615-899-3425. The same connection can be made
for the product “Steel tape, 12-ft. length” in the PRODUCT table.

Remember the naming convention—the prefix PROD was used in Figure 3.2 to indicate that the attributes “belong”
to the PRODUCT table. Therefore, the prefix VEND in the PRODUCT table’s VEND_CODE indicates that
VEND_CODE points to some other table in the database. In this case, the VEND prefix is used to point to the
VENDOR table in the database.

A relational database can also be represented by a relational schema. A relational schema is a textual representation
of the database tables where each table is listed by its name followed by the list of its attributes in parentheses. The
primary key attribute(s) is (are) underlined. You will see such schemas in Chapter 6, Normalization of Database Tables.
For example, the relational schema for Figure 3.2 would be shown as:

VENDOR (VEND_CODE, VEND_CONTACT, VEND_AREACODE, VEND_PHONE)

PRODUCT (PROD_CODE, PROD_DESCRIPT, PROD_PRICE, PROD_ON_HAND, VEND_CODE)

The link between the PRODUCT and VENDOR tables in Figure 3.2 can also be represented by the relational diagram
shown in Figure 3.3. In this case, the link is indicated by the line that connects the VENDOR and PRODUCT tables.

Note that the link in Figure 3.3 is the equivalent of the relationship line in an ERD. This link is created when two tables
share an attribute with common values. More specifically, the primary key of one table (VENDOR) appears as the
foreign key in a related table (PRODUCT). A foreign key (FK) is an attribute whose values match the primary key
values in the related table. For example, in Figure 3.2, the VEND_CODE is the primary key in the VENDOR table,

Database name: Ch03_SaleCo

Table name: VENDOR
Primary key: VEND_CODE
Foreign key: none

Table name: PRODUCT
Primary key: PROD_CODE
Foreign key: VEND_CODE

link

FIGURE
3.2

An example of a simple relational database

65T H E R E L A T I O N A L D A T A B A S E M O D E L

and it occurs as a foreign key in the PRODUCT table.
Because the VENDOR table is not linked to a third table, the
VENDOR table shown in Figure 3.2 does not contain a
foreign key.

If the foreign key contains either matching values or nulls,
the table that makes use of that foreign key is said to exhibit
referential integrity. In other words, referential integrity
means that if the foreign key contains a value, that value
refers to an existing valid tuple (row) in another relation.
Note that referential integrity is maintained between the
PRODUCT and VENDOR tables shown in Figure 3.2.

Finally, a secondary key is defined as a key that is used strictly for data retrieval purposes. Suppose customer data
are stored in a CUSTOMER table in which the customer number is the primary key. Do you suppose that most
customers will remember their numbers? Data retrieval for a customer can be facilitated when the customer’s last name
and phone number are used. In that case, the primary key is the customer number; the secondary key is the
combination of the customer’s last name and phone number. Keep in mind that a secondary key does not necessarily
yield a unique outcome. For example, a customer’s last name and home telephone number could easily yield several
matches where one family lives together and shares a phone line. A less efficient secondary key would be the
combination of the last name and zip code; this could yield dozens of matches, which could then be combed for a
specific match.

A secondary key’s effectiveness in narrowing down a search depends on how restrictive that secondary key is. For
instance, although the secondary key CUS_CITY is legitimate from a database point of view, the attribute values “New
York” or “Sydney” are not likely to produce a usable return unless you want to examine millions of possible matches.
(Of course, CUS_CITY is a better secondary key than CUS_COUNTRY.)

Table 3.3 summarizes the various relational database table keys.

TABLE
3.3

Relational Database Keys

KEY TYPE DEFINITION
Superkey An attribute (or combination of attributes) that uniquely identifies each row in a table.
Candidate key A minimal (irreducible) superkey. A superkey that does not contain a subset of attributes

that is itself a superkey.
Primary key A candidate key selected to uniquely identify all other attribute values in any given row.

Cannot contain null entries.
Secondary key An attribute (or combination of attributes) used strictly for data retrieval purposes.
Foreign key An attribute (or combination of attributes) in one table whose values must either match the

primary key in another table or be null.

3.3 INTEGRITY RULES

Relational database integrity rules are very important to good database design. Many (but by no means all) RDBMSs
enforce integrity rules automatically. However, it is much safer to make sure that your application design conforms to
the entity and referential integrity rules mentioned in this chapter. Those rules are summarized in Table 3.4.

FIGURE
3.3

The relational diagram for
the Ch03_SaleCo database

66 C H A P T E R 3

TABLE
3.4

Integrity Rules

ENTITY INTEGRITY DESCRIPTION
Requirement All primary key entries are unique, and no part of a primary key may

be null.
Purpose Each row will have a unique identity, and foreign key values can properly

reference primary key values.
Example No invoice can have a duplicate number, nor can it be null. In short, all

invoices are uniquely identified by their invoice number.
REFERENCE INTEGRITY DESCRIPTION
Requirement A foreign key may have either a null entry, as long as it is not a part of its

table’s primary key, or an entry that matches the primary key value in a
table to which it is related. (Every non-null foreign key value must refer-
ence an existing primary key value.)

Purpose It is possible for an attribute NOT to have a corresponding value, but it will
be impossible to have an invalid entry. The enforcement of the referential
integrity rule makes it impossible to delete a row in one table whose pri-
mary key has mandatory matching foreign key values in another table.

Example A customer might not yet have an assigned sales representative (number),
but it will be impossible to have an invalid sales representative (number).

The integrity rules summarized in Table 3.4 are illustrated in Figure 3.4.

Note the following features of Figure 3.4.

1. Entity integrity. The CUSTOMER table’s primary key is CUS_CODE. The CUSTOMER primary key column
has no null entries, and all entries are unique. Similarly, the AGENT table’s primary key is AGENT_CODE, and
this primary key column is also free of null entries.

2. Referential integrity. The CUSTOMER table contains a foreign key, AGENT_CODE, which links entries in
the CUSTOMER table to the AGENT table. The CUS_CODE row that is identified by the (primary key) number

Table name: CUSTOMER
Primary key: CUS_CODE
Foreign key: AGENT_CODE

Database name: Ch03_InsureCo

FIGURE
3.4

An illustration of integrity rules

Table name: AGENT
Primary key: AGENT_CODE
Foreign key: none

67T H E R E L A T I O N A L D A T A B A S E M O D E L

10013 contains a null entry in its AGENT_CODE foreign key because Mr. Paul F. Olowski does not yet have
a sales representative assigned to him. The remaining AGENT_CODE entries in the CUSTOMER table all
match the AGENT_CODE entries in the AGENT table.

To avoid nulls, some designers use special codes, known as flags, to indicate the absence of some value. Using
Figure 3.4 as an example, the code -99 could be used as the AGENT_CODE entry of the fourth row of the
CUSTOMER table to indicate that customer Paul Olowski does not yet have an agent assigned to him. If such a flag
is used, the AGENT table must contain a dummy row with an AGENT_CODE value of -99. Thus, the AGENT table’s
first record might contain the values shown in Table 3.5.

TABLE
3.5

A Dummy Variable Value Used as a Flag

AGENT_CODE AGENT_AREACODE AGENT_PHONE AGENT_LNAME AGENT_YTD_SALES
-99 000 000-0000 None $0.00

Chapter 4, Entity Relationship (ER) Modeling, discusses several ways in which nulls may be handled.

Other integrity rules that can be enforced in the relational model are the NOT NULL and UNIQUE constraints. The
NOT NULL constraint can be placed on a column to ensure that every row in the table has a value for that column.
The UNIQUE constraint is a restriction placed on a column to ensure that no duplicate values exist for that column.

3.4 RELATIONAL SET OPERATORS

The data in relational tables are of limited value unless the data can be manipulated to generate useful information. This
section describes the basic data manipulation capabilities of the relational model. Relational algebra defines the
theoretical way of manipulating table contents using the eight relational operators: SELECT, PROJECT, JOIN,
INTERSECT, UNION, DIFFERENCE, PRODUCT, and DIVIDE. In Chapter 7, Introduction to Structured Query
Language (SQL), and Chapter 8, Advanced SQL, you will learn how SQL commands can be used to accomplish
relational algebra operations.

The relational operators have the property of closure; that is, the use of relational algebra operators on existing
relations (tables) produces new relations. There is no need to examine the mathematical definitions, properties, and
characteristics of those relational algebra operators. However, their use can easily be illustrated as follows:

1. SELECT, also known as RESTRICT, yields values for all rows found in a table that satisfy a given condition.
SELECT can be used to list all of the row values, or it can yield only those row values that match a specified
criterion. In other words, SELECT yields a horizontal subset of a table. The effect of a SELECT is shown in
Figure 3.5.

2. PROJECT yields all values for selected attributes. In other words, PROJECT yields a vertical subset of a table.
The effect of a PROJECT is shown in Figure 3.6.

Note

The degree of relational completeness can be defined by the extent to which relational algebra is supported. To
be considered minimally relational, the DBMSmust support the key relational operators SELECT, PROJECT, and
JOIN. Very few DBMSs are capable of supporting all eight relational operators.

68 C H A P T E R 3

3. UNION combines all rows from two tables, excluding duplicate rows. The tables must have the same attribute
characteristics (the columns and domains must be compatible) to be used in the UNION. When two or more
tables share the same number of columns, and when their corresponding columns share the same (or
compatible) domains, they are said to be union-compatible. The effect of a UNION is shown in Figure 3.7.

4. INTERSECT yields only the rows that appear in both tables. As was true in the case of UNION, the tables must
be union-compatible to yield valid results. For example, you cannot use INTERSECT if one of the attributes is
numeric and one is character-based. The effect of an INTERSECT is shown in Figure 3.8.

Original table New table

SELECT ALL yields

SELECT only PRICE less than $2.00 yields

SELECT only P_CODE = 311452 yields

FIGURE
3.5

SELECT

Original table New table

PROJECT PRICE yields

PROJECT P_DESCRIPT and PRICE yields

PROJECT P_CODE and PRICE yields

FIGURE
3.6

PROJECT

69T H E R E L A T I O N A L D A T A B A S E M O D E L

5. DIFFERENCE yields all rows in one table that are not found in the other table; that is, it subtracts one table
from the other. As was true in the case of UNION, the tables must be union-compatible to yield valid results.
The effect of a DIFFERENCE is shown in Figure 3.9. However, note that subtracting the first table from the
second table is not the same as subtracting the second table from the first table.

6. PRODUCT yields all possible pairs of rows from two tables—also known as the Cartesian product. Therefore,
if one table has six rows and the other table has three rows, the PRODUCT yields a list composed of 6 × 3
= 18 rows. The effect of a PRODUCT is shown in Figure 3.10.

7. JOIN allows information to be combined from two or more tables. JOIN is the real power behind the relational
database, allowing the use of independent tables linked by common attributes. The CUSTOMER and AGENT
tables shown in Figure 3.11 will be used to illustrate several types of joins.

UNION yields

FIGURE
3.7

UNION

INTERSECT yields

FIGURE
3.8

INTERSECT

DIFFERENCE yields

FIGURE
3.9

DIFFERENCE

70 C H A P T E R 3

A natural join links tables by selecting only the rows with common values in their common attribute(s). A
natural join is the result of a three-stage process:

a. First, a PRODUCT of the tables is created, yielding the results shown in Figure 3.12.

b. Second, a SELECT is performed on the output of Step a to yield only the rows for which the
AGENT_CODE values are equal. The common columns are referred to as the join columns. Step b yields
the results shown in Figure 3.13.

c. A PROJECT is performed on the results of Step b to yield a single copy of each attribute, thereby
eliminating duplicate columns. Step c yields the output shown in Figure 3.14.

The final outcome of a natural join yields a table that does not include unmatched pairs and provides only the copies
of the matches.

Note a few crucial features of the natural join operation:

� If no match is made between the table rows, the new table does not include the unmatched row. In that case,
neither AGENT_CODE 421 nor the customer whose last name is Smithson is included. Smithson’s
AGENT_CODE 421 does not match any entry in the AGENT table.

� The column on which the join was made—that is, AGENT_CODE—occurs only once in the new table.

� If the same AGENT_CODE were to occur several times in the AGENT table, a customer would be listed for
each match. For example, if the AGENT_CODE 167 were to occur three times in the AGENT table, the
customer named Rakowski, who is associated with AGENT_CODE 167, would occur three times in the

PRODUCT yields

FIGURE
3.10

PRODUCT

Table name: CUSTOMER Table name: AGENT

FIGURE
3.11

Two tables that will be used in join illustrations

71T H E R E L A T I O N A L D A T A B A S E M O D E L

resulting table. (A good AGENT table
cannot, of course, yield such a result
because it would contain unique pri-
mary key values.)

Another form of join, known as equijoin, links
tables on the basis of an equality condition that
compares specified columns of each table. The
outcome of the equijoin does not eliminate
duplicate columns, and the condition or crite-
rion used to join the tables must be explicitly

defined. The equijoin takes its name from the equality comparison operator (=) used in the condition. If any other
comparison operator is used, the join is called a theta join.

Each of the preceding joins is often classified as an inner join. An inner join is a join that only returns matched records
from the tables that are being joined. In an outer join, the matched pairs would be retained, and any unmatched
values in the other table would be left null. It is an easy mistake to think that an outer join is the opposite of an

FIGURE
3.12

Natural join, Step 1: PRODUCT

FIGURE
3.13

Natural join, Step 2: SELECT

FIGURE
3.14

Natural join, Step 3: PROJECT

72 C H A P T E R 3

inner join. However, it is more accurate to think of an outer join as an “inner join plus.” The outer join still returns
all of the matched records that the inner join returns, plus it returns the unmatched records from one of the tables.
More specifically, if an outer join is produced for tables CUSTOMER and AGENT, two scenarios are possible:

A left outer join yields all of the rows in the CUSTOMER table, including those that do not have a matching value
in the AGENT table. An example of such a join is shown in Figure 3.15.

A right outer join yields all of the rows
in the AGENT table, including those
that do not have matching values in the
CUSTOMER table. An example of such
a join is shown in Figure 3.16.

Generally speaking, outer joins operate
like equijoins. The outer join does not
drop one copy of the common attribute,
and it requires the specification of the
join condition. Figures 3.15 and 3.16
illustrate the result of outer joins after a
relational PROJECT operation is applied
to them to manually remove the dupli-
cate column.

Outer joins are especially useful when
you are trying to determine what val-
ue(s) in related tables cause(s) referential
integrity problems. Such problems are
created when foreign key values do not
match the primary key values in the
related table(s). In fact, if you are asked
to convert large spreadsheets or other

nondatabase data into relational database tables, you will discover that the outer joins save you vast amounts
of time and uncounted headaches when you encounter referential integrity errors after the conversions.

You may wonder why the outer joins are labeled left and right. The labels refer to the order in which the tables
are listed in the SQL command. Chapter 8 explores such joins in more detail.

8. The DIVIDE operation uses one single-column table (e.g., column “a”) as the divisor and one 2-column table
(i.e., columns “a” and “b”) as the dividend. The tables must have a common column (e.g., column “a”). The
output of the DIVIDE operation is a single column with the values of column “a” from the dividend table rows
where the value of the common column (i.e., column “a”) in both tables matches. Figure 3.17 shows a DIVIDE.

FIGURE
3.15

Left outer join

FIGURE
3.16

Right outer join

DIVIDE yields

FIGURE
3.17

DIVIDE

73T H E R E L A T I O N A L D A T A B A S E M O D E L

Using the example shown in Figure 3.17, note that:

a. Table 1 is “divided” by Table 2 to produce Table 3. Tables 1 and 2 both contain the column CODE but do
not share LOC.

b. To be included in the resulting Table 3, a value in the unshared column (LOC) must be associated (in the
dividing Table 2) with every value in Table 1.

c. The only value associated with both A and B is 5.

3.5 THE DATA DICTIONARY AND THE SYSTEM CATALOG

The data dictionary provides a detailed description of all tables found within the user/designer-created database.
Thus, the data dictionary contains at least all of the attribute names and characteristics for each table in the system.
In short, the data dictionary contains metadata—data about data. Using the small database presented in Figure 3.4,
you might picture its data dictionary as shown in Table 3.6.

The data dictionary is sometimes described as “the database designer’s database” because it records the design
decisions about tables and their structures.

Like the data dictionary, the system catalog contains metadata. The system catalog can be described as a detailed
system data dictionary that describes all objects within the database, including data about table names, the table’s
creator and creation date, the number of columns in each table, the data type corresponding to each column, index
filenames, index creators, authorized users, and access privileges. Because the system catalog contains all required data
dictionary information, the terms system catalog and data dictionary are often used interchangeably. In fact, current
relational database software generally provides only a system catalog, from which the designer’s data dictionary
information may be derived. The system catalog is actually a system-created database whose tables store the
user/designer-created database characteristics and contents. Therefore, the system catalog tables can be queried just
like any user/designer-created table.

In effect, the system catalog automatically produces database documentation. As new tables are added to the database,
that documentation also allows the RDBMS to check for and eliminate homonyms and synonyms. In general terms,
homonyms are similar-sounding words with different meanings, such as boar and bore, or identically spelled words
with different meanings, such as fair (meaning “just”) and fair (meaning “festival”). In a database context, the word
homonym indicates the use of the same attribute name to label different attributes. For example, you might use
C_NAME to label a customer name attribute in a CUSTOMER table and also use C_NAME to label a consultant name
attribute in a CONSULTANT table. To lessen confusion, you should avoid database homonyms; the data dictionary is
very useful in this regard.

In a database context, a synonym is the opposite of a homonym and indicates the use of different names to describe
the same attribute. For example, car and auto refer to the same object. Synonyms must be avoided. You will discover
why using synonyms is a bad idea when you work through Problem 27 at the end of this chapter.

Note

The data dictionary in Table 3.6 is an example of the human view of the entities, attributes, and relationships.
The purpose of this data dictionary is to ensure that all members of database design and implementation teams
use the same table and attribute names and characteristics. The DBMS’s internally stored data dictionary
contains additional information about relationship types, entity and referential integrity checks and enforce-
ment, and index types and components. This additional information is generated during the database imple-
mentation stage.

74 C H A P T E R 3

TA
BL

E
3.

6
A

Sa
m

pl
e

D
at

a
D

ic
tio

na
ry

TA
BL

E
N

AM
E

AT
TR

IB
U

TE
N

AM
E

C
O

N
TE

N
TS

TY
PE

FO
RM

AT
RA

N
G

E
RE

Q
U

IR
ED

PK O
R

FK

FK RE
FE

RE
N

C
ED

TA
BL

E
C

U
ST
O

M
ER

C
U

S_
C
O
D

E
C

U
S_

LN
A

M
E

C
U

S_
FN

A
M

E
C

U
S_
IN
IT
IA

L
C

U
S_

RE
N

EW
_D

AT
E

AG
EN
T_
C
O
D

E

C
us
to
m
er
ac
co
un
tc
od
e

C
us
to
m
er
la
st
na
m
e

C
us
to
m
er
fir
st
na
m
e

C
us
to
m
er
in
iti
al

C
us
to
m
er
in
su
ra
nc
e

re
ne
w
al
da
te

Ag
en
tc
od
e

C
H

AR
(5

)
VA

RC
H

AR
(2

0)
VA

RC
H

AR
(2

0)
C

H
AR

(1
)

D
AT

E

C
H

AR
(3

)

99
99

9
Xx
xx
xx
xx

Xx
xx
xx
xx

X dd
-m
m
m

-y
yy
y

99
9

10
00

0−
99

99
9

Y Y Y

PK FK
AG

EN
T_
C
O
D

E
A

G
EN
T

AG
EN
T_
C
O
D

E
A

G
EN
T_

A
RE

A
C
O
D

E
AG

EN
T_
PH
O

N
E

AG
EN
T_

LN
AM

E
AG

EN
T _

YT
D

_S
LS

A
ge
nt
co
de

A
ge
nt
ar
ea
co
de

A
ge
nt
te
le
ph
on
e
nu
m
be
r

A
ge
nt
la
st
na
m
e

A
ge
nt
ye
ar

-t
o-
da
te
sa
le
s

C
H

AR
(3

)
C

H
AR

(3
)

C
H

AR
(8

)
VA

RC
H

AR
(2

0)
N

U
M

BE
R(

9,
2)

99
9

99
9

99
9-

99
99

Xx
xx
xx
xx

9,
99

9,
99

9.
99

Y Y Y Y Y

PK

FK
=

Fo
re
ig
n
ke
y

PK
=

Pr
im
ar
y
ke
y

C
H

AR
=

Fi
xe
d
ch
ar
ac
te
r
le
ng
th
da
ta

(1
−

25
5
ch
ar
ac
te
rs

)
VA

RC
H

A
R

=
Va
ria
bl
e
ch
ar
ac
te
r
le
ng
th
da
ta

(1
−

2,
00

0
ch
ar
ac
te
rs

)
N

U
M

BE
R

=
N
um
er
ic
da
ta

(N
U

M
BE

R(
9,

2)
)a
re
us
ed
to
sp
ec
ify
nu
m
be
rs
w
ith
tw
o
de
ci
m
al
pl
ac
es
an
d
up
to
ni
ne
di
gi
ts
,i
nc
lu
di
ng
th
e
de
ci
m
al
pl
ac
es
.

So
m
e

RD
BM

Ss
pe
rm
it
th
e
us
e
of
a

M
O

N
EY
or
C

U
RR

EN
C

Y
da
ta
ty
pe
.

N
ot

e:
Te
le
ph
on
e
ar
ea
co
de
s
ar
e
al
w
ay
s
co
m
po
se
d
of
di
gi
ts

0−
9.

Be
ca
us
e
ar
ea
co
de
s
ar
e
no
tu
se
d
ar
ith
m
et
ic
al
ly,
th
ey
ar
e
m
os
te
ffi
ci
en
tly
st
or
ed
as
ch
ar
ac
te
rd
at
a.

Al
so
,

th
e
ar
ea
co
de
sa
re
al
w
ay
sc
om
po
se
d
of
th
re
e
di
gi
ts
.T
he
re
fo
re
,t
he
ar
ea
co
de
da
ta
ty
pe
is
de
fin
ed
as
C

H
AR

(3
).
O
n
th
e
ot
he
rh
an
d,
na
m
es
do
no
tc
on
fo
rm
to
so
m
e
st
an
da
rd

le
ng
th
.T
he
re
fo
re
,t
he
cu
st
om
er
fir
st
na
m
es
ar
e
de
fin
ed
as

VA
RC

H
AR

(2
0)
,t
hu
s
in
di
ca
tin
g
th
at
up
to

20
ch
ar
ac
te
rs
m
ay
be
us
ed
to
st
or
e
th
e
na
m
es
.C
ha
ra
ct
er
da
ta
ar
e

sh
ow
n
as
le
ft-

ju
st
ifi
ed
.

75T H E R E L A T I O N A L D A T A B A S E M O D E L

3.6 RELATIONSHIPS WITHIN THE RELATIONAL DATABASE

You already know that relationships are classified as one-to-one (1:1), one-to-many (1:M), and many-to-many (M:N or
M:M). This section explores those relationships further to help you apply them properly when you start developing
database designs, focusing on the following points:

� The 1:M relationship is the relational modeling ideal. Therefore, this relationship type should be the norm in
any relational database design.

� The 1:1 relationship should be rare in any relational database design.

� M:N relationships cannot be implemented as such in the relational model. Later in this section, you will see
how any M:N relationship can be changed into two 1:M relationships.

3.6.1 The 1:M Relationship

The 1:M relationship is the relational database norm. To see how such a relationship is modeled and implemented,
consider the PAINTER paints PAINTING example shown in Figure 3.18.

Compare the data model in Figure 3.18 with its implemen-
tation in Figure 3.19.

As you examine the PAINTER and PAINTING table contents
in Figure 3.19, note the following features:

� Each painting is painted by one and only one
painter, but each painter could have painted many
paintings. Note that painter 123 (Georgette P. Ross)
has three paintings stored in the PAINTING table.

� There is only one row in the PAINTER table for any given row in the PAINTING table, but there may be many
rows in the PAINTING table for any given row in the PAINTER table.

The 1:M relationship is found in any database environment. Students in a typical college or university will discover that
each COURSE can generate many CLASSes but that each CLASS refers to only one COURSE. For example, an

FIGURE
3.18

The 1:M relationship between
PAINTER and PAINTING

Database name: Ch03_Museum

Table name: PAINTING
Primary key: PAINTING_NUM
Foreign key: PAINTER_NUM

Table name: PAINTER
Primary key: PAINTER_NUM
Foreign key: none

FIGURE
3.19

The implemented 1:M relationship between PAINTER and PAINTING

76 C H A P T E R 3

Accounting II course might yield two classes: one offered on Monday, Wednesday, and Friday (MWF) from 10:00 a.m.
to 10:50 a.m. and one offered on Thursday (Th) from 6:00 p.m. to 8:40 p.m. Therefore, the 1:M relationship
between COURSE and CLASS might be described this way:

� Each COURSE can have many CLASSes, but each CLASS references only one COURSE.

� There will be only one row in the COURSE table for any given row in the CLASS table, but there can be many
rows in the CLASS table for any given row in the COURSE table.

Figure 3.20 maps the ERM (entity relationship model) for the 1:M relationship between COURSE and CLASS.

The 1:M relationship between COURSE and CLASS is
further illustrated in Figure 3.21.

Note

The one-to-many (1:M) relationship is easily implemented in the relational model by putting the primary key of
the 1 side in the table of the many side as a foreign key.

FIGURE
3.20

The 1:M relationship between
COURSE and CLASS

Database name: Ch03_TinyCollege

Table name: CLASS
Primary key: CLASS_CODE
Foreign key: CRS_CODE

Table name: COURSE
Primary key: CRS_CODE
Foreign key: none

FIGURE
3.21

The implemented 1:M relationship between COURSE and CLASS

77T H E R E L A T I O N A L D A T A B A S E M O D E L

Using Figure 3.21, take a minute to review some important terminology. Note that CLASS_CODE in the CLASS table
uniquely identifies each row. Therefore, CLASS_CODE has been chosen to be the primary key. However, the
combination CRS_CODE and CLASS_SECTION will also uniquely identify each row in the class table. In other words,
the composite key composed of CRS_CODE and CLASS_SECTION is a candidate key. Any candidate key must have
the not null and unique constraints enforced. (You will see how this is done when you learn SQL in Chapter 7.)

For example, note in Figure 3.19 that the PAINTER table’s primary key, PAINTER_NUM, is included in the PAINTING
table as a foreign key. Similarly, in Figure 3.21, the COURSE table’s primary key, CRS_CODE, is included in the
CLASS table as a foreign key.

3.6.2 The 1:1 Relationship

As the 1:1 label implies, in this relationship, one entity can be related to only one other entity, and vice versa. For
example, one department chair—a professor—can chair only one department, and one department can have only one
department chair. The entities PROFESSOR and DEPARTMENT thus exhibit a 1:1 relationship. (You might argue that
not all professors chair a department and professors cannot be required to chair a department. That is, the relationship
between the two entities is optional. However, at this stage of the discussion, you should focus your attention on the
basic 1:1 relationship. Optional relationships will be addressed in Chapter 4.) The basic 1:1 relationship is modeled
in Figure 3.22, and its implementation is shown in Figure 3.23.

As you examine the tables in Figure 3.23, note that there
are several important features:

� Each professor is a Tiny College employee. Therefore,
the professor identification is through the EMP_NUM.
(However, note that not all employees are
professors—there’s another optional relationship.)

� The 1:1 PROFESSOR chairs DEPARTMENT rela-
tionship is implemented by having the EMP_NUM
foreign key in the DEPARTMENT table. Note that
the 1:1 relationship is treated as a special case of the

1:M relationship in which the “many” side is restricted to a single occurrence. In this case, DEPARTMENT
contains the EMP_NUM as a foreign key to indicate that it is the department that has a chair.

� Also note that the PROFESSOR table contains the DEPT_CODE foreign key to implement the 1:M
DEPARTMENT employs PROFESSOR relationship. This is a good example of how two entities can participate
in two (or even more) relationships simultaneously.

The preceding “PROFESSOR chairs DEPARTMENT” example illustrates a proper 1:1 relationship. In fact, the use
of a 1:1 relationship ensures that two entity sets are not placed in the same table when they should not be.
However, the existence of a 1:1 relationship sometimes means that the entity components were not defined properly.
It could indicate that the two entities actually belong in the same table!

As rare as 1:1 relationships should be, certain conditions absolutely require their use. In Chapter 5, Advanced Data
Modeling, we will explore a concept called a generalization hierarchy, which is a powerful tool for improving our
database designs under specific conditions to avoid a proliferation of nulls. One of the characteristics of generalization
hierarchies is that they are implemented as 1:1 relationships.

3.6.3 The M:N Relationship

A many-to-many (M:N) relationship is not supported directly in the relational environment. However, M:N relationships
can be implemented by creating a new entity in 1:M relationships with the original entities.

FIGURE
3.22

The 1:1 relationship between
PROFESSOR and DEPARTMENT

78 C H A P T E R 3

Table name: DEPARTMENT
Primary key: DEPT_CODE
Foreign key: EMP_NUM

Table name: PROFESSOR
Primary key: EMP_NUM
Foreign key: DEPT_CODE

Database name: Ch03_TinyCollege

FIGURE
3.23

The implemented 1:1 relationship between PROFESSOR and DEPARTMENT

The 1:M DEPARTMENT employs PROFESSOR relationship is implemented through
the placement of the DEPT_CODE foreign key in the PROFESSOR table.

The 1:1 PROFESSOR chairs DEPARTMENT relationship
is implemented through the placement of the
EMP_NUM foreign key in the DEPARTMENT table.

O n l i n e C o n t e n t

If you open the Ch03_TinyCollege database in the PremiumWebsite, you’ll see that the STUDENT and CLASS
entities still use PROF_NUM as their foreign key. PROF_NUM and EMP_NUM are labels for the same attribute,
which is an example of the use of synonyms; that is, different names for the same attribute. These synonyms will
be eliminated in future chapters as the Tiny College database continues to be improved.

79T H E R E L A T I O N A L D A T A B A S E M O D E L

To explore the many-to-many (M:N) relationship, consider a rather typical college environment in which each
STUDENT can take many CLASSes, and each CLASS can contain many STUDENTs. The ER model in Figure 3.24
shows this M:N relationship.

Note the features of the ERM in Figure 3.24.

� Each CLASS can have many STUDENTs, and each
STUDENT can take many CLASSes.

� There can be many rows in the CLASS table for any
given row in the STUDENT table, and there can be
many rows in the STUDENT table for any given row
in the CLASS table.

To examine the M:N relationship more closely, imagine a
small college with two students, each of whom takes three
classes. Table 3.7 shows the enrollment data for the two
students.

TABLE
3.7

Sample Student Enrollment Data

STUDENT'S LAST NAME SELECTED CLASSES
Bowser Accounting 1, ACCT-211, code 10014

Intro to Microcomputing, CIS-220, code 10018
Intro to Statistics, QM-261, code 10021

Smithson Accounting 1, ACCT-211, code 10014
Intro to Microcomputing, CIS-220, code 10018
Intro to Statistics, QM-261, code 10021

Given such a data relationship and the sample data in Table 3.7, you could wrongly assume that you could implement
this M:N relationship by simply adding a foreign key in the many side of the relationship that points to the primary
key of the related table, as shown in Figure 3.25.

However, the M:N relationship should not be implemented as shown in Figure 3.25 for two good reasons:

� The tables create many redundancies. For example, note that the STU_NUM values occur many times in the
STUDENT table. In a real-world situation, additional student attributes such as address, classification, major,
and home phone would also be contained in the STUDENT table, and each of those attribute values would be
repeated in each of the records shown here. Similarly, the CLASS table contains many duplications: each
student taking the class generates a CLASS record. The problem would be even worse if the CLASS table
included such attributes as credit hours and course description. Those redundancies lead to the anomalies
discussed in Chapter 1.

� Given the structure and contents of the two tables, the relational operations become very complex and are
likely to lead to system efficiency errors and output errors.

O n l i n e C o n t e n t

If you look at the Ch03_AviaCo database in the Premium Website, you will see the implementation of the 1:1
PILOT to EMPLOYEE relationship. This relationship is based on a concept known as “generalization hierarchy,”
which you will learn about in Chapter 5.

FIGURE
3.24

The ERM’s M:N relationship
between STUDENT and CLASS

80 C H A P T E R 3

Fortunately, the problems inherent in the many-to-many (M:N) relationship can easily be avoided by creating a
composite entity (also referred to as a bridge entity or an associative entity). Because such a table is used to link
the tables that were originally related in an M:N relationship, the composite entity structure includes—as foreign
keys—at least the primary keys of the tables that are to be linked. The database designer has two main options when
defining a composite table’s primary key: use the combination of those foreign keys or create a new primary key.

Remember that each entity in the ERM is represented by a table. Therefore, you can create the composite ENROLL
table shown in Figure 3.26 to link the tables CLASS and STUDENT. In this example, the ENROLL table’s primary key
is the combination of its foreign keys CLASS_CODE and STU_NUM. But the designer could have decided to create
a single-attribute new primary key such as ENROLL_LINE, using a different line value to identify each ENROLL table
row uniquely. (Microsoft Access users might use the Autonumber data type to generate such line values automatically.)

Database name: Ch03_CollegeTry
Table name: STUDENT
Primary key: STU_NUM
Foreign key: none

Table name: CLASS
Primary key: CLASS_CODE
Foreign key: STU_NUM

FIGURE
3.25

The wrong implementation of the M:N relationship between STUDENT and CLASS

81T H E R E L A T I O N A L D A T A B A S E M O D E L

Because the ENROLL table in Figure 3.26 links two tables, STUDENT and CLASS, it is also called a linking table.
In other words, a linking table is the implementation of a composite entity.

The ENROLL table shown in Figure 3.26 yields the required M:N to 1:M conversion. Observe that the composite
entity represented by the ENROLL table must contain at least the primary keys of the CLASS and STUDENT tables
(CLASS_CODE and STU_NUM, respectively) for which it serves as a connector. Also note that the STUDENT and
CLASS tables now contain only one row per entity. The ENROLL table contains multiple occurrences of the foreign
key values, but those controlled redundancies are incapable of producing anomalies as long as referential integrity is
enforced. Additional attributes may be assigned as needed. In this case, ENROLL_GRADE is selected to satisfy a
reporting requirement. Also note that the ENROLL table’s primary key consists of the two attributes CLASS_CODE
and STU_NUM because both the class code and the student number are needed to define a particular student’s grade.
Naturally, the conversion is reflected in the ERM, too. The revised relationship is shown in Figure 3.27.

As you examine Figure 3.27, note that the composite entity named ENROLL represents the linking table between
STUDENT and CLASS.

The 1:M relationship between COURSE and CLASS was first illustrated in Figure 3.20 and Figure 3.21. You can
increase the amount of available information even as you control the database’s redundancies. Thus, Figure 3.28

Table name: ENROLL
Primary key: CLASS_CODE + STU_NUM
Foreign key: CLASS_CODE, STU_NUM

Table name: STUDENT
Primary key: STU_NUM
Foreign key: none

Database name: Ch03_CollegeTry2

Table name: CLASS
Primary key: CLASS_CODE
Foreign key: CRS_CODE

FIGURE
3.26

Converting the M:N relationship into two 1:M relationships

Note

In addition to the linking attributes, the composite ENROLL table can also contain such relevant attributes as the
grade earned in the course. In fact, a composite table can contain any number of attributes that the designer
wants to track. Keep in mind that the composite entity, although it is implemented as an actual table, is
conceptually a logical entity that was created as a means to an end: to eliminate the potential for multiple
redundancies in the original M:N relationship.

82 C H A P T E R 3

shows the expanded ERM, including the 1:M relationship
between COURSE and CLASS shown in Figure 3.20. Note
that the model is able to handle multiple sections of a
CLASS while controlling redundancies by making sure that
all of the COURSE data common to each CLASS are kept
in the COURSE table.

The relational diagram that corresponds to the ERM in
Figure 3.28 is shown in Figure 3.29.

The ERM will be examined in greater detail in Chapter 4 to
show you how it is used to design more complex databases.
The ERM will also be used as the basis for the development
and implementation of a realistic database design in Appen-
dixes B and C (see the Premium Website) for a university
computer lab.

FIGURE
3.27

Changing the M:N relationship
to two 1:M relationships

FIGURE
3.28

The expanded entity
relationship model

FIGURE
3.29

The relational diagram for the Ch03_TinyCollege database

83T H E R E L A T I O N A L D A T A B A S E M O D E L

3.7 DATA REDUNDANCY REVISITED

In Chapter 1 you learned that data redundancy leads to data anomalies. Those anomalies can destroy the effectiveness
of the database. You also learned that the relational database makes it possible to control data redundancies by using
common attributes that are shared by tables, called foreign keys.

The proper use of foreign keys is crucial to controlling data redundancy. Although the use of foreign keys does not
totally eliminate data redundancies, because the foreign key values can be repeated many times, the proper use of
foreign keys minimizes data redundancies, thus minimizing the chance that destructive data anomalies will develop.

You will learn in Chapter 4 that database designers must reconcile three often contradictory requirements: design
elegance, processing speed, and information requirements. And you will learn in Chapter 13, Business Intelligence and
Data Warehouses, that proper data warehousing design requires carefully defined and controlled data redundancies to
function properly. Regardless of how you describe data redundancies, the potential for damage is limited by proper
implementation and careful control.

As important as data redundancy control is, there are times when the level of data redundancy must actually be
increased to make the database serve crucial information purposes. You will learn about such redundancies in Chapter
13. There are also times when data redundancies seem to exist to preserve the historical accuracy of the data. For
example, consider a small invoicing system. The system includes the CUSTOMER, who may buy one or more
PRODUCTs, thus generating an INVOICE. Because a customer may buy more than one product at a time, an invoice

Note

The real test of redundancy is not how many copies of a given attribute are stored, but whether the elimination
of an attribute will eliminate information. Therefore, if you delete an attribute and the original information can
still be generated through relational algebra, the inclusion of that attribute would be redundant. Given that view
of redundancy, proper foreign keys are clearly not redundant in spite of their multiple occurrences in a table.
However, even when you use this less restrictive view of redundancy, keep in mind that controlled redundancies
are often designed as part of the system to ensure transaction speed and/or information requirements. Exclusive
reliance on relational algebra to produce required information may lead to elegant designs that fail the test of
practicality.

84 C H A P T E R 3

may contain several invoice LINEs, each providing details about the purchased product. The PRODUCT table should
contain the product price to provide a consistent pricing input for each product that appears on the invoice. The tables
that are part of such a system are shown in Figure 3.30. The system’s relational diagram is shown in Figure 3.31.

Database name: Ch03_SaleCoTable name: CUSTOMER
Primary key: CUS_CODE
Foreign key: none

Table name: LINE
Primary key: INV_NUMBER + LINE_NUMBER
Foreign keys: INV_NUMBER, PROD_CODE

Table name: INVOICE
Primary key: INV_NUMBER
Foreign key: CUS_CODE

Table name: PRODUCT
Primary key: PROD_CODE
Foreign key: none

FIGURE
3.30

A small invoicing system

FIGURE
3.31

The relational diagram for the invoicing system

85T H E R E L A T I O N A L D A T A B A S E M O D E L

As you examine the tables in the invoicing system in Figure 3.30 and the relationships depicted in Figure 3.31, note
that you can keep track of typical sales information. For example, by tracing the relationships among the four tables,
you discover that customer 10014 (Myron Orlando) bought two items on March 8, 2010, that were written to invoice
number 1001: one Houselite chain saw with a 16-inch bar and three rat-tail files. (Note: Trace the CUS_CODE
number 10014 in the CUSTOMER table to the matching CUS_CODE value in the INVOICE table. Next, take the
INV_NUMBER 1001 and trace it to the first two rows in the LINE table. Finally, match the two PROD_CODE values
in LINE with the PROD_CODE values in PRODUCT.) Application software will be used to write the correct bill by
multiplying each invoice line item’s LINE_UNITS by its LINE_PRICE, adding the results, applying appropriate taxes,
etc. Later, other application software might use the same technique to write sales reports that track and compare sales
by week, month, or year.

As you examine the sales transactions in Figure 3.30, you might reasonably suppose that the product price billed to
the customer is derived from the PRODUCT table because that’s where the product data are stored. But why does that
same product price occur again in the LINE table? Isn’t that a data redundancy? It certainly appears to be. But this
time, the apparent redundancy is crucial to the system’s success. Copying the product price from the PRODUCT table
to the LINE table maintains the historical accuracy of the transactions. Suppose, for instance, that you fail to write
the LINE_PRICE in the LINE table and that you use the PROD_PRICE from the PRODUCT table to calculate the sales
revenue. Now suppose that the PRODUCT table’s PROD_PRICE changes, as prices frequently do. This price change
will be properly reflected in all subsequent sales revenue calculations. However, the calculations of past sales revenues
will also reflect the new product price, which was not in effect when the transaction took place! As a result, the revenue
calculations for all past transactions will be incorrect, thus eliminating the possibility of making proper sales
comparisons over time. On the other hand, if the price data are copied from the PRODUCT table and stored with the
transaction in the LINE table, that price will always accurately reflect the transaction that took place at that time. You
will discover that such planned “redundancies” are common in good database design.

Finally, you might wonder why the LINE_NUMBER attribute was used in the LINE table in Figure 3.30. Wouldn’t the
combination of INV_NUMBER and PROD_CODE be a sufficient composite primary key—and, therefore, isn’t the
LINE_NUMBER redundant? Yes, the LINE_NUMBER is redundant, but this redundancy is quite common practice on
invoicing software that typically generates such line numbers automatically. In this case, the redundancy is not
necessary. But given its automatic generation, the redundancy is not a source of anomalies. The inclusion of
LINE_NUMBER also adds another benefit: the order of the retrieved invoicing data will always match the order in
which the data were entered. If product codes are used as part of the primary key, indexing will arrange those product
codes as soon as the invoice is completed and the data are stored. You can imagine the potential confusion when a
customer calls and says, “The second item on my invoice has an incorrect price” and you are looking at an invoice
whose lines show a different order from those on the customer’s copy!

3.8 INDEXES

Suppose you want to locate a particular book in a library. Does it make sense to look through every book in the library
until you find the one you want? Of course not; you use the library’s catalog, which is indexed by title, topic, and
author. The index (in either a manual or a computer system) points you to the book’s location, thereby making retrieval
of the book a quick and simple matter. An index is an orderly arrangement used to logically access rows in a table.

Or suppose you want to find a topic, such as “ER model,” in this book. Does it make sense to read through every page
until you stumble across the topic? Of course not; it is much simpler to go to the book’s index, look up the phrase ER
model, and read the page references that point you to the appropriate page(s). In each case, an index is used to locate
a needed item quickly.

Indexes in the relational database environment work like the indexes described in the preceding paragraphs. From a
conceptual point of view, an index is composed of an index key and a set of pointers. The index key is, in effect, the

86 C H A P T E R 3

index’s reference point. More formally, an index is an ordered arrangement of keys and pointers. Each key points to
the location of the data identified by the key.

For example, suppose you want to look up all of the paintings created by a given painter in the Ch03_Museum
database in Figure 3.19. Without an index, you must read each row in the PAINTING table and see if the
PAINTER_NUM matches the requested painter. However, if you index the PAINTER table and use the index key
PAINTER_NUM, you merely need to look up the appropriate PAINTER_NUM in the index and find the matching
pointers. Conceptually speaking, the index would resemble the presentation depicted in Figure 3.32.

As you examine Figure 3.32, note that the first PAINTER_NUM index key value (123) is found in records 1, 2,
and 4 of the PAINTING table. The second PAINTER_NUM index key value (126) is found in records 3 and 5 of the
PAINTING table.

DBMSs use indexes for many different purposes. You just learned that an index can be used to retrieve data more
efficiently. But indexes can also be used by a DBMS to retrieve data ordered by a specific attribute or attributes. For
example, creating an index on a customer’s last name will allow you to retrieve the customer data alphabetically by the
customer’s last name. Also, an index key can be composed of one or more attributes. For example, in Figure 3.30,
you can create an index on VEND_CODE and PROD_CODE to retrieve all rows in the PRODUCT table ordered by
vendor, and within vendor, ordered by product.

Indexes play an important role in DBMSs for the implementation of primary keys. When you define a table’s primary
key, the DBMS automatically creates a unique index on the primary key column(s) you declared. For example, in Figure
3.30, when you declare CUS_CODE to be the primary key of the CUSTOMER table, the DBMS automatically creates
a unique index on that attribute. A unique index, as its name implies, is an index in which the index key can have
only one pointer value (row) associated with it. (The index in Figure 3.32 is not a unique index because the
PAINTER_NUM has multiple pointer values associated with it. For example, painter number 123 points to three
rows—1, 2, and 4—in the PAINTING table.)

A table can have many indexes, but each index is associated with only one table. The index key can have multiple
attributes (composite index). Creating an index is easy. You will learn in Chapter 7 that a simple SQL command
produces any required index.

Components of an index

PAINTER_NUM
(index key)

126

Pointers to the
PAINTING
table rows

3, 5

FIGURE
3.32

Painting Table

123 1, 2, 4

Painting Table Index

87T H E R E L A T I O N A L D A T A B A S E M O D E L

3.9 CODD’S RELATIONAL DATABASE RULES

In 1985, Dr. E. F. Codd published a list of 12 rules to define a relational database system.2 The reason Dr. Codd
published the list was his concern that many vendors were marketing products as “relational” even though those
products did not meet minimum relational standards. Dr. Codd’s list, shown in Table 3.8, serves as a frame of reference
for what a truly relational database should be. Bear in mind that even the dominant database vendors do not fully
support all 12 rules.

TABLE
3.8

Dr. Codd’s 12 Relational Database Rules

RULE RULE NAME DESCRIPTION
1 Information All information in a relational database must be logically rep-

resented as column values in rows within tables.
2 Guaranteed Access Every value in a table is guaranteed to be accessible through a

combination of table name, primary key value, and column
name.

3 Systematic Treatment of Nulls Nulls must be represented and treated in a systematic way,
independent of data type.

4 Dynamic Online Catalog Based on
the Relational Model

The metadata must be stored and managed as ordinary data,
that is, in tables within the database. Such data must be avail-
able to authorized users using the standard database rela-
tional language.

5 Comprehensive Data Sublanguage The relational database may support many languages. How-
ever, it must support one well-defined, declarative language
with support for data definition, view definition, data manipu-
lation (interactive and by program), integrity constraints,
authorization, and transaction management (begin, commit,
and rollback).

6 View Updating Any view that is theoretically updatable must be updatable
through the system.

7 High-Level Insert, Update, and Delete The database must support set-level inserts, updates, and
deletes.

8 Physical Data Independence Application programs and ad hoc facilities are logically unaf-
fected when physical access methods or storage structures are
changed.

9 Logical Data Independence Application programs and ad hoc facilities are logically unaf-
fected when changes are made to the table structures that
preserve the original table values (changing order of columns
or inserting columns).

10 Integrity Independence All relational integrity constraints must be definable in the
relational language and stored in the system catalog, not at
the application level.

11 Distribution Independence The end users and application programs are unaware and
unaffected by the data location (distributed vs. local
databases).

12 Nonsubversion If the system supports low-level access to the data, there must
not be a way to bypass the integrity rules of the database.

Rule Zero All preceding rules are based on the notion that in order for a
database to be considered relational, it must use its relational
facilities exclusively to manage the database.

2Codd, E., “Is Your DBMS Really Relational?” and “Does Your DBMS Run by the Rules?” Computerworld, October 14 and October 21, 1985.

88 C H A P T E R 3

S u m m a r y

◗ Tables are the basic building blocks of a relational database. A grouping of related entities, known as an entity set,
is stored in a table. Conceptually speaking, the relational table is composed of intersecting rows (tuples) and
columns. Each row represents a single entity, and each column represents the characteristics (attributes) of the
entities.

◗ Keys are central to the use of relational tables. Keys define functional dependencies; that is, other attributes are
dependent on the key and can, therefore, be found if the key value is known. A key can be classified as a superkey,
a candidate key, a primary key, a secondary key, or a foreign key.

◗ Each table row must have a primary key. The primary key is an attribute or a combination of attributes that uniquely
identifies all remaining attributes found in any given row. Because a primary key must be unique, no null values are
allowed if entity integrity is to be maintained.

◗ Although the tables are independent, they can be linked by common attributes. Thus, the primary key of one table
can appear as the foreign key in another table to which it is linked. Referential integrity dictates that the foreign
key must contain values that match the primary key in the related table or must contain nulls.

◗ The relational model supports relational algebra functions: SELECT, PROJECT, JOIN, INTERSECT, UNION,
DIFFERENCE, PRODUCT, and DIVIDE. A relational database performs much of the data manipulation work
behind the scenes. For example, when you create a database, the RDBMS automatically produces a structure to
house a data dictionary for your database. Each time you create a new table within the database, the RDBMS
updates the data dictionary, thereby providing the database documentation.

◗ Once you know the relational database basics, you can concentrate on design. Good design begins by identifying
appropriate entities and their attributes and then the relationships among the entities. Those relationships (1:1,
1:M, and M:N) can be represented using ERDs. The use of ERDs allows you to create and evaluate simple logical
design. The 1:M relationship is most easily incorporated in a good design; you just have to make sure that the
primary key of the “1” is included in the table of the “many.”

K e y T e r m s

associative entity, 81

attribute domain, 60

bridge entity, 81

candidate key, 64

closure, 68

composite entity, 81

composite key, 63

data dictionary, 74

determination, 62

domain, 61

entity integrity, 64

equijoin, 72

flags, 68

foreign key (FK), 65

full functional dependence, 63

functional dependence, 62

homonym, 74

index, 86

index key, 86

inner join, 72

join column(s), 71

key, 62

key attribute, 63

left outer join, 73

linking table, 82

natural join, 71

null, 64

outer join, 72

predicate logic, 59

primary key (PK), 61

referential integrity, 66

relational algebra, 68

relational schema, 65

right outer join, 73

secondary key, 66

set theory, 59

superkey, 63

synonym, 74

system catalog, 74

theta join, 72

tuple, 60

union-compatible, 69

unique index, 87

89T H E R E L A T I O N A L D A T A B A S E M O D E L

R e v i e w Q u e s t i o n s

1. What is the difference between a database and a table?

2. What does it mean to say that a database displays both entity integrity and referential integrity?

3. Why are entity integrity and referential integrity important in a database?

4. What are the requirements that two relations must satisfy in order to be considered union-compatible?

5. Which relational algebra operators can be applied to a pair of tables that are not union-compatible?

6. Explain why the data dictionary is sometimes called “the database designer’s database.”

7. A database user manually notes that “The file contains two hundred records, each record containing nine fields.”
Use appropriate relational database terminology to “translate” that statement.

Use Figure Q3.8 to answer Questions 8–10.

8. Using the STUDENT and PROFESSOR tables, illus-
trate the difference between a natural join, an equijoin,
and an outer join.

9. Create the basic ERD for the database shown in
Figure Q3.8.

10. Create the relational diagram for the database shown
in Figure Q3.8.

Use Figure Q3.11 to answer Questions 11–13.

11. Create the table that results from applying a
UNION relational operator to the tables shown in
Figure Q3.11.

12. Create the table that results from applying an
INTERSECT relational operator to the tables shown in
Figure Q3.11.

13. Using the tables in Figure Q3.11, create the table that
results from MACHINE DIFFERENCE BOOTH.

14. Suppose you have the ERM shown in Figure Q3.14.
How would you convert this model into an ERM that
displays only 1:M relationships? (Make sure you create
the revised ERM.)

O n l i n e C o n t e n t

Answers to selected ReviewQuestions and Problems for this chapter are contained in the PremiumWebsite for
this book.

O n l i n e C o n t e n t

All of the databases used in the questions and problems are found in the Premium Website for this book. The
database names used in the folder match the database names used in the figures. For example, the source of the
tables shown in Figure Q3.5 is the Ch03_CollegeQue database.

Database name: Ch03_CollegeQue

Table name: PROFESSOR

Table name: STUDENT

FIGURE
Q3.8

The Ch03_CollegeQue
database tables

90 C H A P T E R 3

15. What are homonyms and synonyms, and why should they be avoided in database design?

16. How would you implement a l:M relationship in a database composed of two tables? Give an example.

17. Identify and describe the components of the table shown in Figure Q3.17, using correct terminology. Use your
knowledge of naming conventions to identify the table’s probable foreign key(s).

Use the database shown in Figure Q3.18 to answer Questions 18–23.

18. Identify the primary keys.

19. Identify the foreign keys.

20. Create the ERM.

Database name: Ch03_VendingCo

Table name: MACHINETable name: BOOTH

FIGURE
Q3.11

The Ch03_VendingCo database tables

FIGURE
Q3.14

The Crow’s Foot ERM for Question 14

Table name: EMPLOYEE Database name: Ch03_NoComp

FIGURE
Q3.17

The Ch03_NoComp database EMPLOYEE table

91T H E R E L A T I O N A L D A T A B A S E M O D E L

21. Create the relational diagram to show the relationship
between DIRECTOR and PLAY.

22. Suppose you wanted quick lookup capability to get a
listing of all plays directed by a given director. Which
table would be the basis for the INDEX table, and what
would be the index key?

23. What would be the conceptual view of the INDEX table
that is described in Question 22? Depict the contents
of the conceptual INDEX table.

P r o b l e m s

Use the database shown in Figure P3.1 to answer Problems 1−9.

1. For each table, identify the primary key and the foreign key(s). If a table does not have a foreign key, write None
in the space provided.

2. Do the tables exhibit entity integrity? Answer yes or no, and then explain your answer.

3. Do the tables exhibit referential integrity? Answer yes or no, and then explain your answer. Write NA (Not
Applicable) if the table does not have a foreign key.

4. Describe the type(s) of relationship(s) between STORE and REGION.

5. Create the ERD to show the relationship between STORE and REGION.

6. Create the relational diagram to show the relationship between STORE and REGION.

TABLE PRIMARY KEY FOREIGN KEY(S)
EMPLOYEE
STORE
REGION

TABLE ENTITY INTEGRITY EXPLANATION
EMPLOYEE
STORE
REGION

TABLE REFERENTIAL INTEGRITY FOREIGN KEY(S)
EMPLOYEE
STORE
REGION

Database name: Ch03_Theater

Table name: PLAY

Table name: DIRECTOR

FIGURE
Q3.18

The Ch03_Theater database
tables

92 C H A P T E R 3

7. Describe the type(s) of relationship(s) between EMPLOYEE and STORE. (Hint: Each store employs many
employees, one of whom manages the store.)

8. Create the ERD to show the relationships among EMPLOYEE, STORE, and REGION.

9. Create the relational diagram to show the relationships among EMPLOYEE, STORE, and REGION.

Use the database shown in Figure P3.10 to work Problems 10−16. Note that the database is composed of four tables
that reflect these relationships:

� An EMPLOYEE has only one JOB_CODE, but a JOB_CODE can be held by many EMPLOYEEs.

� An EMPLOYEE can participate in many PLANs, and any PLAN can be assigned to many EMPLOYEEs.

Note also that the M:N relationship has been broken down into two 1:M relationships for which the BENEFIT table
serves as the composite or bridge entity.

Table name: EMPLOYEE Database name: Ch03_StoreCo

Table name: STORE

Table name: REGION

FIGURE
P3.1

The Ch03_StoreCo database tables

93T H E R E L A T I O N A L D A T A B A S E M O D E L

10. For each table in the database, identify the primary key and the foreign key(s). If a table does not have a foreign
key, write None in the space provided.

11. Create the ERD to show the relationship between EMPLOYEE and JOB.

12. Create the relational diagram to show the relationship between EMPLOYEE and JOB.

13. Do the tables exhibit entity integrity? Answer yes or no, and then explain your answer.

14. Do the tables exhibit referential integrity? Answer yes or no, and then explain your answer. Write NA (Not
Applicable) if the table does not have a foreign key.

15. Create the ERD to show the relationships among EMPLOYEE, BENEFIT, JOB, and PLAN.

Database name: Ch03_BeneCo
Table name: EMPLOYEE

Table name: JOB

Table name: BENEFIT

Table name: PLAN

FIGURE
P3.10

The Ch03_BeneCo database tables

TABLE PRIMARY KEY FOREIGN KEY(S)
EMPLOYEE
BENEFIT
JOB
PLAN

TABLE ENTITY INTEGRITY EXPLANATION
EMPLOYEE
BENEFIT
JOB
PLAN

TABLE REFERENTIAL INTEGRITY EXPLANATION
EMPLOYEE
BENEFIT
JOB
PLAN

94 C H A P T E R 3

16. Create the relational diagram to show the relationships among EMPLOYEE, BENEFIT, JOB, and PLAN.

Use the database shown in Figure P3.17 to answer Problems 17−23.

17. For each table, identify the primary key and the foreign key(s). If a table does not have a foreign key, write None
in the space provided.

18. Do the tables exhibit entity integrity? Answer yes or no, and then explain your answer.

19. Do the tables exhibit referential integrity? Answer yes or no, and then explain your answer. Write NA (Not
Applicable) if the table does not have a foreign key.

Database name: Ch03_TransCoTable name: TRUCK
Primary key: TRUCK_NUM
Foreign key: BASE_CODE, TYPE_CODE

Table name: BASE
Primary key: BASE_CODE
Foreign key: none

Table name: TYPE
Primary key: TYPE_CODE
Foreign key: none

FIGURE
P3.17

The Ch03_TransCo database tables

TABLE PRIMARY KEY FOREIGN KEY(S)
TRUCK
BASE
TYPE

TABLE ENTITY INTEGRITY EXPLANATION
TRUCK
BASE
TYPE

95T H E R E L A T I O N A L D A T A B A S E M O D E L

20. Identify the TRUCK table’s candidate key(s).

21. For each table, identify a superkey and a secondary key.

22. Create the ERD for this database.

23. Create the relational diagram for this database.

Use the database shown in Figure P3.24 to answer Problems 24−31. ROBCOR is an aircraft charter company that
supplies on-demand charter flight services using a fleet of four aircraft. Aircraft are identified by a unique registration
number. Therefore, the aircraft registration number is an appropriate primary key for the AIRCRAFT table.

TABLE REFERENTIAL INTEGRITY EXPLANATION
TRUCK
BASE
TYPE

TABLE SUPERKEY SECONDARY KEY
TRUCK
BASE
TYPE

Table name: CHARTER Database name: Ch03_AviaCo

FIGURE
P3.24

The Ch03_AviaCo database tables

The destinations are indicated by standard three-letter airport codes. For example,
STL = St. Louis, MO ATL = Atlanta, GA BNA = Nashville, TN

AC-TTAF = Aircraft total time, airframe (hours)
AC-TTEL = Total time, left engine (hours)
AC_TTER = Total time, right engine (hours)

In a fully developed system, such attribute values
would be updated by application software when the
CHARTER table entries were posted.

Table name: MODEL

Table name: AIRCRAFT

Customers are charged per round-trip mile, using the MOD_CHG_MILE rate. The MOD_SEATS gives the total number of
seats in the airplane, including the pilot and copilot seats. Therefore, a PA31-350 trip that is flown by a pilot and a copilot
has six passenger seats available.

96 C H A P T E R 3

The nulls in the CHARTER table’s CHAR_COPILOT column indicate that a copilot is not required for some charter
trips or for some aircraft. Federal Aviation Administration (FAA) rules require a copilot on jet aircraft and on aircraft
having a gross take-off weight over 12,500 pounds. None of the aircraft in the AIRCRAFT table is governed by this
requirement; however, some customers may require the presence of a copilot for insurance reasons. All charter trips
are recorded in the CHARTER table.

Table name: PILOT

Table name: EMPLOYEE

Table name: CUSTOMER

Database name: Ch03_AviaCo

FIGURE
P3.24

The Ch03_AviaCo database tables (continued)

The pilot licenses shown in the PILOT table include the ATP = Airline Transport Pilot and COMM = Commercial Pilot.
Businesses that operate on-demand air services are governed by Part 135 of the Federal Air Regulations (FARs) that are
enforced by the Federal Aviation Administration (FAA). Such businesses are known as “Part 135 operators.” Part 125
operations require that pilots successfully complete flight proficiency checks every six months. The “Part 135” flight
proficiency check data are recorded in PIL_PT135_DATE. To fly commercially, pilots must have at least a commercial
license and a second-class medical certificate (PIL_MED_TYPE = 2).

The PIL_RATINGS include
SEL = Single Engine, Land MEL = Multiengine, Land
SES = Single Engine, Sea Instr. = Instrument
CFI = Certified Flight Instructor CFII = Certified Flight Instructor, Instrument

97T H E R E L A T I O N A L D A T A B A S E M O D E L

24. For each table, where possible, identify:

a. The primary key.

b. A superkey.

c. A candidate key.

d. The foreign key(s).

e. A secondary key.

25. Create the ERD. (Hint: Look at the table contents. You will discover that an AIRCRAFT can fly many CHARTER
trips but that each CHARTER trip is flown by one AIRCRAFT, that a MODEL references many AIRCRAFT but
that each AIRCRAFT references a single MODEL, etc.)

26. Create the relational diagram.

27. Modify the ERD you created in Problem 25 to eliminate the problems created by the use of synonyms. (Hint:
Modify the CHARTER table structure by eliminating the CHAR_PILOT and CHAR_COPILOT attributes; then
create a composite table named CREW to link the CHARTER and EMPLOYEE tables. Some crew members,
such as flight attendants, may not be pilots. That’s why the EMPLOYEE table enters into this relationship.)

28. Create the relational diagram for the design you revised in Problem 27. (After you have had a chance to revise
the design, your instructor will show you the results of the design change, using a copy of the revised database
named Ch03_AviaCo_2.)

You are interested in seeing data on charters flown by either Mr. Robert Williams (employee number 105) or Ms. Elizabeth
Travis (employee number 109) as pilot or copilot, but not charters flown by both of them. Complete problems 29−31 to
find these data.

29. Create the table that would result from applying the SELECT and PROJECT relational operators to the
CHARTER table to return only the CHAR_TRIP, CHAR_PILOT, and CHAR_COPILOT attributes for charters
flown by either employee 104 or employee 109.

30. Create the table that would result from applying the SELECT and PROJECT relational operators to the
CHARTER table to return only the CHAR_TRIP, CHAR_PILOT, and CHAR_COPILOT attributes for charters
flown by both employee 104 and employee 109.

31. Create the table that would result from applying a DIFFERENCE relational operator of your result from problem
29 to your result from problem 30.

Note

Earlier in the chapter, it was stated that it is best to avoid homonyms and synonyms. In this problem, both the
pilot and the copilot are pilots in the PILOT table, but EMP_NUM cannot be used for both in the CHARTER
table. Therefore, the synonyms CHAR_PILOT and CHAR_COPILOT were used in the CHARTER table.

Although the solution works in this case, it is very restrictive and it generates nulls when a copilot is not
required. Worse, such nulls proliferate as crew requirements change. For example, if the AviaCo charter
company grows and starts using larger aircraft, crew requirements may increase to include flight engineers and
load masters. The CHARTER table would then have to be modified to include the additional crew assignments;
such attributes as CHAR_FLT_ENGINEER and CHAR_LOADMASTER would have to be added to the CHARTER
table. Given this change, each time a smaller aircraft flew a charter trip without the number of crew members
required in larger aircraft, the missing crew members would yield additional nulls in the CHARTER table.

You will have a chance to correct those design shortcomings in Problem 27. The problem illustrates two
important points:

1. Don’t use synonyms. If your design requires the use of synonyms, revise the design!

2. To the greatest possible extent, design the database to accommodate growth without requiring structural
changes in the database tables. Plan ahead and try to anticipate the effects of change on the database.

98 C H A P T E R 3

Preview

Entity Relationship (ER) Modeling

In this chapter, you will learn:

� The main characteristics of entity relationship components

� How relationships between entities are defined, refined, and incorporated into the database
design process

� How ERD components affect database design and implementation

� That real-world database design often requires the reconciliation of conflicting goals

This chapter expands coverage of the data-modeling aspect of database design. Data

modeling is the first step in the database design journey, serving as a bridge between

real-world objects and the database model that is implemented in the computer. Therefore,

the importance of data-modeling details, expressed graphically through entity relationship

diagrams (ERDs), cannot be overstated.

Most of the basic concepts and definitions used in the entity relationship model (ERM) were

introduced in Chapter 2, Data Models. For example, the basic components of entities and

relationships and their representation should now be familiar to you. This chapter goes

much deeper and further, analyzing the graphic depiction of relationships among the entities

and showing how those depictions help you summarize the wealth of data required to

implement a successful design.

Finally, the chapter illustrates how conflicting goals can be a challenge in database design,

possibly requiring you to make design compromises.

4

F
O

U
R

4.1 THE ENTITY RELATIONSHIP MODEL (ERM)

You should remember from Chapter 2, Data Models, and Chapter 3, The Relational Database Model, that the ERM
forms the basis of an ERD. The ERD represents the conceptual database as viewed by the end user. ERDs depict the
database’s main components: entities, attributes, and relationships. Because an entity represents a real-world object,
the words entity and object are often used interchangeably. Thus, the entities (objects) of the Tiny College database
design developed in this chapter include students, classes, teachers, and classrooms. The order in which the ERD
components are covered in the chapter is dictated by the way the modeling tools are used to develop ERDs that can
form the basis for successful database design and implementation.

In Chapter 2, you also learned about the various notations used with ERDs—the original Chen notation and the newer
Crow’s Foot and UML notations. The first two notations are used at the beginning of this chapter to introduce some
basic ER modeling concepts. Some conceptual database modeling concepts can be expressed only using the Chen
notation. However, because the emphasis is on design and implementation of databases, the Crow’s Foot and UML
class diagram notations are used for the final Tiny College ER diagram example. Because of its implementation
emphasis, the Crow’s Foot notation can represent only what could be implemented. In other words:

� The Chen notation favors conceptual modeling.

� The Crow’s Foot notation favors a more implementation-oriented approach.

� The UML notation can be used for both conceptual and implementation modeling.

4.1.1 Entities

Recall that an entity is an object of interest to the end user. In Chapter 2, you learned that at the ER modeling level,
an entity actually refers to the entity set and not to a single entity occurrence. In other words, the word entity in the
ERM corresponds to a table—not to a row—in the relational environment. The ERM refers to a table row as an entity
instance or entity occurrence. In both the Chen and Crow’s Foot notations, an entity is represented by a rectangle
containing the entity’s name. The entity name, a noun, is usually written in all capital letters.

Note

Because this book generally focuses on the relational model, you might be tempted to conclude that the ERM
is exclusively a relational tool. Actually, conceptual models such as the ERM can be used to understand and
design the data requirements of an organization. Therefore, the ERM is independent of the database type.
Conceptual models are used in the conceptual design of databases, while relational models are used in the
logical design of databases.However, because you are now familiar with the relational model from the previous
chapter, the relational model is used extensively in this chapter to explain ER constructs and the way they are
used to develop database designs.

O n l i n e C o n t e n t

To learn how to create ER diagrams with the help of Microsoft Visio, see the Premium Website for this book:

• Appendix A, Designing Databases with Visio Professional: A Tutorial shows you how to create Crow’s
Foot ERDs.

• Appendix H, Unified Modeling Language (UML), shows you how to create UML class diagrams.

100 C H A P T E R 4

4.1.2 Attributes

Attributes are characteristics of entities. For example, the STUDENT entity includes, among many others, the
attributes STU_LNAME, STU_FNAME, and STU_INITIAL. In the original Chen notation, attributes are represented
by ovals and are connected to the entity rectangle with a line. Each oval contains the name of the attribute it represents.
In the Crow’s Foot notation, the attributes are written in the attribute box below the entity rectangle. (See Figure 4.1.)
Because the Chen representation is rather space-consuming, software vendors have adopted the Crow’s Foot attribute
display.

Required and Optional Attributes
A required attribute is an attribute that must have a value; in other words, it cannot be left empty. As shown in
Figure 4.1, there are two boldfaced attributes in the Crow’s Foot notation. This indicates that a data entry will be
required. In this example, STU_LNAME and STU_FNAME require data entries because of the assumption that all
students have a last name and a first name. But students might not have a middle name, and perhaps they do not (yet)
have a phone number and an e-mail address. Therefore, those attributes are not presented in boldface in the entity
box. An optional attribute is an attribute that does not require a value; therefore, it can be left empty.

Domains
Attributes have a domain. As you learned in Chapter 3, a domain is the set of possible values for a given attribute.
For example, the domain for the grade point average (GPA) attribute is written (0,4) because the lowest possible GPA
value is 0 and the highest possible value is 4. The domain for the gender attribute consists of only two possibilities: M
or F (or some other equivalent code). The domain for a company’s date of hire attribute consists of all dates that fit
in a range (for example, company startup date to current date).

Attributes may share a domain. For instance, a student address and a professor address share the same domain of all
possible addresses. In fact, the data dictionary may let a newly declared attribute inherit the characteristics of an existing
attribute if the same attribute name is used. For example, the PROFESSOR and STUDENT entities may each have an
attribute named ADDRESS and could therefore share a domain.

Identifiers (Primary Keys)
The ERM uses identifiers, that is, one or more attributes that uniquely identify each entity instance. In the relational
model, such identifiers are mapped to primary keys (PKs) in tables. Identifiers are underlined in the ERD. Key attributes
are also underlined in a frequently used table structure shorthand notation using the format:

TABLE NAME (KEY_ATTRIBUTE 1, ATTRIBUTE 2, ATTRIBUTE 3, . . . ATTRIBUTE K)

FIGURE
4.1

The attributes of the STUDENT entity: Chen and Crow’s Foot

Chen Model Crow’s Foot Model

STU_LNAME

STU_FNAME

STU_INITIAL

STU_EMAIL

STU_PHONESTUDENT

101E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

For example, a CAR entity may be represented by:

CAR (CAR_VIN, MOD_CODE, CAR_YEAR, CAR_COLOR)

(Each car is identified by a unique vehicle identification number, or CAR_VIN.)

Composite Identifiers
Ideally, an entity identifier is composed of only a single attribute. For example, the table in Figure 4.2 uses a
single-attribute primary key named CLASS_CODE. However, it is possible to use a composite identifier, that is, a
primary key composed of more than one attribute. For instance, the Tiny College database administrator may decide
to identify each CLASS entity instance (occurrence) by using a composite primary key composed of the combination
of CRS_CODE and CLASS_SECTION instead of using CLASS_CODE. Either approach uniquely identifies each entity
instance. Given the current structure of the CLASS table shown in Figure 4.2, CLASS_CODE is the primary key, and
the combination of CRS_CODE and CLASS_SECTION is a proper candidate key. If the CLASS_CODE attribute is
deleted from the CLASS entity, the candidate key (CRS_CODE and CLASS_SECTION) becomes an acceptable
composite primary key.

If the CLASS_CODE in Figure 4.2 is used as the primary key, the CLASS entity may be represented in shorthand
form by:

CLASS (CLASS_CODE, CRS_CODE, CLASS_SECTION, CLASS_TIME, ROOM_CODE, PROF_NUM)

FIGURE
4.2

The CLASS table (entity) components and contents

Note

Remember that Chapter 3 made a commonly accepted distinction between COURSE and CLASS. A CLASS
constitutes a specific time and place of a COURSE offering. A class is defined by the course description and its
time and place, or section. Consider a professor who teaches Database I, Section 2; Database I, Section 5;
Database I, Section 8; and Spreadsheet II, Section 6. That instructor teaches two courses (Database I and
Spreadsheet II), but four classes. Typically, the COURSE offerings are printed in a course catalog, while the
CLASS offerings are printed in a class schedule for each semester, trimester, or quarter.

102 C H A P T E R 4

On the other hand, if CLASS_CODE is deleted, and the composite primary key is the combination of CRS_CODE and
CLASS_SECTION, the CLASS entity may be represented by:

CLASS (CRS_CODE, CLASS_SECTION, CLASS_TIME, ROOM_CODE, PROF_NUM)

Note that both key attributes are underlined in the entity notation.

Composite and Simple Attributes
Attributes are classified as simple or composite. A composite attribute, not to be confused with a composite key,
is an attribute that can be further subdivided to yield additional attributes. For example, the attribute ADDRESS can
be subdivided into street, city, state, and zip code. Similarly, the attribute PHONE_NUMBER can be subdivided into
area code and exchange number. A simple attribute is an attribute that cannot be subdivided. For example, age, sex,
and marital status would be classified as simple attributes. To facilitate detailed queries, it is wise to change composite
attributes into a series of simple attributes.

Single-Valued Attributes
A single-valued attribute is an attribute that can have only a single value. For example, a person can have only one
Social Security number, and a manufactured part can have only one serial number. Keep in mind that a single-valued
attribute is not necessarily a simple attribute. For instance, a part’s serial number, such as SE-08-02-189935, is
single-valued, but it is a composite attribute because it can be subdivided into the region in which the part was produced
(SE), the plant within that region (08), the shift within the plant (02), and the part number (189935).

Multivalued Attributes
Multivalued attributes are attributes that can have many values. For instance, a person may have several college
degrees, and a household may have several different phones, each with its own number. Similarly, a car’s color may
be subdivided into many colors (that is, colors for the roof, body, and trim). In the Chen ERM, the multivalued attributes
are shown by a double line connecting the attribute to the entity. The Crow’s Foot notation does not identify
multivalued attributes. The ERD in Figure 4.3 contains all of the components introduced thus far. In Figure 4.3, note
that CAR_VIN is the primary key, and CAR_COLOR is a multivalued attribute of the CAR entity.

FIGURE
4.3

A multivalued attribute in an entity

Chen Model Crow’s Foot Model

CARCAR_VIN

MOD_CODE CAR_YEAR

CAR_COLOR

103E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

Implementing Multivalued Attributes
Although the conceptual model can handle M:N relationships and multivalued attributes, you should not implement
them in the RDBMS. Remember from Chapter 3 that in the relational table, each column/row intersection represents
a single data value. So if multivalued attributes exist, the designer must decide on one of two possible courses of action:

1. Within the original entity, create several new attributes, one for each of the original multivalued attribute’s
components. For example, the CAR entity’s attribute CAR_COLOR can be split to create the new attributes
CAR_TOPCOLOR, CAR_BODYCOLOR, and CAR_TRIMCOLOR, which are then assigned to the CAR
entity. (See Figure 4.4.)

Although this solution seems to work, its adoption can lead to major structural problems in the table. For
example, if additional color components—such as a logo color—are added for some cars, the table structure
must be modified to accommodate the new color section. In that case, cars that do not have such color sections
generate nulls for the nonexisting components, or their color entries for those sections are entered as N/A to
indicate “not applicable.” (Imagine how the solution in Figure 4.4—splitting a multivalued attribute into new
attributes—would cause problems if it were applied to an employee entity containing employee degrees and
certifications. If some employees have 10 degrees and certifications while most have fewer or none, the
number of degree/certification attributes would number 10, and most of those attribute values would be null
for most of the employees.) In short, although you have seen solution 1 applied, it is not an acceptable solution.

2. Create a new entity composed of the original multivalued attribute’s components. This new entity allows the
designer to define color for different sections of the car. (See Table 4.1.) Then, this new CAR_COLOR entity
is related to the original CAR entity in a 1:M relationship.

Note

In the ERDmodels in Figure 4.3, the CAR entity’s foreign key (FK) has been typed as MOD_CODE. This attribute
was manually added to the entity. Actually, proper use of database modeling software will automatically
produce the FK when the relationship is defined. In addition, the software will label the FK appropriately and
write the FK’s implementation details in a data dictionary. Therefore, when you use database modeling software
like Visio Professional, never type the FK attribute yourself; let the software handle that task when the
relationship between the entities is defined. (You can see how that's done in Appendix A, Designing Databases
with Visio Professional: A Tutorial, in the Premium Website.)

FIGURE
4.4

Splitting the multivalued attribute into new attributes

Chen Model Crow’s Foot Model

CARCAR_VIN

MOD_CODE

CAR_YEAR

CAR_TOPCOLOR

CAR_TRIMCOLOR

CAR_BODYCOLOR

104 C H A P T E R 4

Using the approach illustrated in Table 4.1, you even get a
fringe benefit: you are now able to assign as many colors as
necessary without having to change the table structure. Note
that the ERM shown in Figure 4.5 reflects the components
listed in Table 4.1. This is the preferred way to deal with
multivalued attributes. Creating a new entity in a 1:M rela-
tionship with the original entity yields several benefits: it’s a
more flexible, expandable solution, and it is compatible with
the relational model!

Derived Attributes
Finally, an attribute may be classified as a derived attribute. A derived attribute is an attribute whose value is
calculated (derived) from other attributes. The derived attribute need not be physically stored within the database;
instead, it can be derived by using an algorithm. For example, an employee’s age, EMP_AGE, may be found by
computing the integer value of the difference between the current date and the EMP_DOB. If you use Microsoft
Access, you would use the formula INT((DATE() – EMP_DOB)/365). In Microsoft SQL Server, you would use SELECT
DATEDIFF(“YEAR”, EMP_DOB, GETDATE()), where DATEDIFF is a function that computes the difference between
dates. The first parameter indicates the measurement, in this case, years.

If you use Oracle, you would use SYSDATE instead of DATE(). (You are assuming, of course, that the EMP_DOB was
stored in the Julian date format.) Similarly, the total cost of an order can be derived by multiplying the quantity ordered
by the unit price. Or the estimated average speed can be derived by dividing trip distance by the time spent en route.
A derived attribute is indicated in the Chen notation by a dashed line connecting the attribute and the entity. (See
Figure 4.6.) The Crow’s Foot notation does not have a method for distinguishing the derived attribute from other
attributes.

Derived attributes are sometimes referred to as computed attributes. A derived attribute computation can be as simple
as adding two attribute values located on the same row, or it can be the result of aggregating the sum of values located
on many table rows (from the same table or from a different table). The decision to store derived attributes in database
tables depends on the processing requirements and the constraints placed on a particular application. The designer
should be able to balance the design in accordance with such constraints. Table 4.2 shows the advantages and
disadvantages of storing (or not storing) derived attributes in the database.

4.1.3 Relationships

Recall from Chapter 2 that a relationship is an association between entities. The entities that participate in a
relationship are also known as participants, and each relationship is identified by a name that describes the
relationship. The relationship name is an active or passive verb; for example, a STUDENT takes a CLASS, a
PROFESSOR teaches a CLASS, a DEPARTMENT employs a PROFESSOR, a DIVISION is managed by an
EMPLOYEE, and an AIRCRAFT is flown by a CREW.

TABLE
4.1

Components of the
Multivalued Attribute

SECTION COLOR
Top White
Body Blue
Trim Gold
Interior Blue

FIGURE
4.5

A new entity set composed of a multivalued attribute’s components

105E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

Relationships between entities always operate in both directions. That is, to define the relationship between the entities
named CUSTOMER and INVOICE, you would specify that:

� A CUSTOMER may generate many INVOICEs.

� Each INVOICE is generated by one CUSTOMER.

Because you know both directions of the relationship between CUSTOMER and INVOICE, it is easy to see that this
relationship can be classified as 1:M.

The relationship classification is difficult to establish if you know only one side of the relationship. For example, if you
specify that:

A DIVISION is managed by one EMPLOYEE.

You don’t know if the relationship is 1:1 or 1:M. Therefore, you should ask the question “Can an employee manage
more than one division?” If the answer is yes, the relationship is 1:M, and the second part of the relationship is then
written as:

An EMPLOYEE may manage many DIVISIONs.

If an employee cannot manage more than one division, the relationship is 1:1, and the second part of the relationship
is then written as:

An EMPLOYEE may manage only one DIVISION.

FIGURE
4.6

Depiction of a derived attribute

EMPLOYEE

Crow’s Foot Model

EMP_NUM

EMP_LNAME

EMP_INITIAL

EMP_DOB

EMP_AGE

EMP_FNAME

Chen Model

TABLE
4.2

Advantages and Disadvantages of Storing Derived Attributes

DERIVED ATTRIBUTE
STORED NOT STORED

Advantage Saves CPU processing cycles
Saves data access time
Data value is readily available
Can be used to keep track of historical data

Saves storage space
Computation always yields current value

Disadvantage Requires constant maintenance to ensure
derived value is current, especially if any values
used in the calculation change

Uses CPU processing cycles
Increases data access time
Adds coding complexity to queries

106 C H A P T E R 4

4.1.4 Connectivity and Cardinality

You learned in Chapter 2 that entity relationships may be classified as one-to-one, one-to-many, or many-to-many. You
also learned how such relationships were depicted in the Chen and Crow’s Foot notations. The term connectivity is
used to describe the relationship classification.

Cardinality expresses the minimum and maximum number of entity occurrences associated with one occurrence of
the related entity. In the ERD, cardinality is indicated by placing the appropriate numbers beside the entities, using the
format (x,y). The first value represents the minimum number of associated entities, while the second value represents
the maximum number of associated entities. Many database designers who use Crow’s Foot modeling notation do not
depict the specific cardinalities on the ER diagram itself because the specific limits described by the cardinalities cannot
be implemented directly through the database design. Correspondingly, some Crow’s Foot ER modeling tools do not
print the numeric cardinality range in the diagram; instead, you can add it as text if you want to have it shown. When
the specific cardinalities are not included on the diagram in Crow’s Foot notation, cardinality is implied by the use of
the symbols shown in Figure 4.7, which describe the connectivity and participation (discussed below). The numeric
cardinality range has been added using the Visio text drawing tool.

Knowing the minimum and maximum number of entity
occurrences is very useful at the application software level.
For example, Tiny College might want to ensure that a class
is not taught unless it has at least 10 students enrolled.
Similarly, if the classroom can hold only 30 students, the
application software should use that cardinality to limit
enrollment in the class. However, keep in mind that the
DBMS cannot handle the implementation of the cardinalities
at the table level—that capability is provided by the applica-
tion software or by triggers. You will learn how to create and
execute triggers in Chapter 8, Advanced SQL.

As you examine the Crow’s Foot diagram in Figure 4.7,
keep in mind that the cardinalities represent the number of occurrences in the related entity. For example, the
cardinality (1,4) written next to the CLASS entity in the “PROFESSOR teaches CLASS” relationship indicates that
each professor teaches up to four classes, which means that the PROFESSOR table’s primary key value occurs at least
once and no more than four times as foreign key values in the CLASS table. If the cardinality had been written as (1,N),
there would be no upper limit to the number of classes a professor might teach. Similarly, the cardinality (1,1) written
next to the PROFESSOR entity indicates that each class is taught by one and only one professor. That is, each CLASS
entity occurrence is associated with one and only one entity occurrence in PROFESSOR.

Connectivities and cardinalities are established by very concise statements known as business rules, which were
introduced in Chapter 2. Such rules, derived from a precise and detailed description of an organization’s data
environment, also establish the ERM’s entities, attributes, relationships, connectivities, cardinalities, and constraints.
Because business rules define the ERM’s components, making sure that all appropriate business rules are identified is
a very important part of a database designer’s job.

FIGURE
4.7

Connectivity and cardinality in
an ERD

Note

The placement of the cardinalities in the ER diagram is a matter of convention. The Chen notation places the
cardinalities on the side of the related entity. The Crow’s Foot and UML diagrams place the cardinalities next to
the entity to which the cardinalities apply.

107E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

4.1.5 Existence Dependence

An entity is said to be existence-dependent if it can exist in the database only when it is associated with another
related entity occurrence. In implementation terms, an entity is existence-dependent if it has a mandatory foreign
key—that is, a foreign key attribute that cannot be null. For example, if an employee wants to claim one or more
dependents for tax-withholding purposes, the relationship “EMPLOYEE claims DEPENDENT” would be appropriate.
In that case, the DEPENDENT entity is clearly existence-dependent on the EMPLOYEE entity because it is impossible
for the dependent to exist apart from the EMPLOYEE in the database.

If an entity can exist apart from all of its related entities (it is existence-independent), then that entity is referred to
as a strong entity or regular entity. For example, suppose that the XYZ Corporation uses parts to produce its
products. Furthermore, suppose that some of those parts are produced in-house and other parts are bought from
vendors. In that scenario, it is quite possible for a PART to exist independently from a VENDOR in the relationship
“PART is supplied by VENDOR,” because at least some of the parts are not supplied by a vendor. Therefore, PART
is existence-independent from VENDOR.

4.1.6 Relationship Strength

The concept of relationship strength is based on how the primary key of a related entity is defined. To implement a
relationship, the primary key of one entity appears as a foreign key in the related entity. For example, the 1:M
relationship between VENDOR and PRODUCT in Chapter 3, Figure 3.3, is implemented by using the VEND_CODE
primary key in VENDOR as a foreign key in PRODUCT. There are times when the foreign key also is a primary key
component in the related entity. For example, in Figure 4.5, the CAR entity primary key (CAR_VIN) appears as both
a primary key component and a foreign key in the CAR_COLOR entity. In this section, you will learn how various
relationship strength decisions affect primary key arrangement in database design.

O n l i n e C o n t e n t

Because the careful definition of complete and accurate business rules is crucial to good database design, their
derivation is examined in detail in Appendix B, The University Lab: Conceptual Design. The modeling skills
you are learning in this chapter are applied in the development of a real database design in Appendix B. The
initial design shown in Appendix B is then modified in Appendix C, The University Lab: Conceptual Design
Verification, Logical Design, and Implementation. (Both appendixes are found in the Premium Website.)

Note

The relationship strength concept is not part of the original ERM. Instead, this concept applies directly to Crow’s
Foot diagrams. Because Crow’s Foot diagrams are used extensively to design relational databases, it is important
to understand relationship strength as it affects database implementation. The Chen ERD notation is oriented
toward conceptual modeling and therefore does not distinguish between weak and strong relationships.

108 C H A P T E R 4

Weak (Non-identifying) Relationships
A weak relationship, also known as a non-identifying relationship, exists if the PK of the related entity does not
contain a PK component of the parent entity. By default, relationships are established by having the PK of the parent
entity appear as an FK on the related entity. For example, suppose that the COURSE and CLASS entities are
defined as:

COURSE(CRS_CODE, DEPT_CODE, CRS_DESCRIPTION, CRS_CREDIT)

CLASS(CLASS_CODE, CRS_CODE, CLASS_SECTION, CLASS_TIME, ROOM_CODE, PROF_NUM)

In this case, a weak relationship exists between COURSE and CLASS because the CLASS_CODE is the CLASS
entity’s PK, while the CRS_CODE in CLASS is only an FK. In this example, the CLASS PK did not inherit the PK
component from the COURSE entity.

Figure 4.8 shows how the Crow’s Foot notation depicts a weak relationship by placing a dashed relationship line
between the entities. The tables shown below the ERD illustrate how such a relationship is implemented.

Table name: COURSE

Table name: CLASS

Database name: Ch04_TinyCollege

FIGURE
4.8

A weak (non-identifying) relationship between COURSE and CLASS

109E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

Strong (Identifying) Relationships
A strong relationship, also known as an identifying relationship, exists when the PK of the related entity contains
a PK component of the parent entity. For example, the definitions of the COURSE and CLASS entities

COURSE(CRS_CODE, DEPT_CODE, CRS_DESCRIPTION, CRS_CREDIT)

CLASS(CRS_CODE, CLASS_SECTION , CLASS_TIME, ROOM_CODE, PROF_NUM)

indicate that a strong relationship exists between COURSE and CLASS, because the CLASS entity’s composite PK
is composed of CRS_CODE + CLASS_SECTION. (Note that the CRS_CODE in CLASS is also the FK to the
COURSE entity.)

The Crow’s Foot notation depicts the strong (identifying) relationship with a solid line between the entities, shown in
Figure 4.9. Whether the relationship between COURSE and CLASS is strong or weak depends on how the CLASS
entity’s primary key is defined.

Keep in mind that the order in which the tables are created and loaded is very important. For example, in the
“COURSE generates CLASS” relationship, the COURSE table must be created before the CLASS table. After all, it
would not be acceptable to have the CLASS table’s foreign key reference a COURSE table that did not yet exist. In
fact, you must load the data of the “1” side first in a 1:M relationship to avoid the possibility of referential
integrity errors, regardless of whether the relationships are weak or strong.

As you examine Figure 4.9 you might wonder what the O symbol next to the CLASS entity signifies. You will discover
the meaning of this cardinality in Section 4.1.8, Relationship Participation.

Remember that the nature of the relationship is often determined by the database designer, who must use professional
judgment to determine which relationship type and strength best suit the database transaction, efficiency, and
information requirements. That point will often be emphasized in detail!

4.1.7 Weak Entities

In contrast to the strong or regular entity mentioned in Section 4.1.5, a weak entity is one that meets two conditions:

1. The entity is existence-dependent; that is, it cannot exist without the entity with which it has a relationship.

2. The entity has a primary key that is partially or totally derived from the parent entity in the relationship.

O n l i n e C o n t e n t

All of the databases used to illustrate the material in this chapter are found in the Premium Website.

Note

If you are used to looking at relational diagrams such as the ones produced by Microsoft Access, you expect to
see the relationship line in the relational diagram drawn from the PK to the FK. However, the relational diagram
convention is not necessarily reflected in the ERD. In an ERD, the focus is on the entities and the relationships
between them, rather than on the way those relationships are anchored graphically. You will discover that the
placement of the relationship lines in a complex ERD that includes both horizontally and vertically placed
entities is largely dictated by the designer’s decision to improve the readability of the design. (Remember that
the ERD is used for communication between the designer(s) and end users.)

110 C H A P T E R 4

For example, a company insurance policy insures an employee and his/her dependents. For the purpose of describing
an insurance policy, an EMPLOYEE might or might not have a DEPENDENT, but the DEPENDENT must be
associated with an EMPLOYEE. Moreover, the DEPENDENT cannot exist without the EMPLOYEE; that is, a person
cannot get insurance coverage as a dependent unless s(he) happens to be a dependent of an employee. DEPENDENT
is the weak entity in the relationship “EMPLOYEE has DEPENDENT.” This relationship is shown in Figure 4.10.

Note that the Chen notation in Figure 4.10 identifies the weak entity by using a double-walled entity rectangle. The Crow’s
Foot notation generated by Visio Professional uses the relationship line and the PK/FK designation to indicate whether the
related entity is weak. A strong (identifying) relationship indicates that the related entity is weak. Such a relationship means
that both conditions for the weak entity definition have been met—the related entity is existence-dependent, and the PK
of the related entity contains a PK component of the parent entity. (Some versions of the Crow’s Foot ERD depict the
weak entity by drawing a short line segment in each of the four corners of the weak entity box.)

Remember that the weak entity inherits part of its primary key from its strong counterpart. For example, at least part
of the DEPENDENT entity’s key shown in Figure 4.10 was inherited from the EMPLOYEE entity:

EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_DOB, EMP_HIREDATE)

DEPENDENT (EMP_NUM, DEP_NUM, DEP_FNAME, DEP_DOB)

Table name: COURSE

Table name: CLASS

Database name: Ch04_TinyCollege_Alt

FIGURE
4.9

A strong (identifying) relationship between COURSE and CLASS

111E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

Figure 4.11 illustrates the implementation of the relationship between the weak entity (DEPENDENT) and its parent
or strong counterpart (EMPLOYEE). Note that DEPENDENT’s primary key is composed of two attributes, EMP_NUM
and DEP_NUM, and that EMP_NUM was inherited from EMPLOYEE.

EMPLOYEE DEPENDENThas
1 M

(0,N) (1,1)

Chen Model

EMP_NUM
DEP_NUM
DEP_FNAME
DEP_DOB

EMP_NUM
EMP_LNAME
EMP_FNAME
EMP_INITIAL
EMP_DOB
EMP_HIREDATE

Crow’s Foot Model

FIGURE
4.10

A weak entity in an ERD

Table name: EMPLOYEE

Table name: DEPENDENT

FIGURE
4.11

A weak entity in a strong relationship

Database name: Ch04_ShortCo

112 C H A P T E R 4

Given this scenario, and with the help of this relationship, you can determine that:

Jeanine J. Callifante claims two dependents, Annelise and Jorge.

Keep in mind that the database designer usually determines whether an entity can be described as weak based on the
business rules. An examination of the relationship between COURSE and CLASS in Figure 4.8 might cause you to
conclude that CLASS is a weak entity to COURSE. After all, in Figure 4.8, it seems clear that a CLASS cannot exist
without a COURSE; so there is existence dependence. For example, a student cannot enroll in the Accounting I class
ACCT-211, Section 3 (CLASS_CODE 10014) unless there is an ACCT-211 course. However, note that the CLASS
table’s primary key is CLASS_CODE, which is not derived from the COURSE parent entity. That is, CLASS may be
represented by:

CLASS (CLASS_CODE, CRS_CODE, CLASS_SECTION, CLASS_TIME, ROOM_CODE, PROF_NUM)

The second weak entity requirement has not been met; therefore, by definition, the CLASS entity in Figure 4.8 may
not be classified as weak. On the other hand, if the CLASS entity’s primary key had been defined as a composite key,
composed of the combination CRS_CODE and CLASS_SECTION, CLASS could be represented by:

CLASS (CRS_CODE, CLASS_SECTION, CLASS_TIME, ROOM_CODE, PROF_NUM)

In that case, illustrated in Figure 4.9, the CLASS primary key is partially derived from COURSE because CRS_CODE
is the COURSE table’s primary key. Given this decision, CLASS is a weak entity by definition. (In Visio Professional
Crow’s Foot terms, the relationship between COURSE and CLASS is classified as strong, or identifying.) In any case,
CLASS is always existence-dependent on COURSE, whether or not it is defined as weak.

4.1.8 Relationship Participation

Participation in an entity relationship is either optional or mandatory. Recall that relationships are bidirectional; that
is, they operate in both directions. If COURSE is related to CLASS, then by definition, CLASS is related to COURSE.
Because of the bidirectional nature of relationships, it is necessary to determine the connectivity of the relationship
from COURSE to CLASS and the connectivity of the relationship from CLASS to COURSE. Similarly, the specific
maximum and minimum cardinalities must be determined in each direction for the relationship. Once again, you must
consider the bidirectional nature of the relationship when determining participation.

Optional participation means that one entity occurrence does not require a corresponding entity occurrence in a
particular relationship. For example, in the “COURSE generates CLASS” relationship, you noted that at least some
courses do not generate a class. In other words, an entity occurrence (row) in the COURSE table does not necessarily
require the existence of a corresponding entity occurrence in the CLASS table. (Remember that each entity is
implemented as a table.) Therefore, the CLASS entity is considered to be optional to the COURSE entity. In Crow’s
Foot notation, an optional relationship between entities is shown by drawing a small circle (O) on the side of the
optional entity, as illustrated in Figure 4.9. The existence of an optional entity indicates that the minimum cardinality
is 0 for the optional entity. (The term optionality is used to label any condition in which one or more optional
relationships exist.)

Mandatory participation means that one entity occurrence requires a corresponding entity occurrence in a
particular relationship. If no optionality symbol is depicted with the entity, the entity is assumed to exist in a mandatory
relationship with the related entity. If the mandatory participation is depicted graphically, it is typically shown as a small

Note

Remember that the burden of establishing the relationship is always placed on the entity that contains the
foreign key. In most cases, that will be the entity on the “many” side of the relationship.

113E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

hash mark across the relationship line, similar to the Crow’s Foot depiction of a connectivity of 1. The existence of
a mandatory relationship indicates that the minimum cardinality is at least 1 for the mandatory entity.

When you create a relationship in MS Visio, the default relationship will be mandatory on the “1” side and optional
on the “many” side. Table 4.3 shows the various connectivity and participation combinations that are supported by the
Crow’s Foot notation. Recall that these combinations are often referred to as cardinality in Crow’s Foot notation when
specific cardinalities are not used.

TABLE
4.3

Crow’s Foot Symbols

CROW’S FOOT SYMBOL CARDINALITY COMMENT
(0,N) Zero or many. Many side is optional.

(1,N) One or many. Many side is mandatory.

(1,1) One and only one. 1 side is mandatory.

(0,1) Zero or one. 1 side is optional.

Because relationship participation turns out to be a very important component of the database design process, let’s
examine a few more scenarios. Suppose that Tiny College employs some professors who conduct research without
teaching classes. If you examine the “PROFESSOR teaches CLASS” relationship, it is quite possible for a
PROFESSOR not to teach a CLASS. Therefore, CLASS is optional to PROFESSOR. On the other hand, a CLASS
must be taught by a PROFESSOR. Therefore, PROFESSOR is mandatory to CLASS. Note that the ERD model in
Figure 4.12 shows the cardinality next to CLASS to be (0,3), thus indicating that a professor may teach no classes at
all or as many as three classes. And each CLASS table row will reference one and only one PROFESSOR
row—assuming each class is taught by one and only one professor—represented by the (1,1) cardinality next to the
PROFESSOR table.

Failure to understand the distinction between mandatory and optional participation in relationships might yield
designs in which awkward (and unnecessary) temporary rows (entity instances) must be created just to accommodate
the creation of required entities. Therefore, it is important that you clearly understand the concepts of mandatory and
optional participation.

It is also important to understand that the semantics of a problem might determine the type of participation in a
relationship. For example, suppose that Tiny College offers several courses; each course has several classes. Note

Note

You might be tempted to conclude that relationships are weak when they occur between entities in an optional
relationship and that relationships are strong when they occur between entities in a mandatory relationship.
However, this conclusion is not warranted. Keep in mind that relationship participation and relationship
strength do not describe the same thing. You are likely to encounter a strong relationship when one entity is
optional to another. For example, the relationship between EMPLOYEE andDEPENDENT is clearly a strong one,
butDEPENDENT is clearly optional to EMPLOYEE. After all, you cannot require employees to have dependents.
And it is just as possible for a weak relationship to be established when one entity is mandatory to another. The
relationship strength depends on how the PK of the related entity is formulated, while the relationship
participation depends on how the business rule is written. For example, the business rules “Each part must be
supplied by a vendor” and “A part may or may not be supplied by a vendor” create different optionalities for
the same entities! Failure to understand this distinction may lead to poor design decisions that cause major
problems when table rows are inserted or deleted.

114 C H A P T E R 4

again the distinction between class and course in this discussion: a CLASS constitutes a specific offering (or section)
of a COURSE. (Typically, courses are listed in the university’s course catalog, while classes are listed in the class
schedules that students use to register for their classes.)

Analyzing the CLASS entity’s contribution to the “COURSE generates CLASS” relationship, it is easy to see that a
CLASS cannot exist without a COURSE. Therefore, you can conclude that the COURSE entity is mandatory in the
relationship. But two scenarios for the CLASS entity may be written, shown in Figures 4.13 and 4.14.

The different scenarios are a function of the semantics of the problem; that is, they depend on how the relationship
is defined.

1. CLASS is optional. It is possible for the department to create the entity COURSE first and then create the
CLASS entity after making the teaching assignments. In the real world, such a scenario is very likely; there may
be courses for which sections (classes) have not yet been defined. In fact, some courses are taught only once
a year and do not generate classes each semester.

2. CLASS is mandatory. This condition is created by the constraint that is imposed by the semantics of the
statement “Each COURSE generates one or more CLASSes.” In ER terms, each COURSE in the “generates”
relationship must have at least one CLASS. Therefore, a CLASS must be created as the COURSE is created,
in order to comply with the semantics of the problem.

Keep in mind the practical aspects of the scenario presented in Figure 4.14. Given the semantics of this relationship,
the system should not accept a course that is not associated with at least one class section. Is such a rigid environment

FIGURE
4.12

An optional CLASS entity in the relationship “PROFESSOR teaches CLASS”

FIGURE
4.13

CLASS is optional to COURSE

FIGURE
4.14

COURSE and CLASS in a mandatory relationship

115E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

desirable from an operational point of view? For example, when a new COURSE is created, the database first updates
the COURSE table, thereby inserting a COURSE entity that does not yet have a CLASS associated with it. Naturally,
the apparent problem seems to be solved when CLASS entities are inserted into the corresponding CLASS table.
However, because of the mandatory relationship, the system will be in temporary violation of the business rule
constraint. For practical purposes, it would be desirable to classify the CLASS as optional in order to produce a more
flexible design.

Finally, as you examine the scenarios presented in Figures 4.13 and 4.14, keep in mind the role of the DBMS. To
maintain data integrity, the DBMS must ensure that the “many” side (CLASS) is associated with a COURSE through
the foreign key rules.

4.1.9 Relationship Degree

A relationship degree indicates the number of entities or participants associated with a relationship. A unary
relationship exists when an association is maintained within a single entity. A binary relationship exists when two
entities are associated. A ternary relationship exists when three entities are associated. Although higher degrees
exist, they are rare and are not specifically named. (For example, an association of four entities is described simply as
a four-degree relationship.) Figure 4.15 shows these types of relationship degrees.

Unary Relationships
In the case of the unary relationship shown in Figure 4.15, an employee within the EMPLOYEE entity is the manager
for one or more employees within that entity. In this case, the existence of the “manages” relationship means that
EMPLOYEE requires another EMPLOYEE to be the manager—that is, EMPLOYEE has a relationship with itself. Such
a relationship is known as a recursive relationship. The various cases of recursive relationships will be explored in
Section 4.1.10.

Binary Relationships
A binary relationship exists when two entities are associated in a relationship. Binary relationships are most common.
In fact, to simplify the conceptual design, whenever possible, most higher-order (ternary and higher) relationships are
decomposed into appropriate equivalent binary relationships. In Figure 4.15, the relationship “a PROFESSOR teaches
one or more CLASSes” represents a binary relationship.

Ternary and Higher-Degree Relationships
Although most relationships are binary, the use of ternary and higher-order relationships does allow the designer some
latitude regarding the semantics of a problem. A ternary relationship implies an association among three different
entities. For example, note the relationships (and their consequences) in Figure 4.16, which are represented by the
following business rules:

� A DOCTOR writes one or more PRESCRIPTIONs.

� A PATIENT may receive one or more PRESCRIPTIONs.

� A DRUG may appear in one or more PRESCRIPTIONs. (To simplify this example, assume that the business
rule states that each prescription contains only one drug. In short, if a doctor prescribes more than one drug,
a separate prescription must be written for each drug.)

As you examine the table contents in Figure 4.16, note that it is possible to track all transactions. For instance, you
can tell that the first prescription was written by doctor 32445 for patient 102, using the drug DRZ.

116 C H A P T E R 4

4.1.10 Recursive Relationships

As was previously mentioned, a recursive relationship is one in which a relationship can exist between occurrences
of the same entity set. (Naturally, such a condition is found within a unary relationship.) For example, a 1:M unary
relationship can be expressed by “an EMPLOYEE may manage many EMPLOYEEs, and each EMPLOYEE is
managed by one EMPLOYEE.” And as long as polygamy is not legal, a 1:1 unary relationship may be expressed by
“an EMPLOYEE may be married to one and only one other EMPLOYEE.” Finally, the M:N unary relationship may
be expressed by “a COURSE may be a prerequisite to many other COURSEs, and each COURSE may have many
other COURSEs as prerequisites.” Those relationships are shown in Figure 4.17.

The 1:1 relationship shown in Figure 4.17 can be implemented in the single table shown in Figure 4.18. Note that
you can determine that James Ramirez is married to Louise Ramirez, who is married to James Ramirez. And Anne
Jones is married to Anton Shapiro, who is married to Anne Jones.

FIGURE
4.15

Three types of relationship degree

117E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

Unary relationships are common in manufacturing
industries. For example, Figure 4.19 illustrates that a rotor
assembly (C-130) is composed of many parts, but each part
is used to create only one rotor assembly. Figure 4.19
indicates that a rotor assembly is composed of four 2.5-cm
washers, two cotter pins, one 2.5-cm steel shank, four
10.25-cm rotor blades, and two 2.5-cm hex nuts. The
relationship implemented in Figure 4.19 thus enables you to
track each part within each rotor assembly.

If a part can be used to assemble several different kinds of
other parts and is itself composed of many parts, two tables

Database name: Ch04_Clinic

Table name: DRUG Table name: PATIENT

Table name: DOCTOR Table name: PRESCRIPTION

FIGURE
4.16

The implementation of a ternary relationship

FIGURE
4.17

An ER representation of recursive relationships

Database name: CH04_PartCo
Table name: EMPLOYEE_V1

FIGURE
4.18

The 1:1 recursive relationship
“EMPLOYEE is married to
EMPLOYEE”

118 C H A P T E R 4

are required to implement the “PART contains PART” relationship. Figure 4.20 illustrates such an environment. Parts
tracking is increasingly important as managers become more aware of the legal ramifications of producing more
complex output. In fact, in many industries, especially those involving aviation, full parts tracking is required by law.

The M:N recursive relationship might be more familiar in a school environment. For instance, note how the M:N
“COURSE requires COURSE” relationship illustrated in Figure 4.17 is implemented in Figure 4.21. In this example,
MATH-243 is a prerequisite to QM-261 and QM-362, while both MATH-243 and QM-261 are prerequisites to
QM-362.

Finally, the 1:M recursive relationship “EMPLOYEE manages EMPLOYEE,” shown in Figure 4.17, is implemented in
Figure 4.22.

One common pitfall when working with unary relationships is to confuse participation with referential integrity. In
theory, participation and referential integrity are very different concepts and are normally easy to distinguish in binary
relationships. In practical terms, conversely, participation and referential integrity are very similar because they are
both implemented through constraints on the same set of attributes. This similarity often leads to confusion when the
concepts are applied within the limited structure of a unary relationship. Consider the unary 1:1 relationship described
in Figure 4.18 of a spousal relationship between employees. Participation, as described above, is bidirectional,

Database name; CH04_PartCoTable name: PART_V1

FIGURE
4.19

Another unary relationship: “PART contains PART”

Database name: Ch04_PartCo

Table name: PART

Table name: COMPONENT

FIGURE
4.20

Implementation of the M:N recursive relationship “PART contains PART”

119E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

meaning that it must be addressed in both directions along the relationship. Participation in Figure 4.18 addresses the
questions:

� Must every employee have a spouse who is an employee?

� Must every employee be a spouse to another employee?

For the data shown in Figure 4.18, the correct answer to both of those questions is “No.” It is possible to be an
employee and not have another employee as a spouse. Also, it is possible to be an employee and not be the spouse
of another employee.

Referential integrity deals with the correspondence of values in the foreign key with values in the related primary key.
Referential integrity is not bidirectional, and therefore has only one question that it answers.

� Must every employee spouse be a valid employee?

For the data shown in Figure 4.18, the correct answer is “Yes.” Another way to frame this question is to consider
whether or not every value provided for the EMP_SPOUSE attribute must match some value in the EMP_NUM
attribute.

In practical terms, both participation and referential integrity involve the values used as primary key/foreign key to
implement the relationship. Referential integrity requires that the values in the foreign key correspond to values in the
primary key. In one direction, participation considers whether or not the foreign key can contain a null. In Figure 4.18,

Database name: Ch04_TinyCollegeTable name: COURSE

Table name: PREREQ

FIGURE
4.21

Implementation of the M:N recursive relationship “COURSE requires COURSE”

Database name: Ch04_PartCo
Table name: EMPLOYEE_V2

FIGURE
4.22

Implementation of the 1:M recursive relationship “EMPLOYEE manages EMPLOYEE”

120 C H A P T E R 4

for example, employee Robert Delaney is not required to have a value in EMP_SPOUSE. In the other direction,
participation considers whether or not every value in the primary key must appear as a value in the foreign key. In
Figure 4.18, for example, employee Robert Delaney’s value for EMP_NUM (348) is not required to appear as a value
in EMP_SPOUSE for any other employee.

4.1.11 Associative (Composite) Entities

In the original ERM described by Chen, relationships do not contain attributes. You should recall from Chapter 3 that
the relational model generally requires the use of 1:M relationships. (Also, recall that the 1:1 relationship has its place,
but it should be used with caution and proper justification.) If M:N relationships are encountered, you must create a
bridge between the entities that display such relationships. The associative entity is used to implement a M:N
relationship between two or more entities. This associative entity (also known as a composite or bridge entity) is
composed of the primary keys of each of the entities to be connected. An example of such a bridge is shown in Figure
4.23. The Crow’s Foot notation does not identify the composite entity as such. Instead, the composite entity is
identified by the solid relationship line between the parent and child entities, thereby indicating the presence of a strong
(identifying) relationship.

Note that the composite ENROLL entity in Figure 4.23 is existence-dependent on the other two entities; the
composition of the ENROLL entity is based on the primary keys of the entities that are connected by the composite
entity. The composite entity may also contain additional attributes that play no role in the connective process. For
example, although the entity must be composed of at least the STUDENT and CLASS primary keys, it may also
include such additional attributes as grades, absences, and other data uniquely identified by the student’s performance
in a specific class.

Finally, keep in mind that the ENROLL table’s key (CLASS_CODE and STU_NUM) is composed entirely of the
primary keys of the CLASS and STUDENT tables. Therefore, no null entries are possible in the ENROLL table’s key
attributes.

Implementing the small database shown in Figure 4.23 requires that you define the relationships clearly. Specifically,
you must know the “1” and the “M” sides of each relationship, and you must know whether the relationships are
mandatory or optional. For example, note the following points:

Database name: Ch04_CollegeTryTable name: STUDENT

Table name: ENROLL

Table name: CLASS

FIGURE
4.23

Converting the M:N relationship into two 1:M relationships

121E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

� A class may exist (at least at the start of registration) even though it contains no students. Therefore, if you
examine Figure 4.24, an optional symbol should appear on the STUDENT side of the M:N relationship
between STUDENT and CLASS.

You might argue that to be classified as a STUDENT, a person must be enrolled in at least one CLASS.
Therefore, CLASS is mandatory to STUDENT from a purely conceptual point of view. However, when a
student is admitted to college, that student has not (yet) signed up for any classes. Therefore, at least initially,
CLASS is optional to STUDENT. Note that the practical considerations in the data environment help dictate
the use of optionalities. If CLASS is not optional to STUDENT—from a database point of view—a class
assignment must be made when the student is admitted. But that’s not how the process actually works, and
the database design must reflect this. In short, the optionality reflects practice.

Because the M:N relationship between STUDENT and CLASS is decomposed into two 1:M relationships
through ENROLL, the optionalities must be transferred to ENROLL. (See Figure 4.25.) In other words, it now
becomes possible for a class not to occur in ENROLL if no student has signed up for that class. Because a class
need not occur in ENROLL, the ENROLL entity becomes optional to CLASS. And because the ENROLL
entity is created before any students have signed up for a class, the ENROLL entity is also optional to
STUDENT, at least initially.

� As students begin to sign up for their classes, they will be entered into the ENROLL entity. Naturally, if a
student takes more than one class, that student will occur more than once in ENROLL. For example, note that
in the ENROLL table in Figure 4.23, STU_NUM = 321452 occurs three times. On the other hand, each
student occurs only once in the STUDENT entity. (Note that the STUDENT table in Figure 4.23 has only one
STU_NUM = 321452 entry.) Therefore, in Figure 4.25, the relationship between STUDENT and ENROLL
is shown to be 1:M, with the M on the ENROLL side.

FIGURE
4.24

The M:N relationship between STUDENT and CLASS

FIGURE
4.25

A composite entity in an ERD

122 C H A P T E R 4

� As you can see in Figure 4.23, a class can occur more than once in the ENROLL table. For example,
CLASS_CODE = 10014 occurs twice. However, CLASS_CODE = 10014 occurs only once in the CLASS
table to reflect that the relationship between CLASS and ENROLL is 1:M. Note that in Figure 4.25, the M is
located on the ENROLL side, while the 1 is located on the CLASS side.

4.2 DEVELOPING AN ER DIAGRAM

The process of database design is an iterative rather than a linear or sequential process. The verb iterate means “to
do again or repeatedly.” An iterative process is, thus, one based on repetition of processes and procedures. Building
an ERD usually involves the following activities:

� Create a detailed narrative of the organization’s description of operations.

� Identify the business rules based on the description of operations.

� Identify the main entities and relationships from the business rules.

� Develop the initial ERD.

� Identify the attributes and primary keys that adequately describe the entities.

� Revise and review the ERD.

During the review process, it is likely that additional objects, attributes, and relationships will be uncovered. Therefore,
the basic ERM will be modified to incorporate the newly discovered ER components. Subsequently, another round of
reviews might yield additional components or clarification of the existing diagram. The process is repeated until the end
users and designers agree that the ERD is a fair representation of the organization’s activities and functions.

During the design process, the database designer does not depend simply on interviews to help define entities,
attributes, and relationships. A surprising amount of information can be gathered by examining the business forms and
reports that an organization uses in its daily operations.

To illustrate the use of the iterative process that ultimately yields a workable ERD, let’s start with an initial interview
with the Tiny College administrators. The interview process yields the following business rules:

1. Tiny College (TC) is divided into several schools: a school of business, a school of arts and sciences, a school
of education, and a school of applied sciences. Each school is administered by a dean who is a professor. Each
professor can be the dean of only one school, and a professor is not required to be the dean of any school.
Therefore, a 1:1 relationship exists between PROFESSOR and SCHOOL. Note that the cardinality can be
expressed by writing (1,1) next to the entity PROFESSOR and (0,1) next to the entity SCHOOL.

2. Each school comprises several departments. For example, the school of business has an accounting
department, a management/marketing department, an economics/finance department, and a computer
information systems department. Note again the cardinality rules: The smallest number of departments
operated by a school is one, and the largest number of departments is indeterminate (N). On the other hand,
each department belongs to only a single school; thus, the cardinality is expressed by (1,1). That is, the
minimum number of schools that a department belongs to is one, as is the maximum number. Figure 4.26
illustrates these first two business rules.

123E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

3. Each department may offer courses. For example, the management/marketing department offers courses such
as Introduction to Management, Principles of Marketing, and Production Management. The ERD segment for
this condition is shown in Figure 4.27. Note that this relationship is based on the way Tiny College operates.
If, for example, Tiny College had some departments that were classified as “research only,” those departments
would not offer courses; therefore, the COURSE entity would be optional to the DEPARTMENT entity.

4. The relationship between COURSE and CLASS was illustrated in Figure 4.9. Nevertheless, it is worth
repeating that a CLASS is a section of a COURSE. That is, a department may offer several sections (classes)
of the same database course. Each of those classes is taught by a professor at a given time in a given place.
In short, a 1:M relationship exists between COURSE and CLASS. However, because a course may exist in
Tiny College’s course catalog even when it is not offered as a class in a current class schedule, CLASS is
optional to COURSE. Therefore, the relationship between COURSE and CLASS looks like Figure 4.28.

FIGURE
4.26

The first Tiny College ERD segment

Note

It is again appropriate to evaluate the reason for maintaining the 1:1 relationship between PROFESSOR and
SCHOOL in the PROFESSOR is dean of SCHOOL relationship. It is worth repeating that the existence of 1:1
relationships often indicates a misidentification of attributes as entities. In this case, the 1:1 relationship could
easily be eliminated by storing the dean’s attributes in the SCHOOL entity. This solution would also make it
easier to answer the queries, “Who is the dean?” and “What are that dean’s credentials?” The downside of this
solution is that it requires the duplication of data that are already stored in the PROFESSOR table, thus setting
the stage for anomalies. However, because each school is run by a single dean, the problem of data duplication
is rather minor. The selection of one approach over another often depends on information requirements,
transaction speed, and the database designer’s professional judgment. In short, do not use 1:1 relationships
lightly, and make sure that each 1:1 relationship within the database design is defensible.

124 C H A P T E R 4

5. Each department should have one or more professors assigned to it. One and only one of those professors
chairs the department, and no professor is required to accept the chair position. Therefore, DEPARTMENT
is optional to PROFESSOR in the “chairs” relationship. Those relationships are summarized in the ER segment
shown in Figure 4.29.

6. Each professor may teach up to four classes; each class is a section of a course. A professor may also be on
a research contract and teach no classes at all. The ERD segment in Figure 4.30 depicts those conditions.

7. A student may enroll in several classes but takes each class only once during any given enrollment period. For
example, during the current enrollment period, a student may decide to take five classes—Statistics,
Accounting, English, Database, and History—but that student would not be enrolled in the same Statistics class
five times during the enrollment period! Each student may enroll in up to six classes, and each class may have
up to 35 students, thus creating an M:N relationship between STUDENT and CLASS. Because a CLASS can

FIGURE
4.27

The second Tiny College ERD segment

FIGURE
4.28

The third Tiny College ERD segment

FIGURE
4.29

The fourth Tiny College ERD segment

125E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

initially exist (at the start of the enrollment period) even though no students have enrolled in it, STUDENT is
optional to CLASS in the M:N relationship. This M:N relationship must be divided into two 1:M relationships
through the use of the ENROLL entity, shown in the ERD segment in Figure 4.31. But note that the optional
symbol is shown next to ENROLL. If a class exists but has no students enrolled in it, that class doesn’t occur
in the ENROLL table. Note also that the ENROLL entity is weak: it is existence-dependent, and its (composite)
PK is composed of the PKs of the STUDENT and CLASS entities. You can add the cardinalities (0,6) and
(0,35) next to the ENROLL entity to reflect the business rule constraints, as shown in Figure 4.31. (Visio
Professional does not automatically generate such cardinalities, but you can use a text box to accomplish
that task.)

8. Each department has several (or many) students whose major is offered by that department. However, each
student has only a single major and is, therefore, associated with a single department. (See Figure 4.32.)
However, in the Tiny College environment, it is possible—at least for a while—for a student not to declare a
major field of study. Such a student would not be associated with a department; therefore, DEPARTMENT is
optional to STUDENT. It is worth repeating that the relationships between entities and the entities themselves
reflect the organization’s operating environment. That is, the business rules define the ERD components.

9. Each student has an advisor in his or her department; each advisor counsels several students. An advisor is also
a professor, but not all professors advise students. Therefore, STUDENT is optional to PROFESSOR in the
“PROFESSOR advises STUDENT” relationship. (See Figure 4.33.)

10. As you can see in Figure 4.34, the CLASS entity contains a ROOM_CODE attribute. Given the naming
conventions, it is clear that ROOM_CODE is an FK to another entity. Clearly, because a class is taught in a
room, it is reasonable to assume that the ROOM_CODE in CLASS is the FK to an entity named ROOM. In
turn, each room is located in a building. So the last Tiny College ERD is created by observing that a BUILDING

FIGURE
4.30

The fifth Tiny College ERD segment

FIGURE
4.31

The sixth Tiny College ERD segment

126 C H A P T E R 4

can contain many ROOMs, but each ROOM is found in a single BUILDING. In this ERD segment, it is clear
that some buildings do not contain (class) rooms. For example, a storage building might not contain any named
rooms at all.

Using the preceding summary, you can identify the following entities:

SCHOOL COURSE
DEPARTMENT CLASS
PROFESSOR STUDENT
BUILDING ROOM
ENROLL (the associative entity between STUDENT and CLASS)

FIGURE
4.32

The seventh Tiny College ERD segment

FIGURE
4.33

The eighth Tiny College ERD segment

FIGURE
4.34

The ninth Tiny College ERD segment

127E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

Once you have discovered the relevant entities, you can define the initial set of relationships among them. Next, you
describe the entity attributes. Identifying the attributes of the entities helps you to better understand the relationships
among entities. Table 4.4 summarizes the ERM’s components, and names the entities and their relations.

TABLE
4.4

Components of the ERM

ENTITY RELATIONSHIP CONNECTIVITY ENTITY
SCHOOL operates 1:M DEPARTMENT
DEPARTMENT has 1:M STUDENT
DEPARTMENT employs 1:M PROFESSOR
DEPARTMENT offers 1:M COURSE
COURSE generates 1:M CLASS
PROFESSOR is dean of 1:1 SCHOOL
PROFESSOR chairs 1:1 DEPARTMENT
PROFESSOR teaches 1:M CLASS
PROFESSOR advises 1:M STUDENT
STUDENT enrolls in M:N CLASS
BUILDING contains 1:M ROOM
ROOM is used for 1:M CLASS
Note: ENROLL is the composite entity that implements the M:N relationship “STUDENT enrolls in CLASS.”

You must also define the connectivity and cardinality for the just-discovered relations based on the business rules.
However, to avoid crowding the diagram, the cardinalities are not shown. Figure 4.35 shows the Crow’s Foot ERD for
Tiny College. Note that this is an implementation-ready model. Therefore it shows the ENROLL composite entity.

Figure 4.36 shows the conceptual UML class diagram for Tiny College. Note that this class diagram depicts the M:N
relationship between STUDENT and CLASS. Figure 4.37 shows the implementation-ready UML class diagram for
Tiny College (note that the ENROLL composite entity is shown in this class diagram.

4.3 DATABASE DESIGN CHALLENGES: CONFLICTING GOALS

Database designers often must make design compromises that are triggered by conflicting goals, such as adherence to
design standards (design elegance), processing speed, and information requirements.

� Design standards. The database design must conform to design standards. Such standards have guided you
in developing logical structures that minimize data redundancies, thereby minimizing the likelihood that
destructive data anomalies will occur. You have also learned how standards prescribe avoiding nulls to the
greatest extent possible. In fact, you have learned that design standards govern the presentation of all
components within the database design. In short, design standards allow you to work with well-defined
components and to evaluate the interaction of those components with some precision. Without design
standards, it is nearly impossible to formulate a proper design process, to evaluate an existing design, or to
trace the likely logical impact of changes in design.

� Processing speed. In many organizations, particularly those generating large numbers of transactions, high
processing speeds are often a top priority in database design. High processing speed means minimal access
time, which may be achieved by minimizing the number and complexity of logically desirable relationships. For
example, a “perfect” design might use a 1:1 relationship to avoid nulls, while a higher transaction-speed design
might combine the two tables to avoid the use of an additional relationship, using dummy entries to avoid the
nulls. If the focus is on data-retrieval speed, you might also be forced to include derived attributes in the design.

� Information requirements. The quest for timely information might be the focus of database design. Complex
information requirements may dictate data transformations, and they may expand the number of entities and

128 C H A P T E R 4

attributes within the design. Therefore, the database may have to sacrifice some of its “clean” design structures
and/or some of its high transaction speed to ensure maximum information generation. For example, suppose

FIGURE
4.35

The completed Tiny College ERD

129E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

that a detailed sales report must be generated periodically. The sales report includes all invoice subtotals, taxes,
and totals; even the invoice lines include subtotals. If the sales report includes hundreds of thousands (or even
millions) of invoices, computing the totals, taxes, and subtotals is likely to take some time. If those computations
had been made and the results had been stored as derived attributes in the INVOICE and LINE tables at the
time of the transaction, the real-time transaction speed might have declined. But that loss of speed would only
be noticeable if there were many simultaneous transactions. The cost of a slight loss of transaction speed at the
front end and the addition of multiple derived attributes is likely to pay off when the sales reports are generated
(not to mention the fact that it will be simpler to generate the queries).

A design that meets all logical requirements and design conventions is an important goal. However, if this perfect
design fails to meet the customer’s transaction speed and/or information requirements, the designer will not have done
a proper job from the end user’s point of view. Compromises are a fact of life in the real world of database design.

Even while focusing on the entities, attributes, relationships, and constraints, the designer should begin thinking about
end-user requirements such as performance, security, shared access, and data integrity. The designer must consider
processing requirements and verify that all update, retrieval, and deletion options are available. Finally, a design is of
little value unless the end product is capable of delivering all specified query and reporting requirements.

FIGURE
4.36

The conceptual UML class diagram for Tiny College

130 C H A P T E R 4

You are quite likely to discover that even the best design process produces an ERD that requires further changes
mandated by operational requirements. Such changes should not discourage you from using the process. ER modeling
is essential in the development of a sound design that is capable of meeting the demands of adjustment and growth.
Using ERDs yields perhaps the richest bonus of all: a thorough understanding of how an organization really functions.

There are occasional design and implementation problems that do not yield “clean” implementation solutions. To get
a sense of the design and implementation choices a database designer faces, let’s revisit the 1:1 recursive relationship
“EMPLOYEE is married to EMPLOYEE” first examined in Figure 4.18. Figure 4.38 shows three different ways of
implementing such a relationship.

Note that the EMPLOYEE_V1 table in Figure 4.38 is likely to yield data anomalies. For example, if Anne Jones
divorces Anton Shapiro, two records must be updated—by setting the respective EMP_SPOUSE values to null—to
properly reflect that change. If only one record is updated, inconsistent data occur. The problem becomes even worse
if several of the divorced employees then marry each other. In addition, that implementation also produces undesirable
nulls for employees who are not married to other employees in the company.

Another approach would be to create a new entity shown as MARRIED_V1 in a 1:M relationship with EMPLOYEE.
(See Figure 4.38.) This second implementation does eliminate the nulls for employees who are not married to
somebody working for the same company. (Such employees would not be entered in the MARRIED_V1 table.)
However, this approach still yields possible duplicate values. For example, the marriage between employees 345 and

FIGURE
4.37

The implementation-ready UML class diagram for Tiny College

131E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

347 may still appear twice, once as 345,347 and once as 347,345. (Since each of those permutations is unique the
first time it appears, the creation of a unique index will not solve the problem.)

As you can see, the first two implementations yield several problems:

� Both solutions use synonyms. The EMPLOYEE_V1 table uses EMP_NUM and EMP_SPOUSE to refer to an
employee. The MARRIED_V1 table uses the same synonyms.

� Both solutions are likely to produce inconsistent data. For example, it is possible to enter employee 345 as
married to employee 347 and to enter employee 348 as married to employee 345.

� Both solutions allow data entries to show one employee married to several other employees. For example, it
is possible to have data pairs such as 345,347 and 348,347 and 349,347, none of which will violate entity
integrity requirements, because they are all unique.

A third approach would be to have two new entities, MARRIAGE and MARPART, in a 1:M relationship. MARPART
contains the EMP_NUM foreign key to EMPLOYEE. (See the relational diagram in Figure 4.38.) But even this
approach has issues. It requires the collection of additional data regarding the employees’ marriage—the marriage

FIGURE
4.38

Various implementations of the 1:1 recursive relationship

Table name: EMPLOYEE_V1 Database name: Ch04_PartCo

First implementation

Table name: EMPLOYEE Table name: MARRIED_V1

Second implementation

Table name: MARRIAGE Table name: MARPART Table name: EMPLOYEE

The relational diagram for the third implementation

Third implementation

132 C H A P T E R 4

date. If the business users do not need this data, then requiring them to collect it would be inappropriate. To ensure
that an employee occurs only once in any given marriage, you would have to create a unique index on the EMP_NUM
attribute in the MARPART table. Another potential problem with this solution is that the database implementation will
allow more than two employees to “participate” in the same marriage.

As you can see, a recursive 1:1 relationship yields many different solutions with varying degrees of effectiveness and
adherence to basic design principles. Any of the above solutions would likely involve the creation of program code to
help ensure the integrity and consistency of the data. In a later chapter, we will examine the creation of database
triggers that can do exactly that. Your job as a database designer is to use your professional judgment to yield a solution
that meets the requirements imposed by business rules, processing requirements, and basic design principles.

Finally, document, document, and document! Put all design activities in writing. Then review what you’ve written.
Documentation not only helps you stay on track during the design process, but also enables you (or those following
you) to pick up the design thread when the time comes to modify the design. Although the need for documentation
should be obvious, one of the most vexing problems in database and systems analysis work is that the “put it in writing”
rule is often not observed in all of the design and implementation stages. The development of organizational
documentation standards is a very important aspect of ensuring data compatibility and coherence.

133E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

S u m m a r y

◗ The ERM uses ERDs to represent the conceptual database as viewed by the end user. The ERM’s main components
are entities, relationships, and attributes. The ERD also includes connectivity and cardinality notations. An ERD can
also show relationship strength, relationship participation (optional or mandatory), and degree of relationship
(unary, binary, ternary, etc.).

◗ Connectivity describes the relationship classification (1:1, 1:M, or M:N). Cardinality expresses the specific number
of entity occurrences associated with an occurrence of a related entity. Connectivities and cardinalities are usually
based on business rules.

◗ In the ERM, an M:N relationship is valid at the conceptual level. However, when implementing the ERM in a
relational database, the M:N relationship must be mapped to a set of 1:M relationships through a composite entity.

◗ ERDs may be based on many different ERMs. However, regardless of which model is selected, the modeling logic
remains the same. Because no ERM can accurately portray all real-world data and action constraints, application
software must be used to augment the implementation of at least some of the business rules.

◗ Unified Modeling Language (UML) class diagrams are used to represent the static data structures in a data model.
The symbols used in the UML class and ER diagrams are very similar. The UML class diagrams can be used to
depict data models at the conceptual or implementation abstraction levels.

◗ Database designers, no matter how well they are able to produce designs that conform to all applicable modeling
conventions, are often forced to make design compromises. Those compromises are required when end users have
vital transaction-speed and/or information requirements that prevent the use of “perfect” modeling logic and
adherence to all modeling conventions. Therefore, database designers must use their professional judgment to
determine how and to what extent the modeling conventions are subject to modification. To ensure that their
professional judgments are sound, database designers must have detailed and in-depth knowledge of data-modeling
conventions. It is also important to document the design process from beginning to end, which helps keep the
design process on track and allows for easy modifications down the road.

K e y T e r m s

binary relationship, 116

cardinality, 107

composite attribute, 103

composite identifier, 102

connectivity, 107

derived attribute, 105

existence-dependent, 108

existence-independent, 108

identifiers, 101

identifying relationship, 110

iterative process, 123

mandatory participation, 113

multivalued attributes, 103

non-identifying relationship, 109

optional attribute, 101

optional participation, 113

participants, 105

recursive relationship, 116

regular entity, 108

relationship degree, 116

required attribute, 101

simple attribute, 103

single-valued attribute, 103

strong entity, 108

strong relationship, 110

ternary relationship, 116

unary relationship, 116

weak entity, 110

weak relationship, 109

134 C H A P T E R 4

R e v i e w Q u e s t i o n s

1. What two conditions must be met before an entity can be classified as a weak entity? Give an example of a weak
entity.

2. What is a strong (or identifying) relationship, and how is it depicted in a Crow’s Foot ERD?

3. Given the business rule “an employee may have many degrees,” discuss its effect on attributes, entities, and
relationships. (Hint: Remember what a multivalued attribute is and how it might be implemented.)

4. What is a composite entity, and when is it used?

5. Suppose you are working within the framework of the conceptual model in Figure Q4.5.

Given the conceptual model in Figure Q4.5:

a. Write the business rules that are reflected in it.

b. Identify all of the cardinalities.

6. What is a recursive relationship? Give an example.

7. How would you (graphically) identify each of the following ERM components in a Crow’s Foot notation?

a. an entity

b. the cardinality (0,N)

c. a weak relationship

d. a strong relationship

8. Discuss the difference between a composite key and a composite attribute. How would each be indicated in
an ERD?

9. What two courses of action are available to a designer encountering a multivalued attribute?

O n l i n e C o n t e n t

Answers to selected ReviewQuestions and Problems for this chapter are contained in the PremiumWebsite for
this book.

FIGURE
Q4.5

The conceptual model for Question 5

135E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

10. What is a derived attribute? Give an example.

11. How is a relationship between entities indicated in an ERD? Give an example, using the Crow’s Foot notation.

12. Discuss two ways in which the 1:M relationship between COURSE and CLASS can be implemented. (Hint:
Think about relationship strength.)

13. How is a composite entity represented in an ERD, and what is its function? Illustrate the Crow’s Foot notation.

14. What three (often conflicting) database requirements must be addressed in database design?

15. Briefly, but precisely, explain the difference between single-valued attributes and simple attributes. Give an
example of each.

16. What are multivalued attributes, and how can they be handled within the database design?

The next four questions are based on the ERD in Figure Q4.17.

17. Write the 10 cardinalities that are appropriate for this ERD.

18. Write the business rules reflected in this ERD.

19. What two attributes must be contained in the composite entity between STORE and PRODUCT? Use proper
terminology in your answer.

20. Describe precisely the composition of the DEPENDENT weak entity’s primary key. Use proper terminology in
your answer.

21. The local city youth league needs a database system to help track children who sign up to play soccer. Data need
to be kept on each team and the children who will be playing on each team and their parents. Also, data need
to be kept on the coaches for each team.

Draw the data model described below.

Entities required: Team, Player, Coach, and Parent.

Attributes required:

Team: Team ID number, Team name, and Team colors.

Player: Player ID number, Player first name, Player last name, and Player age.

Coach: Coach ID number, Coach first name, Coach last name, and Coach home phone number.

Parent: Parent ID number, Parent last name, Parent first name, Home phone number, and Home Address
(Street, City, State, and Zip Code).

FIGURE
Q4.17

The ERD for Questions 17–20

136 C H A P T E R 4

The following relationships must be defined:

� Team is related to Player.

� Team is related to Coach.

� Player is related to Parent.

Connectivities and participations are defined as follows:

� A Team may or may not have a Player.

� A Player must have a Team.

� A Team may have many Players.

� A Player has only one Team.

� A Team may or may not have a Coach.

� A Coach must have a Team.

� A Team may have many Coaches.

� A Coach has only one Team.

� A Player must have a Parent.

� A Parent must have a Player.

� A Player may have many Parents.

� A Parent may have many Players.

P r o b l e m s

1. Use the following business rules to create a Crow’s Foot ERD. Write all appropriate connectivities and
cardinalities in the ERD.

a. A department employs many employees, but each employee is employed by only one department.

b. Some employees, known as “rovers,” are not assigned to any department.

c. A division operates many departments, but each department is operated by only one division.

d. An employee may be assigned many projects, and a project may have many employees assigned to it.

e. A project must have at least one employee assigned to it.

f. One of the employees manages each department, and each department is managed by only one employee.

g. One of the employees runs each division, and each division is run by only one employee.

2. The Jonesburgh County Basketball Conference (JCBC) is an amateur basketball association. Each city in the
county has one team as its representative. Each team has a maximum of 12 players and a minimum of 9 players.
Each team also has up to three coaches (offensive, defensive, and physical training coaches). During the season,
each team plays two games (home and visitor) against each of the other teams. Given those conditions, do the
following:

a. Identify the connectivity of each relationship.

b. Identify the type of dependency that exists between CITY and TEAM.

c. Identify the cardinality between teams and players and between teams and city.

d. Identify the dependency between coach and team and between team and player.

e. Draw the Chen and Crow’s Foot ERDs to represent the JCBC database.

f. Draw the UML class diagram to depict the JCBC database.

3. Create an ERD based on the Crow’s Foot notation, using the following requirements:

a. An INVOICE is written by a SALESREP. Each sales representative can write many invoices, but each invoice
is written by a single sales representative.

b. The INVOICE is written for a single CUSTOMER. However, each customer can have many invoices.

137E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

c. An INVOICE can include many detail lines (LINE), each of which describes one product bought by the
customer.

d. The product information is stored in a PRODUCT entity.

e. The product’s vendor information is found in a VENDOR entity.

4. The Hudson Engineering Group (HEG) has contacted you to create a conceptual model whose application will
meet the expected database requirements for the company’s training program. The HEG administrator gives you
the description (see below) of the training group’s operating environment. (Hint: Some of the following sentences
identify the volume of data rather than cardinalities. Can you tell which ones?)

The HEG has 12 instructors and can handle up to 30 trainees per class. HEG offers five Advanced Technology
courses, each of which may generate several classes. If a class has fewer than 10 trainees, it will be canceled.
Therefore, it is possible for a course not to generate any classes. Each class is taught by one instructor. Each
instructor may teach up to two classes or may be assigned to do research only. Each trainee may take up to two
classes per year.

Given that information, do the following:

a. Define all of the entities and relationships. (Use Table 4.4 as your guide.)

b. Describe the relationship between instructor and class in terms of connectivity, cardinality, and existence
dependence.

5. Automata, Inc. produces specialty vehicles by contract. The company operates several departments, each of
which builds a particular vehicle, such as a limousine, a truck, a van, or an RV.

� Before a new vehicle is built, the department places an order with the purchasing department to request
specific components. Automata’s purchasing department is interested in creating a database to keep track
of orders and to accelerate the process of delivering materials.

� The order received by the purchasing department may contain several different items. An inventory is
maintained so that the most frequently requested items are delivered almost immediately. When an order
comes in, it is checked to determine whether the requested item is in inventory. If an item is not in inventory,
it must be ordered from a supplier. Each item may have several suppliers.

Given that functional description of the processes encountered at Automata’s purchasing department, do the
following:

a. Identify all of the main entities.

b. Identify all of the relations and connectivities among entities.

c. Identify the type of existence dependence in all the relationships.

d. Give at least two examples of the types of reports that can be obtained from the database.

6. United Helpers is a nonprofit organization that provides aid to people after natural disasters. Based on the
following brief description of operations, create the appropriate fully labeled Crow’s Foot ERD.

� Individuals volunteer their time to carry out the tasks of the organization. The name, address, and telephone
number for each voluteer are tracked. Each volunteer may be assigned to several tasks during the time that
he or she is doing volunteer work, and some tasks require many volunteers. It is possible for a volunteer to
be in the system without having been assigned a task yet. It is possible to have tasks that no one has been
assigned. When a volunteer is assigned to a task, the system should track the start time and end time of that
assignment.

� For each task, there is a task code, task description, task type, and task status. For example, there may be
a task with task code “101,” a description of “answer the telephone,” a type of “recurring,” and a status of
“ongoing.” There could be another task with a code of “102,” a description of “prepare 5000 packages of
basic medical supplies,” a type of “packing,” and a status of “open.”

138 C H A P T E R 4

� For all tasks of type “packing,” there is a packing list that specifies the contents of the packages. There are
many different packing lists to produce different packages, such as basic medical packages, child-care
packages, food packages, etc. Each packing list has a packing list ID number, a packing list name, and a
packing list description, which describes the items that ideally go into making that type of package. Every
packing task is associated with only one packing list. A packing list may not be associated with any tasks,
or may be associated with many tasks. Tasks that are not packing tasks are not associated with any
packing list.

� Packing tasks result in the creation of packages. Each individual package of supplies that is produced by the
organization is tracked. Each package is assigned an ID number. The date the package was created and the
total weight of the package are recorded. A given package is associated with only one task. Some tasks (e.g.,
“answer the phones”) will not have produced any packages, while other tasks (e.g., “prepare 5000 packages
of basic medical supplies”) will be associated with many packages.

� The packing list describes the ideal contents of each package, but it is not always possible to include the ideal
number of each item. Therefore, the actual items included in each package should be tracked. A package
can contain many different items, and a given item can be used in many different packages.

� For each item that the organization provides, there is an item ID number, item description, item value, and
item quantity on hand stored in the system. Along with tracking the actual items that are placed in each
package, the quantity of each item placed in the package must be tracked too. For example, a packing list
may state that basic medical packages should include 100 bandages, 4 bottles of iodine, and 4 bottles of
hydrogen peroxide. However, because of the limited supply of items, a given package may include only 10
bandages, 1 bottle of iodine, and no hydrogen peroxide. The fact that this package includes bandages and
iodine needs to be recorded along with the quantity of each that is included. It is possible for the organization
to have items donated that have not been included in any package yet, but every package will contain at least
one item.

7. Using the Crow’s Foot notation, create an ERD that can be implemented for a medical clinic, using the following
business rules:

� A patient can make many appointments with one or more doctors in the clinic, and a doctor can accept
appointments with many patients. However, each appointment is made with only one doctor and one
patient.

� Emergency cases do not require an appointment. However, for appointment management purposes, an
emergency is entered in the appointment book as “unscheduled.”

� If kept, an appointment yields a visit with the doctor specified in the appointment. The visit yields a diagnosis
and, when appropriate, treatment.

� With each visit, the patient’s records are updated to provide a medical history.

� Each patient visit creates a bill. Each patient visit is billed by one doctor, and each doctor can bill many
patients.

� Each bill must be paid. However, a bill may be paid in many installments, and a payment may cover more
than one bill.

� A patient may pay the bill directly, or the bill may be the basis for a claim submitted to an insurance
company.

� If the bill is paid by an insurance company, the deductible is submitted to the patient for payment.

139E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

C a s e s

8. The administrators of Tiny College are so pleased with your design and implementation of their student
registration/tracking system that they want you to expand the design to include the database for their motor
vehicle pool. A brief description of operations follows:

� Faculty members may use the vehicles owned by Tiny College for officially sanctioned travel. For example,
the vehicles may be used by faculty members to travel to off-campus learning centers, to travel to locations
at which research papers are presented, to transport students to officially sanctioned locations, and to travel
for public service purposes. The vehicles used for such purposes are managed by Tiny College’s Travel Far
But Slowly (TFBS) Center.

� Using reservation forms, each department can reserve vehicles for its faculty, who are responsible for filling
out the appropriate trip completion form at the end of a trip. The reservation form includes the expected
departure date, vehicle type required, destination, and name of the authorized faculty member. The faculty
member arriving to pick up a vehicle must sign a checkout form to log out the vehicle and pick up a trip
completion form. (The TFBS employee who releases the vehicle for use also signs the checkout form.) The
faculty member’s trip completion form includes the faculty member’s identification code, the vehicle’s
identification, the odometer readings at the start and end of the trip, maintenance complaints (if any), gallons
of fuel purchased (if any), and the Tiny College credit card number used to pay for the fuel. If fuel is
purchased, the credit card receipt must be stapled to the trip completion form. Upon receipt of the faculty
trip completion form, the faculty member’s department is billed at a mileage rate based on the vehicle type
(sedan, station wagon, panel truck, minivan, or minibus) used. (Hint: Do not use more entities than are
necessary. Remember the difference between attributes and entities!)

� All vehicle maintenance is performed by TFBS. Each time a vehicle requires maintenance, a maintenance log
entry is completed on a prenumbered maintenance log form. The maintenance log form includes the vehicle
identification, a brief description of the type of maintenance required, the initial log entry date, the date on
which the maintenance was completed, and the identification of the mechanic who released the vehicle back
into service. (Only mechanics who have an inspection authorization may release the vehicle back into service.)

� As soon as the log form has been initiated, the log form’s number is transferred to a maintenance detail
form; the log form’s number is also forwarded to the parts department manager, who fills out a parts usage
form on which the maintenance log number is recorded. The maintenance detail form contains separate
lines for each maintenance item performed, for the parts used, and for identification of the mechanic who
performed the maintenance item. When all maintenance items have been completed, the maintenance detail
form is stapled to the maintenance log form, the maintenance log form’s completion date is filled out, and
the mechanic who releases the vehicle back into service signs the form. The stapled forms are then filed, to
be used later as the source for various maintenance reports.

Note

The following cases and additional problems from the Instructor Online Companion may be used as the basis
for class projects. These problems illustrate the challenge of translating a description of operations into a set of
business rules that will define the components for an ERD that can be successfully implemented. These
problems can also be used as the basis for discussions about the components and contents of a proper
description of operations. One of the things you must learn if you want to create databases that can be
successfully implemented is to separate the generic background material from the details that directly affect
database design. You must also keep in mind that many constraints cannot be incorporated into the database
design; instead, such constraints are handled by the applications software.

140 C H A P T E R 4

� TFBS maintains a parts inventory, including oil, oil filters, air filters, and belts of various types. The parts
inventory is checked daily to monitor parts usage and to reorder parts that reach the “minimum quantity on
hand” level. To track parts usage, the parts manager requires each mechanic to sign out the parts that are
used to perform each vehicle’s maintenance; the parts manager records the maintenance log number under
which the part is used.

� Each month TFBS issues a set of reports. The reports include the mileage driven by vehicle, by department,
and by faculty members within a department. In addition, various revenue reports are generated by vehicle
and department. A detailed parts usage report is also filed each month. Finally, a vehicle maintenance
summary is created each month.

Given that brief summary of operations, draw the appropriate (and fully labeled) ERD. Use the Chen
methodology to indicate entities, relationships, connectivities, and cardinalities.

9. During peak periods, Temporary Employment Corporation (TEC) places temporary workers in companies.
TEC’s manager gives you the following description of the business:

� TEC has a file of candidates who are willing to work.

� If the candidate has worked before, that candidate has a specific job history. (Naturally, no job history exists
if the candidate has never worked.) Each time the candidate works, one additional job history record is
created.

� Each candidate has earned several qualifications. Each qualification may be earned by more than one
candidate. (For example, it is possible for more than one candidate to have earned a Bachelor of Business
Administration degree or a Microsoft Network Certification. And clearly, a candidate may have earned both
a BBA and a Microsoft Network Certification.)

� TEC offers courses to help candidates improve their qualifications.

� Every course develops one specific qualification; however, TEC does not offer a course for every
qualification. Some qualifications have multiple courses that develop that qualification.

� Some courses cover advanced topics that require specific qualifications as prerequisites. Some courses cover
basic topics that do not require any prerequisite qualifications. A course can have several prerequisites. A
qualification can be a prerequisite for more than one course.

� Courses are taught during training sessions. A training session is the presentation of a single course. Over
time, TEC will offer many training sessions for each course; however, new courses may not have any training
sessions scheduled right away.

� Candidates can pay a fee to attend a training session. A training session can accommodate several
candidates, although new training sessions will not have any candidates registered at first.

� TEC also has a list of companies that request temporaries.

� Each time a company requests a temporary employee, TEC makes an entry in the Openings folder. That
folder contains an opening number, a company name, required qualifications, a starting date, an anticipated
ending date, and hourly pay.

� Each opening requires only one specific or main qualification.

� When a candidate matches the qualification, the job is assigned, and an entry is made in the Placement
Record folder. That folder contains an opening number, a candidate number, the total hours worked, etc. In
addition, an entry is made in the job history for the candidate.

� An opening can be filled by many candidates, and a candidate can fill many openings.

� TEC uses special codes to describe a candidate’s qualifications for an opening. The list of codes is shown in
Table P4.9.

141E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

TABLE
P4.9

CODE DESCRIPTION
SEC-45 Secretarial work, at least 45 words per minute
SEC-60 Secretarial work, at least 60 words per minute
CLERK General clerking work
PRG-VB Programmer, Visual Basic
PRG-C++ Programmer, C++
DBA-ORA Database Administrator, Oracle
DBA-DB2 Database Administrator, IBM DB2
DBA-SQLSERV Database Administrator, MS SQL Server
SYS-1 Systems Analyst, level 1
SYS-2 Systems Analyst, level 2
NW-NOV Network Administrator, Novell experience
WD-CF Web Developer, ColdFusion

TEC’s management wants to keep track of the following entities:

COMPANY, OPENING, QUALIFICATION, CANDIDATE, JOB_HISTORY, PLACEMENT, COURSE, and
SESSION. Given that information, do the following:

a. Draw the Crow’s Foot ERDs for this enterprise.

b. Identify all necessary relationships.

c. Identify the connectivity for each relationship.

d. Identify the mandatory/optional dependencies for the relationships.

e. Resolve all M:N relationships.

10. Use the following description of the operations of the RC_Charter2 Company to complete this exercise.

� The RC_Charter2 Company operates a fleet of aircraft under the Federal Air Regulations (FAR) Part 135
(air taxi or charter) certificate, enforced by the FAA. The aircraft are available for air taxi (charter) operations
within the United States and Canada.

� Charter companies provide so-called “unscheduled” operations—that is, charter flights take place only after
a customer reserves the use of an aircraft to fly at a customer-designated date and time to one or more
customer-designated destinations, transporting passengers, cargo, or some combination of passengers and
cargo. A customer can, of course, reserve many different charter flights (trips) during any time frame.
However, for billing purposes, each charter trip is reserved by one and only one customer. Some of
RC_Charter2’s customers do not use the company’s charter operations; instead, they purchase fuel, use
maintenance services, or use other RC_Charter2 services. However, this database design will focus on the
charter operations only.

� Each charter trip yields revenue for the RC_Charter2 Company. This revenue is generated by the charges
a customer pays upon the completion of a flight. The charter flight charges are a function of aircraft model
used, distance flown, waiting time, special customer requirements, and crew expenses. The distance flown
charges are computed by multiplying the round-trip miles by the model’s charge per mile. Round-trip miles
are based on the actual navigational path flown. The sample route traced in Figure P4.10 illustrates the
procedure. Note that the number of round-trip miles is calculated to be 130 + 200 + 180 + 390 = 900.

Depending on whether a customer has RC_Charter2 credit authorization, the customer may:

� Pay the entire charter bill upon the completion of the charter flight.

� Pay a part of the charter bill and charge the remainder to the account. The charge amount may not exceed
the available credit.

� Charge the entire charter bill to the account. The charge amount may not exceed the available credit.

� Customers may pay all or part of the existing balance for previous charter trips. Such payments may be

142 C H A P T E R 4

made at any time and are not necessarily tied to a specific charter trip. The charter mileage charge includes
the expense of the pilot(s) and other crew required by FAR 135. However, if customers request additional
crew not required by FAR 135, those customers are charged for the crew members on an hourly basis. The
hourly crew-member charge is based on each crew member’s qualifications.

� The database must be able to handle crew assignments. Each charter trip requires the use of an aircraft, and
a crew flies each aircraft. The smaller piston-engine-powered charter aircraft require a crew consisting of
only a single pilot. Larger aircraft (i.e., aircraft having a gross takeoff weight of 12,500 pounds or more) and
jet-powered aircraft require a pilot and a copilot, while some of the larger aircraft used to transport
passengers may require flight attendants as part of the crew. Some of the older aircraft require the
assignment of a flight engineer, and larger cargo-carrying aircraft require the assignment of a loadmaster. In
short, a crew can consist of more than one person, and not all crew members are pilots.

� The charter flight’s aircraft waiting charges are computed by multiplying the hours waited by the model’s
hourly waiting charge. Crew expenses are limited to meals, lodging, and ground transportation.

The RC_Charter2 database must be designed to generate a monthly summary of all charter trips, expenses, and
revenues derived from the charter records. Such records are based on the data that each pilot in command is
required to record for each charter trip: trip date(s) and time(s), destination(s), aircraft number, pilot (and other
crew) data, distance flown, fuel usage, and other data pertinent to the charter flight. Such charter data are then
used to generate monthly reports that detail revenue and operating cost information for customers, aircraft, and
pilots. All pilots and other crew members are RC_Charter2 Company employees; that is, the company does not
use contract pilots and crew.

FAR Part 135 operations are conducted under a strict set of requirements that govern the licensing and training
of crew members. For example, pilots must have earned either a commercial license or an Airline Transport Pilot
(ATP) license. Both licenses require appropriate ratings. Ratings are specific competency requirements. For
example:

� To operate a multiengine aircraft designed for takeoffs and landings on land only, the appropriate rating is
MEL, or Multiengine Landplane. When a multiengine aircraft can take off and land on water, the appropriate
rating is MES, or Multiengine Seaplane.

FIGURE
P4.10

Round-trip mile determination

Intermediate Stop

200 miles

Pax Pickup

130 miles

Home Base

390 miles

Destination180 miles

143E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

� The instrument rating is based on a demonstrated ability to conduct all flight operations with sole reference
to cockpit instrumentation. The instrument rating is required to operate an aircraft under Instrument
Meteorological Conditions (IMC), and all such operations are governed under FAR-specified Instrument
Flight Rules (IFR). In contrast, operations conducted under “good weather” or visual flight conditions are
based on the FAR Visual Flight Rules (VFR).

� The type rating is required for all aircraft with a takeoff weight of more than 12,500 pounds or for aircraft
that are purely jet-powered. If an aircraft uses jet engines to drive propellers, that aircraft is said to be
turboprop-powered. A turboprop—that is, a turbo-propeller-powered aircraft—does not require a type rating
unless it meets the 12,500-pound weight limitation.

� Although pilot licenses and ratings are not time-limited, exercising the privilege of the license and ratings
under Part 135 requires both a current medical certificate and a current Part 135 checkride. The
following distinctions are important:

� The medical certificate may be Class I or Class II. The Class I medical is more stringent than the Class II, and
it must be renewed every six months. The Class II medical must be renewed yearly. If the Class I medical is
not renewed during the six-month period, it automatically reverts to a Class II certificate. If the Class II
medical is not renewed within the specified period, it automatically reverts to a Class III medical, which is not
valid for commercial flight operations.

� A Part 135 checkride is a practical flight examination that must be successfully completed every six months.
The checkride includes all flight maneuvers and procedures specified in Part 135.

Nonpilot crew members must also have the proper certificates in order to meet specific job requirements. For
example, loadmasters need an appropriate certificate, as do flight attendants. In addition, crew members such as
loadmasters and flight attendants, who may be required in operations that involve large aircraft (more than a
12,500-pound takeoff weight and passenger configurations over 19) are also required periodically to pass a
written and practical exam. The RC_Charter2 Company is required to keep a complete record of all test types,
dates, and results for each crew member, as well as pilot medical certificate examination dates.

In addition, all flight crew members are required to submit to periodic drug testing; the results must be tracked,
too. (Note that nonpilot crew members are not required to take pilot-specific tests such as Part 135 checkrides.
Nor are pilots required to take crew tests such as loadmaster and flight attendant practical exams.) However,
many crew members have licenses and/or certifications in several areas. For example, a pilot may have an ATP
and a loadmaster certificate. If that pilot is assigned to be a loadmaster on a given charter flight, the loadmaster
certificate is required. Similarly, a flight attendant may have earned a commercial pilot’s license. Sample data
formats are shown in Table P4.10.

Pilots and other crew members must receive recurrency training appropriate to their work assignments.
Recurrency training is based on an FAA-approved curriculum that is job-specific. For example, pilot recurrency
training includes a review of all applicable Part 135 flight rules and regulations, weather data interpretation,
company flight operations requirements, and specified flight procedures. The RC_Charter2 Company is required
to keep a complete record of all recurrency training for each crew member subject to the training.

The RC_Charter2 Company is required to maintain a detailed record of all crew credentials and all training mandated
by Part 135. The company must keep a complete record of each requirement and of all compliance data.

To conduct a charter flight, the company must have a properly maintained aircraft available. A pilot who meets
all of the FAA’s licensing and currency requirements must fly the aircraft as Pilot in Command (PIC). For those
aircraft that are powered by piston engines or turboprops and have a gross takeoff weight under 12,500 pounds,
single-pilot operations are permitted under Part 135 as long as a properly maintained autopilot is available.
However, even if FAR Part 135 permits single-pilot operations, many customers require the presence of a copilot
who is capable of conducting the flight operations under Part 135.

The RC_Charter2 operations manager anticipates the lease of turbojet-powered aircraft, and those aircraft are
required to have a crew consisting of a pilot and copilot. Both pilot and copilot must meet the same Part 135
licensing, ratings, and training requirements.

144 C H A P T E R 4

The company also leases larger aircraft that exceed the 12,500-pound gross takeoff weight. Those aircraft can
carry the number of passengers that requires the presence of one or more flight attendants. If those aircraft carry
cargo weighing over 12,500 pounds, a loadmaster must be assigned as a crew member to supervise the loading
and securing of the cargo. The database must be designed to meet the anticipated additional charter crew
assignment capability.

a. Given this incomplete description of operations, write all applicable business rules to establish entities,
relationships, optionalities, connectivities, and cardinalities. (Hint: Use the following five business rules as
examples, writing the remaining business rules in the same format.)

� A customer may request many charter trips.

� Each charter trip is requested by only one customer.

TABLE
P4.10

PART A TESTS
TEST CODE TEST DESCRIPTION TEST FREQUENCY
1 Part 135 Flight Check 6 months
2 Medical, Class 1 6 months
3 Medical, Class 2 12 months
4 Loadmaster Practical 12 months
5 Flight Attendant Practical 12 months
6 Drug test Random
7 Operations, written exam 6 months

PART B RESULTS
EMPLOYEE TEST CODE TEST DATE TEST RESULT
101 1 12-Nov-09 Pass-1
103 6 23-Dec-09 Pass-1
112 4 23-Dec-09 Pass-2
103 7 11-Jan-10 Pass-1
112 7 16-Jan-10 Pass-1
101 7 16-Jan-10 Pass-1
101 6 11-Feb-10 Pass-2
125 2 15-Feb-10 Pass-1

PART C LICENSES AND CERTIFICATIONS
LICENSE OR CERTIFICATE LICENSE OR CERTIFICATE DESCRIPTION
ATP Airline Transport Pilot
Comm Commercial license
Med-1 Medical certificate, Class I
Med-2 Medical certificate, Class II
Instr Instrument rating
MEL Multiengine Land aircraft rating
LM Loadmaster
FA Flight Attendant

EMPLOYEE LICENSE OR CERTIFICATE DATE EARNED
101 Comm 12-Nov-93
101 Instr 28-Jun-94
101 MEL 9-Aug-94
103 Comm 21-Dec-95
112 FA 23-Jun-02
103 Instr 18-Jan-96
112 LM 27-Nov-05

145E N T I T Y R E L A T I O N S H I P (E R) M O D E L I N G

� Some customers have not (yet) requested a charter trip.

� An employee may be assigned to serve as a crew member on many charter trips.

� Each charter trip may have many employees assigned to it to serve as crew members.

b. Draw the fully labeled and implementable Crow’s Foot ERD based on the business rules you wrote in Part (a)
of this problem. Include all entities, relationships, optionalities, connectivities, and cardinalities.

146 C H A P T E R 4

Preview

Advanced Data Modeling

In this chapter, you will learn:

� About the extended entity relationship (EER) model

� How entity clusters are used to represent multiple entities and relationships

� The characteristics of good primary keys and how to select them

� How to use flexible solutions for special data-modeling cases

In the previous two chapters, you learned how to use entity relationship diagrams (ERDs)

to properly create a data model. In this chapter, you will learn about the extended entity

relationship (EER) model.The EER model builds on ER concepts and adds support for entity

supertypes, subtypes, and entity clustering.

Most current database implementations are based on relational databases. Because the

relational model uses keys to create associations among tables, it is essential to learn

the characteristics of good primary keys and how to select them. Selecting a good primary

key is too important to be left to chance, so in this chapter we cover the critical aspects

of primary key identification and placement.

Focusing on practical database design, this chapter also illustrates some special design cases that

highlight the importance of flexible designs, which can be adapted to meet the demands of

changing data and information requirements. Data modeling is a vital step in the development

of databases that in turn provide a good foundation for successful application development.

Remember that good database applications cannot be based on bad database designs, and no

amount of outstanding coding can overcome the limitations of poor database design.

5

F
I

V
E

5.1 THE EXTENDED ENTITY RELATIONSHIP MODEL

As the complexity of the data structures being modeled has increased and as application software requirements have
become more stringent, there has been an increasing need to capture more information in the data model. The extended
entity relationship model (EERM), sometimes referred to as the enhanced entity relationship model, is the result of
adding more semantic constructs to the original entity relationship (ER) model. As you might expect, a diagram using
this model is called an EER diagram (EERD). In the following sections, you will learn about the main EER model
constructs—entity supertypes, entity subtypes, and entity clustering—and see how they are represented in ERDs.

5.1.1 Entity Supertypes and Subtypes

Because most employees possess a wide range of skills and special qualifications, data modelers must find a variety of
ways to group employees based on employee characteristics. For instance, a retail company could group employees
as salaried and hourly employees, while a university could group employees as faculty, staff, and administrators.

The grouping of employees to create various types of employees provides two important benefits:

� It avoids unnecessary nulls in the employee attributes when some employees have characteristics that are not
shared by other employees.

� It enables a particular employee type to participate in relationships that are unique to that employee type.

To illustrate those benefits, let’s explore the case of an aviation business. The aviation business employs pilots,
mechanics, secretaries, accountants, database managers, and many other types of employees. Figure 5.1 illustrates
how pilots share certain characteristics with other employees, such as a last name (EMP_LNAME) and hire date
(EMP_HIRE_DATE). On the other hand, many pilot characteristics are not shared by other employees. For example,
unlike other employees, pilots must meet special requirements such as flight hour restrictions, flight checks, and
periodic training. Therefore, if all employee characteristics and special qualifications were stored in a single
EMPLOYEE entity, you would have a lot of nulls or you would have to make a lot of needless dummy entries. In this
case, special pilot characteristics such as EMP_LICENSE, EMP_RATINGS, and EMP_MED_TYPE will generate nulls
for employees who are not pilots. In addition, pilots participate in some relationships that are unique to their
qualifications. For example, not all employees can fly airplanes; only employees who are pilots can participate in the
“employee flies airplane” relationship.

Based on the preceding discussion, you would correctly deduce that the PILOT entity stores only those attributes that
are unique to pilots, and that the EMPLOYEE entity stores attributes that are common to all employees. Based on that
hierarchy, you can conclude that PILOT is a subtype of EMPLOYEE, and that EMPLOYEE is the supertype of PILOT.
In modeling terms, an entity supertype is a generic entity type that is related to one or more entity subtypes, where

FIGURE
5.1

Nulls created by unique attributes

148 C H A P T E R 5

the entity supertype contains the common characteristics, and the entity subtypes contain the unique characteristics of
each entity subtype.

There are two criteria that help the designer determine when to use subtypes and supertypes:

� There must be different, identifiable kinds or types of the entity in the user’s environment.

� The different kinds or types of instances should have one or more attributes that are unique to that kind or type
of instance.

In the preceding example, because pilots meet both criteria of being an identifiable kind of employee and having unique
attributes that other employees do not possess, it is appropriate to create PILOT as a subtype of EMPLOYEE. Let us
assume that mechanics and accountants also have attributes that are unique to them, respectively, and that clerks do
not. In that case, MECHANIC and ACCOUNTANT would also be legitimate subtypes of EMPLOYEE because they are
identifiable kinds of employees and they have unique attributes. CLERK would not be an acceptable subtype of
EMPLOYEE because it only satisfies one of the criteria—it is an identifiable kind of employee—but there are not any
attributes that are unique to just clerks. In the next section, you will learn how entity supertypes and subtypes are
related in a specialization hierarchy.

5.1.2 Specialization Hierarchy

Entity supertypes and subtypes are organized in a specialization hierarchy, which depicts the arrangement of
higher-level entity supertypes (parent entities) and lower-level entity subtypes (child entities). Figure 5.2 shows the
specialization hierarchy formed by an EMPLOYEE supertype and three entity subtypes—PILOT, MECHANIC, and
ACCOUNTANT. The specialization hierarchy reflects the 1:1 relationship between EMPLOYEE and its subtypes. For
example, a PILOT subtype occurrence is related to one instance of the EMPLOYEE supertype, and a MECHANIC
subtype occurrence is related to one instance of the EMPLOYEE supertype. The terminology and symbols in
Figure 5.2 are explained throughout this chapter.

The relationships depicted within the specialization hierarchy are sometimes described in terms of “is-a” relationships.
For example, a pilot is an employee, a mechanic is an employee, and an accountant is an employee. It is important
to understand that within a specialization hierarchy, a subtype can exist only within the context of a supertype, and
every subtype can have only one supertype to which it is directly related. However, a specialization hierarchy can have
many levels of supertype/subtype relationships—that is, you can have a specialization hierarchy in which a supertype
has many subtypes; in turn, one of the subtypes is the supertype to other lower-level subtypes.

As you can see in Figure 5.2, the arrangement of entity supertypes and subtypes in a specialization hierarchy is more
than a cosmetic convenience. Specialization hierarchies enable the data model to capture additional semantic content
(meaning) into the ERD. A specialization hierarchy provides the means to:

� Support attribute inheritance.

� Define a special supertype attribute known as the subtype discriminator.

� Define disjoint/overlapping constraints and complete/partial constraints.

The following sections cover such characteristics and constraints in more detail.

O n l i n e C o n t e n t

This chapter covers only specialization hierarchies. The EER model also supports specialization lattices, where
a subtype can have multiple parents (supertypes). However, those concepts are better covered under the
object-oriented model in Appendix G, Object-Oriented Databases. The appendix is available in the Premium
Website for this book.

149A D V A N C E D D A T A M O D E L I N G

5.1.3 Inheritance

The property of inheritance enables an entity subtype to inherit the attributes and relationships of the supertype. As
discussed earlier, a supertype contains those attributes that are common to all of its subtypes. In contrast, subtypes
contain only the attributes that are unique to the subtype. For example, Figure 5.2 illustrates that pilots, mechanics,
and accountants all inherit the employee number, last name, first name, middle initial, hire date, and so on from the
EMPLOYEE entity. However, Figure 5.2 also illustrates that pilots have attributes that are unique; the same is true for
mechanics and accountants. One important inheritance characteristic is that all entity subtypes inherit their
primary key attribute from their supertype. Note in Figure 5.2 that the EMP_NUM attribute is the primary key for
each of the subtypes.

At the implementation level, the supertype and its subtype(s) depicted in the specialization hierarchy maintain a
1:1 relationship. For example, the specialization hierarchy lets you replace the undesirable EMPLOYEE table structure
in Figure 5.1 with two tables—one representing the supertype EMPLOYEE and the other representing the subtype
PILOT. (See Figure 5.3.)

Entity subtypes inherit all relationships in which the supertype entity participates. For example, Figure 5.2 shows the
EMPLOYEE entity supertype participating in a 1:M relationship with a DEPENDENT entity. Through inheritance, all
subtypes also participate in that relationship. In specialization hierarchies with multiple levels of supertype/subtypes,
a lower-level subtype inherits all of the attributes and relationships from all of its upper-level supertypes.

FIGURE
5.2

A specialization hierarchy

150 C H A P T E R 5

5.1.4 Subtype Discriminator

A subtype discriminator is the attribute in the supertype entity that determines to which subtype the supertype
occurrence is related. As seen in Figure 5.2, the subtype discriminator is the employee type (EMP_TYPE).

It is common practice to show the subtype discriminator and its value for each subtype in the ER diagram, as seen in
Figure 5.2. However, not all ER modeling tools follow that practice. For example, MS Visio shows the subtype
discriminator, but not its value. In Figure 5.2, the Visio text tool was used to manually add the discriminator value above
the entity subtype, close to the connector line. Using Figure 5.2 as your guide, note that the supertype is related to
a PILOT subtype if the EMP_TYPE has a value of “P.” If the EMP_TYPE value is “M,” the supertype is related to a
MECHANIC subtype. And if the EMP_TYPE value is “A,” the supertype is related to the ACCOUNTANT subtype.

Note that the default comparison condition for the subtype discriminator attribute is the equality comparison. However,
there may be situations in which the subtype discriminator is not necessarily based on an equality comparison. For
example, based on business requirements, you might create two new pilot subtypes, pilot-in-command (PIC)-qualified
and copilot-qualified only. A PIC-qualified pilot will be anyone with more than 1,500 PIC flight hours. In this case, the
subtype discriminator would be “Flight_Hours,” and the criteria would be > 1,500 or <= 1,500, respectively.

5.1.5 Disjoint and Overlapping Constraints

An entity supertype can have disjoint or overlapping entity subtypes. For example, in the aviation example, an employee
can be a pilot or a mechanic or an accountant. Assume that one of the business rules dictates that an employee cannot
belong to more than one subtype at a time; that is, an employee cannot be a pilot and a mechanic at the same time.
Disjoint subtypes, also known as nonoverlapping subtypes, are subtypes that contain a unique subset of the
supertype entity set; in other words, each entity instance of the supertype can appear in only one of the subtypes. For

FIGURE
5.3

The EMPLOYEE-PILOT supertype-subtype relationship

Table Name: EMPLOYEE Table Name: PILOT

Note

In Visio, you select the subtype discriminator when creating a category using the Category shape from the
available shapes. The Category shape is a small circle with a horizontal line under it that connects the supertype
to its subtypes.

O n l i n e C o n t e n t

For a tutorial on usingMS Visio to create a specialization hierarchy, see Appendix A, Designing Databases with
Visio Professional: A Tutorial, in the Premium Website for this book.

151A D V A N C E D D A T A M O D E L I N G

example, in Figure 5.2, an employee (supertype) who is a pilot (subtype) can appear only in the PILOT subtype, not
in any of the other subtypes. In Visio, such disjoint subtypes are indicated by the letter d inside the category shape.

On the other hand, if the business rule specifies that employees can have multiple classifications, the EMPLOYEE
supertype may contain overlapping job classification subtypes. Overlapping subtypes are subtypes that contain
nonunique subsets of the supertype entity set; that is, each entity instance of the supertype may appear in more than
one subtype. For example, in a university environment, a person may be an employee or a student or both. In turn,
an employee may be a professor as well as an administrator. Because an employee may also be a student, STUDENT
and EMPLOYEE are overlapping subtypes of the supertype PERSON, just as PROFESSOR and ADMINISTRATOR
are overlapping subtypes of the supertype EMPLOYEE. Figure 5.4 illustrates overlapping subtypes with the use of the
letter o inside the category shape.

It is common practice to show the disjoint/overlapping symbols in the ERD. (See Figure 5.2 and Figure 5.4.) However,
not all ER modeling tools follow that practice. For example, by default, Visio shows only the subtype discriminator
(using the Category shape) but not the disjoint/overlapping symbol. Therefore, the Visio text tool was used to manually
add the d and o symbols in Figures 5.2 and 5.4.

FIGURE
5.4

Specialization hierarchy with overlapping subtypes

Note

Alternative notations exist for representing disjoint/overlapping subtypes. For example, Toby J. Teorey popular-
ized the use of G and Gs to indicate disjoint and overlapping subtypes.

152 C H A P T E R 5

As you learned earlier in this section, the implementation of disjoint subtypes is based on the value of the subtype
discriminator attribute in the supertype. However, implementing overlapping subtypes requires the use of one
discriminator attribute for each subtype. For example, in the case of the Tiny College database design you saw in
Chapter 4, Entity Relationship (ER) Modeling, a professor can also be an administrator. Therefore, the EMPLOYEE
supertype would have the subtype discriminator attributes and values shown in Table 5.1.

TABLE
5.1

Discriminator Attributes with Overlapping Subtypes

DISCRIMINATOR ATTRIBUTES
COMMENT

Professor Administrator
“Y” “N” The Employee is a member of the Professor subtype.
“N” “Y” The Employee is a member of the Administrator subtype.
“Y” “Y” The Employee is both a Professor and an Administrator.

5.1.6 Completeness Constraint

The completeness constraint specifies whether each entity supertype occurrence must also be a member of at least
one subtype. The completeness constraint can be partial or total. Partial completeness (symbolized by a circle over
a single line) means that not every supertype occurrence is a member of a subtype; that is, there may be some
supertype occurrences that are not members of any subtype. Total completeness (symbolized by a circle over a
double line) means that every supertype occurrence must be a member of at least one subtype.

The ERDs in Figures 5.2 and 5.4 represent the completeness constraint based on the Visio Category shape. A single
horizontal line under the circle represents a partial completeness constraint; a double horizontal line under the circle
represents a total completeness constraint.

Given the disjoint/overlapping subtypes and completeness constraints, it’s possible to have the specialization hierarchy
constraint scenarios shown in Table 5.2.

TABLE
5.2

Specialization Hierarchy Constraint Scenarios

TYPE DISJOINT CONSTRAINT OVERLAPPING CONSTRAINT
Partial Supertype has optional subtypes.

Subtype discriminator can be null.
Subtype sets are unique.

Supertype has optional subtypes.
Subtype discriminators can be null.
Subtype sets are not unique.

Total Every supertype occurrence is a member of a
(at least one) subtype.
Subtype discriminator cannot be null.
Subtype sets are unique.

Every supertype occurrence is a member of a
(at least one) subtype.
Subtype discriminators cannot be null.
Subtype sets are not unique.

Note

Alternative notations exist to represent the completeness constraint. For example, some notations use a single
line (partial) or double line (total) to connect the supertype to the Category shape.

153A D V A N C E D D A T A M O D E L I N G

5.1.7 Specialization and Generalization

You can use various approaches to develop entity supertypes and subtypes. For example, you can first identify a regular
entity, and then identify all entity subtypes based on their distinguishing characteristics. You can also start by identifying
multiple entity types and then later extract the common characteristics of those entities to create a higher-level
supertype entity.

Specialization is the top-down process of identifying lower-level, more specific entity subtypes from a higher-level
entity supertype. Specialization is based on grouping unique characteristics and relationships of the subtypes. In the
aviation example, you used specialization to identify multiple entity subtypes from the original employee supertype.
Generalization is the bottom-up process of identifying a higher-level, more generic entity supertype from lower-level
entity subtypes. Generalization is based on grouping common characteristics and relationships of the subtypes. For
example, you might identify multiple types of musical instruments: piano, violin, and guitar. Using the generalization
approach, you could identify a “string instrument” entity supertype to hold the common characteristics of the multiple
subtypes.

5.2 ENTITY CLUSTERING

Developing an ER diagram entails the discovery of possibly hundreds of entity types and their respective relationships.
Generally, the data modeler will develop an initial ERD containing a few entities. As the design approaches completion,
the ERD will contain hundreds of entities and relationships that crowd the diagram to the point of making it unreadable
and inefficient as a communication tool. In those cases, you can use entity clusters to minimize the number of entities
shown in the ERD.

An entity cluster is a “virtual” entity type used to represent multiple entities and relationships in the ERD. An entity
cluster is formed by combining multiple interrelated entities into a single abstract entity object. An entity cluster is
considered “virtual” or “abstract” in the sense that it is not actually an entity in the final ERD. Instead, it is a temporary
entity used to represent multiple entities and relationships, with the purpose of simplifying the ERD and thus enhancing
its readability.

Figure 5.5 illustrates the use of entity clusters based on the Tiny College example in Chapter 4. Note that the ERD
contains two entity clusters:

� OFFERING, which groups the COURSE and CLASS entities and relationships.

� LOCATION, which groups the ROOM and BUILDING entities and relationships.

Note also that the ERD in Figure 5.5 does not show attributes for the entities. When using entity clusters, the key attributes
of the combined entities are no longer available. Without the key attributes, primary key inheritance rules change. In turn,
the change in the inheritance rules can have undesirable consequences, such as changes in relationships—from identifying
to nonidentifying or vice versa—and the loss of foreign key attributes from some entities. To eliminate those problems, the
general rule is to avoid the display of attributes when entity clusters are used.

154 C H A P T E R 5

5.3 ENTITY INTEGRITY: SELECTING PRIMARY KEYS

Arguably, the most important characteristic of an entity is its primary key (a single attribute or some combination of
attributes), which uniquely identifies each entity instance. The primary key’s function is to guarantee entity integrity.
Furthermore, primary keys and foreign keys work together to implement relationships in the relational model.
Therefore, the importance of properly selecting the primary key has a direct bearing on the efficiency and effectiveness
of database implementation.

FIGURE
5.5

Tiny College ERD using entity clusters

155A D V A N C E D D A T A M O D E L I N G

5.3.1 Natural Keys and Primary Keys

The concept of a unique identifier is commonly encountered in the real world. For example, you use class (or section)
numbers to register for classes, invoice numbers to identify specific invoices, account numbers to identify credit cards,
and so on. Those examples illustrate natural identifiers or keys. A natural key or natural identifier is a real-world,
generally accepted identifier used to distinguish—that is, uniquely identify—real-world objects. As its name implies, a
natural key is familiar to end users and forms part of their day-to-day business vocabulary.

Usually, if an entity has a natural identifier, a data modeler uses that as the primary key of the entity being modeled.
Generally, most natural keys make acceptable primary key identifiers. The next section presents some basic guidelines
for selecting primary keys.

5.3.2 Primary Key Guidelines

A primary key is the attribute or combination of attributes that uniquely identifies entity instances in an entity set.
However, can the primary key be based on, say, 12 attributes? And just how long can a primary key be? In previous
examples, why was EMP_NUM selected as a primary key of EMPLOYEE and not a combination of EMP_LNAME,
EMP_FNAME, EMP_INITIAL, and EMP_DOB? Can a single 256-byte text attribute be a good primary key? There is
no single answer to those questions, but there is a body of practice that database experts have built over the years. This
section examines that body of documented practices.

First, you should understand the function of a primary key. The primary key’s main function is to uniquely identify an
entity instance or row within a table. In particular, given a primary key value—that is, the determinant—the relational
model can determine the value of all dependent attributes that “describe” the entity. Note that identification and
description are separate semantic constructs in the model. The function of the primary key is to guarantee entity
integrity, not to “describe” the entity.

Second, primary keys and foreign keys are used to implement relationships among entities. However, the implemen-
tation of such relationships is done mostly behind the scenes, hidden from end users. In the real world, end users
identify objects based on the characteristics they know about the objects. For example, when shopping at a grocery
store, you select products by taking them from a store display shelf and reading the labels, not by looking at the stock
number. It’s wise for database applications to mimic the human selection process as much as possible. Therefore,
database applications should let the end user choose among multiple descriptive narratives of different objects, while
using primary key values behind the scenes. Keeping those concepts in mind, look at Table 5.3, which summarizes
desirable primary key characteristics.

TABLE
5.3

Desirable Primary Key Characteristics

PK CHARACTERISTIC RATIONALE
Unique values The PK must uniquely identify each entity instance. A primary key must be able

to guarantee unique values. It cannot contain nulls.
Nonintelligent The PK should not have embedded semantic meaning other than to uniquely

identify each entity instance. An attribute with embedded semantic meaning is
probably better used as a descriptive characteristic of the entity than as an
identifier. For example, a student ID of 650973 would be preferred over Smith,
Martha L. as a primary key identifier.

No change over time If an attribute has semantic meaning, it might be subject to updates. This is why
names do not make good primary keys. If you have Vickie Smith as the primary
key, what happens if she changes her name when she gets married? If a primary
key is subject to change, the foreign key values must be updated, thus adding to
the database work load. Furthermore, changing a primary key value means that
you are basically changing the identity of an entity. In short, the PK should be
permanent and unchangeable.

156 C H A P T E R 5

TABLE
5.3

Desirable Primary Key Characteristics (continued)

PK CHARACTERISTIC RATIONALE
Preferably single-attribute A primary key should have the minimum number of attributes possible

(irreducible). Single-attribute primary keys are desirable but not required. Single-
attribute primary keys simplify the implementation of foreign keys. Having
multiple-attribute primary keys can cause primary keys of related entities to grow
through the possible addition of many attributes, thus adding to the database
work load and making (application) coding more cumbersome.

Preferably numeric Unique values can be better managed when they are numeric, because the
database can use internal routines to implement a counter-style attribute that
automatically increments values with the addition of each new row. In fact, most
database systems include the ability to use special constructs, such as Autonum-
ber in Microsoft Access, to support self-incrementing primary key attributes.

Security-compliant The selected primary key must not be composed of any attribute(s) that might be
considered a security risk or violation. For example, using a Social Security num-
ber as a PK in an EMPLOYEE table is not a good idea.

5.3.3 When to Use Composite Primary Keys

In the previous section, you learned about the desirable characteristics of primary keys. For example, you learned that
the primary key should use the minimum number of attributes possible. However, that does not mean that composite
primary keys are not permitted in a model. In fact, composite primary keys are particularly useful in two cases:

� As identifiers of composite entities, where each primary key combination is allowed only once in the
M:N relationship.

� As identifiers of weak entities, where the weak entity has a strong identifying relationship with the parent entity.

To illustrate the first case, assume that you have a STUDENT entity set and a CLASS entity set. In addition, assume that
those two sets are related in an M:N relationship via an ENROLL entity set in which each student/class combination may
appear only once in the composite entity. Figure 5.6 shows the ERD to represent such a relationship.

As shown in Figure 5.6, the composite primary key automatically provides the benefit of ensuring that there cannot
be duplicate values—that is, it ensures that the same student cannot enroll more than once in the same class.

In the second case, a weak entity in a strong identifying relationship with a parent entity is normally used to represent
one of two situations:

1. A real-world object that is existence-dependent on another real-world object. Those types of objects are
distinguishable in the real world. A dependent and an employee are two separate people who exist
independently of each other. However, such objects can exist in the model only when they relate to each other
in a strong identifying relationship. For example, the relationship between EMPLOYEE and DEPENDENT is
one of existence dependency in which the primary key of the dependent entity is a composite key that contains
the key of the parent entity.

2. A real-world object that is represented in the data model as two separate entities in a strong identifying
relationship. For example, the real-world invoice object is represented by two entities in a data model:
INVOICE and LINE. Clearly, the LINE entity does not exist in the real world as an independent object, but
rather as part of an INVOICE.

In both situations, having a strong identifying relationship ensures that the dependent entity can exist only when it is
related to the parent entity. In summary, the selection of a composite primary key for composite and weak entity types
provides benefits that enhance the integrity and consistency of the model.

157A D V A N C E D D A T A M O D E L I N G

5.3.4 When to Use Surrogate Primary Keys

There are some instances when a primary key doesn’t exist in the real world or when the existing natural key might
not be a suitable primary key. In these cases, it is standard practice to create a surrogate key. A surrogate key is a
primary key created by the database designer to simplify the identification of entity instances. The surrogate key has
no meaning in the user’s environment—it exists only to distinguish one entity instance from another. One practical
advantage of a surrogate key is that since it has no intrinsic meaning, values for it can be generated by the DBMS to
ensure that unique values are always provided.

For example, consider the case of a park recreation facility that rents rooms for small parties. The manager of the
facility keeps track of all events, using a folder with the format shown in Table 5.4.

TABLE
5.4

Data Used to Keep Track of Events

DATE TIME_START TIME_END ROOM EVENT_NAME PARTY_OF
6/17/2010 11:00AM 2:00PM Allure Burton Wedding 60
6/17/2010 11:00AM 2:00PM Bonanza Adams Office 12
6/17/2010 3:00PM 5:30PM Allure Smith Family 15
6/17/2010 3:30PM 5:30PM Bonanza Adams Office 12
6/18/2010 1:00PM 3:00PM Bonanza Boy Scouts 33
6/18/2010 11:00AM 2:00PM Allure March of Dimes 25
6/18/2010 11:00AM 12:30PM Bonanza Smith Family 12

Given the data shown in Table 5.4, you would model the EVENT entity as:

EVENT (DATE, TIME_START, TIME_END, ROOM, EVENT_NAME, PARTY_OF)

FIGURE
5.6

The M:N relationship between STUDENT and CLASS

Database name: Ch06_Tinycollege

Table name: STUDENT
(first four fields)

Table name: CLASS
(first three fields)Table name: ENROLL

158 C H A P T E R 5

What primary key would you suggest? In this case, there is no simple natural key that could be used as a primary key
in the model. Based on the primary key concepts you learned about in previous chapters, you might suggest one of
these options:

(DATE, TIME_START, ROOM) or (DATE, TIME_END, ROOM)

Assume you select the composite primary key (DATE, TIME_START, ROOM) for the EVENT entity. Next, you
determine that one EVENT may use many RESOURCEs (such as tables, projectors, PCs, and stands), and that the
same RESOURCE may be used for many EVENTs. The RESOURCE entity would be represented by the following
attributes:

RESOURCE (RSC_ID, RSC_DESCRIPTION, RSC_TYPE, RSC_QTY, RSC_PRICE)

Given the business rules, the M:N relationship between RESOURCE and EVENT would be represented via the
EVNTRSC composite entity with a composite primary key as follows:

EVNTRSC (DATE, TIME_START, ROOM, RSC_ID, QTY_USED)

You now have a lengthy four-attribute composite primary key. What would happen if the EVNTRSC entity’s primary
key were inherited by another existence-dependent entity? At this point, you can see that the composite primary key
could make the implementation of the database and program coding unnecessarily complex.

As a data modeler, you probably noticed that the EVENT entity’s selected primary key might not fare well, given the
primary key guidelines in Table 5.3. In this case, the EVENT entity’s selected primary key contains embedded semantic
information and is formed by a combination of date, time, and text data columns. In addition, the selected primary key
would cause lengthy primary keys for existence-dependent entities. The preferred alternative is to use a numeric
single-attribute surrogate primary key.

Surrogate primary keys are accepted practice in today’s complex data environments. They are especially helpful when
there is no natural key, when the selected candidate key has embedded semantic contents, or when the selected candidate
key is too long or cumbersome. However, there is a trade-off: if you use a surrogate key, you must ensure that the
candidate key of the entity in question performs properly through the use of “unique index” and “not null” constraints.

5.4 DESIGN CASES: LEARNING FLEXIBLE DATABASE DESIGN

Data modeling and database design require skills that are acquired through experience. In turn, experience is acquired
through practice—regular and frequent repetition, applying the concepts learned to specific and different design
problems. This section presents four special design cases that highlight the importance of flexible designs, proper
identification of primary keys, and placement of foreign keys.

Note

In describing the various modeling concepts throughout this book, the focus is on relational models. Also, given
the focus on the practical nature of database design, all design issues are addressed with the implementation
goal in mind. Therefore, there is no sharp line of demarcation between design and implementation.

At the pure conceptual stage of the design, foreign keys are not part of an ER diagram. The ERD displays only
entities and relationships. Entities are identified by identifiers that may become primary keys. During design, the
modeler attempts to understand and define the entities and relationships. Foreign keys are the mechanism through
which the relationship designed in an ERD is implemented in a relational model. If you use Visio Professional as your
modeling tool, you will discover that this book’s methodology is reflected in the Visio modeling practice.

159A D V A N C E D D A T A M O D E L I N G

5.4.1 Design Case #1: Implementing 1:1 Relationships

Foreign keys work with primary keys to properly implement relationships in the relational model. The basic rule is very
simple: put the primary key of the “one” side (the parent entity) on the “many” side (the dependent entity) as a foreign
key. However, where do you place the foreign key when you are working with a 1:1 relationship? For example, take
the case of a 1:1 relationship between EMPLOYEE and DEPARTMENT based on the business rule “one EMPLOYEE
is the manager of one DEPARTMENT, and one DEPARTMENT is managed by one EMPLOYEE.” In that case, there
are two options for selecting and placing the foreign key:

1. Place a foreign key in both entities. This option is derived from the basic rule you learned in Chapter 4. Place
EMP_NUM as a foreign key in DEPARTMENT, and place DEPT_ID as a foreign key in EMPLOYEE. However,
this solution is not recommended, as it would create duplicated work, and it could conflict with other existing
relationships. (Remember that DEPARTMENT and EMPLOYEE also participate in a 1:M relationship—one
department employs many employees.)

2. Place a foreign key in one of the entities. In that case, the primary key of one of the two entities appears
as a foreign key in the other entity. That is the preferred solution, but there is a remaining question: which
primary key should be used as a foreign key? The answer to that question is found in Table 5.5. Table 5.5
shows the rationale for selecting the foreign key in a 1:1 relationship based on the relationship properties in
the ERD.

TABLE
5.5

Selection of Foreign Key in a 1:1 Relationship

CASE ER RELATIONSHIP CONSTRAINTS ACTION
I One side is mandatory and the other

side is optional.
Place the PK of the entity on the mandatory side in the entity
on the optional side as a FK, and make the FK mandatory.

II Both sides are optional. Select the FK that causes the fewest nulls, or place the FK in
the entity in which the (relationship) role is played.

III Both sides are mandatory. See Case II, or consider revising your model to ensure that
the two entities do not belong together in a single entity.

Figure 5.7 illustrates the “EMPLOYEE manages DEPARTMENT” relationship. Note that in this case, EMPLOYEE is
mandatory to DEPARTMENT. Therefore, EMP_NUM is placed as the foreign key in DEPARTMENT. Alternatively, you
might also argue that the “manager” role is played by the EMPLOYEE in the DEPARTMENT.

As a designer, you must recognize that 1:1 relationships exist in the real world, and therefore, they should be supported
in the data model. In fact, a 1:1 relationship is used to ensure that two entity sets are not placed in the same table.

FIGURE
5.7

The 1:1 relationship between DEPARTMENT and EMPLOYEE

160 C H A P T E R 5

In other words, EMPLOYEE and DEPARTMENT are clearly separate and unique entity types that do not belong
together in a single entity. If you grouped them together in one entity, what would be the name of that entity?

5.4.2 Design Case #2: Maintaining History of Time-Variant Data

Company managers generally realize that good decision making is based on the information that is generated through
the data stored in databases. Such data reflect current as well as past events. Company managers use the data stored
in databases to answer questions such as: “How do the current company profits compare to those of previous years?”
and “What are XYZ product’s sales trends?” In other words, the data stored on databases reflect not only current data,
but also historic data.

Normally, data changes are managed by replacing the existing attribute value with the new value, without regard to the
previous value. However, there are situations in which the history of values for a given attribute must be preserved.
From a data-modeling point of view, time-variant data refer to data whose values change over time and for which
you must keep a history of the data changes. You could argue that all data in a database are subject to change over
time and are, therefore, time variant. However, some attribute values, such as your date of birth or your Social Security
number, are not time variant. On the other hand, attributes such as your student GPA or your bank account balance
are subject to change over time. Sometimes the data changes are externally originated and event driven, such as a
product price change. On other occasions, changes are based on well-defined schedules, such as the daily stock quote
“open” and “close” values.

In any case, keeping the history of time-variant data is equivalent to having a multivalued attribute in your entity. To
model time-variant data, you must create a new entity in a 1:M relationship with the original entity. This new entity
will contain the new value, the date of the change, and whatever other attribute is pertinent to the event being
modeled. For example, if you want to keep track of the current manager as well as the history of all department
managers, you can create the model shown in Figure 5.8.

FIGURE
5.8

Maintaining manager history

161A D V A N C E D D A T A M O D E L I N G

Note that in Figure 5.8, the MGR_HIST entity has a 1:M relationship with EMPLOYEE and a 1:M relationship with
DEPARTMENT to reflect the fact that, over time, an employee could be the manager of many different departments,
and a department could have many different employee managers. Because you are recording time-variant data, you
must store the DATE_ASSIGN attribute in the MGR_HIST entity to provide the date on which the employee
(EMP_NUM) became the manager of the department. The primary key of MGR_HIST permits the same employee to
be the manager of the same department, but on different dates. If that scenario is not the case in your environment—if,
for example, an employee is the manager of a department only once—you could make DATE_ASSIGN a nonprime
attribute in the MGR_HIST entity.

Note in Figure 5.8 that the “manages” relationship is optional in theory and redundant in practice. At any time, you
could find out who the manager of a department is by retrieving the most recent DATE_ASSIGN date from MGR_HIST
for a given department. On the other hand, the ERD in Figure 5.8 differentiates between current data and historic data.
The current manager relationship is implemented by the “manages” relationship between EMPLOYEE and
DEPARTMENT. Additionally, the historic data are managed through EMP_MGR_HIST and DEPT_MGR_HIST. The
trade-off with that model is that each time a new manager is assigned to a department, there will be two data
modifications: one update in the DEPARTMENT entity and one insert in the MGR_HIST entity.

The flexibility of the model proposed in Figure 5.8 becomes more apparent when you add the 1:M “one department
employs many employees” relationship. In that case, the PK of the “1” side (DEPT_ID) appears in the “many” side
(EMPLOYEE) as a foreign key. Now suppose you would like to keep track of the job history for each of the company’s
employees—you’d probably want to store the department, the job code, the date assigned, and the salary. To
accomplish that task, you would modify the model in Figure 5.8 by adding a JOB_HIST entity. Figure 5.9 shows the
use of the new JOB_HIST entity to maintain the employee’s history.

Again, it’s worth emphasizing that the “manages” and “employs” relationships are theoretically optional and redundant
in practice. You can always find out where each employee works by looking at the job history and selecting only the
most current data row for each employee. However, as you will discover in Chapter 7, Introduction to Structured Query
Language (SQL), and in Chapter 8, Advanced SQL, finding where each employee works is not a trivial task. Therefore,
the model represented in Figure 5.9 includes the admittedly redundant but unquestionably useful “manages” and
“employs” relationships to separate current data from historic data.

5.4.3 Design Case #3: Fan Traps

Creating a data model requires proper identification of the data relationships among entities. However, due to
miscommunication or incomplete understanding of the business rules or processes, it is not uncommon to misidentify
relationships among entities. Under those circumstances, the ERD may contain a design trap. A design trap occurs
when a relationship is improperly or incompletely identified and is therefore represented in a way that is not consistent
with the real world. The most common design trap is known as a fan trap.

A fan trap occurs when you have one entity in two 1:M relationships to other entities, thus producing an association
among the other entities that is not expressed in the model. For example, assume the JCB basketball league has many
divisions. Each division has many players, and each division has many teams. Given those “incomplete” business rules,
you might create an ERD that looks like the one in Figure 5.10.

As you can see in Figure 5.10, DIVISION is in a 1:M relationship with TEAM and in a 1:M relationship with PLAYER.
Although that representation is semantically correct, the relationships are not properly identified. For example, there
is no way to identify which players belong to which team. Figure 5.10 also shows a sample instance relationship
representation for the ERD. Note that the relationship lines for the DIVISION instances fan out to the TEAM and
PLAYER entity instances—thus the “fan trap” label.

Figure 5.11 shows the correct ERD after the fan trap has been eliminated. Note that, in this case, DIVISION is in a
1:M relationship with TEAM. In turn, TEAM is in a 1:M relationship with PLAYER. Figure 5.11 also shows the
instance relationship representation after eliminating the fan trap.

162 C H A P T E R 5

Given the design in Figure 5.11, note how easy it is to see which players play for which team. However, to find out
which players play in which division, you first need to see what teams belong to each division; then you need to find
out which players play on each team. In other words, there is a transitive relationship between DIVISION and PLAYER
via the TEAM entity.

FIGURE
5.9

Maintaining job history

FIGURE
5.10

Incorrect ERD with fan trap problem

163A D V A N C E D D A T A M O D E L I N G

5.4.4 Design Case #4: Redundant Relationships

Although redundancy is often a good thing to have in computer environments (multiple backups in multiple places, for
example), redundancy is seldom a good thing in the database environment. (As you learned in Chapter 3, The
Relational Database Model, redundancies can cause data anomalies in a database.) Redundant relationships occur
when there are multiple relationship paths between related entities. The main concern with redundant relationships is
that they remain consistent across the model. However, it’s important to note that some designs use redundant
relationships as a way to simplify the design.

An example of redundant relationships was first introduced in Figure 5.8 during the discussion on maintaining a history
of time-variant data. However, the use of the redundant “manages” and “employs” relationships was justified by the
fact that such relationships were dealing with current data rather than historic data. Another more specific example of
a redundant relationship is represented in Figure 5.12.

In Figure 5.12, note the transitive 1:M relationship between DIVISION and PLAYER through the TEAM entity set.
Therefore, the relationship that connects DIVISION and PLAYER is, for all practical purposes, redundant. In that case,
the relationship could be safely deleted without losing any information-generation capabilities in the model.

FIGURE
5.11

Corrected ERD after removal of the fan trap

FIGURE
5.12

A redundant relationship

164 C H A P T E R 5

S u m m a r y

◗ The extended entity relationship (EER) model adds semantics to the ER model via entity supertypes, subtypes, and
clusters. An entity supertype is a generic entity type that is related to one or more entity subtypes.

◗ A specialization hierarchy depicts the arrangement and relationships between entity supertypes and entity subtypes.
Inheritance means that an entity subtype inherits the attributes and relationships of the supertype. Subtypes can be
disjoint or overlapping. A subtype discriminator is used to determine to which entity subtype the supertype
occurrence is related. The subtypes can exhibit partial or total completeness. There are basically two approaches
to developing a specialization hierarchy of entity supertypes and subtypes: specialization and generalization.

◗ An entity cluster is a “virtual” entity type used to represent multiple entities and relationships in the ERD. An entity
cluster is formed by combining multiple interrelated entities and relationships into a single, abstract entity object.

◗ Natural keys are identifiers that exist in the real world. Natural keys sometimes make good primary keys, but this is not
necessarily true. Primary keys should have these characteristics: they must have unique values, they should be
nonintelligent, they must not change over time, and they are preferably numeric and composed of a single attribute.

◗ Composite keys are useful to represent M:N relationships and weak (strong identifying) entities.

◗ Surrogate primary keys are useful when there is no natural key that makes a suitable primary key, when the primary
key is a composite primary key with multiple different data types, or when the primary key is too long to be usable.

◗ In a 1:1 relationship, place the PK of the mandatory entity as a foreign key in the optional entity, as an FK in the
entity that causes the least number of nulls, or as an FK where the role is played.

◗ Time-variant data refers to data whose values change over time and whose requirements mandate that you keep
a history of data changes. To maintain the history of time-variant data, you must create an entity containing the
new value, the date of change, and any other time-relevant data. This entity maintains a 1:M relationship with the
entity for which the history is to be maintained.

◗ A fan trap occurs when you have one entity in two 1:M relationships to other entities and there is an association
among the other entities that is not expressed in the model. Redundant relationships occur when there are multiple
relationship paths between related entities. The main concern with redundant relationships is that they remain
consistent across the model.

K e y T e r m s

completeness constraint, 153

design trap, 162

disjoint subtype (nonoverlapping
subtype), 151

EER diagram (EERD), 148

entity cluster, 154

entity subtype, 148

entity supertype, 148

extended entity relationship
model (EERM), 148

fan trap, 162

generalization, 154

inheritance, 150

natural key (natural identifier), 156

overlapping subtype, 152

partial completeness, 153

specialization, 154

specialization hierarchy, 149

subtype discriminator, 151

surrogate key, 158

time-variant data, 161

total completeness, 153

165A D V A N C E D D A T A M O D E L I N G

R e v i e w Q u e s t i o n s

1. What is an entity supertype, and why is it used?

2. What kinds of data would you store in an entity subtype?

3. What is a specialization hierarchy?

4. What is a subtype discriminator? Give an example of its use.

5. What is an overlapping subtype? Give an example.

6. What is the difference between partial completeness and total completeness?

For questions 7–9, refer to Figure Q5.7.

7. List all of the attributes of a movie.

8. According to the data model, is it required that every entity instance in the PRODUCT table be associated with
an entity instance in the CD table? Why, or why not?

9. Is it possible for a book to appear in the BOOK table without appearing in the PRODUCT table? Why, or why not?

10. What is an entity cluster, and what advantages are derived from its use?

11. What primary key characteristics are considered desirable? Explain why each characteristic is considered desirable.

12. Under what circumstances are composite primary keys appropriate?

13. What is a surrogate primary key, and when would you use one?

14. When implementing a 1:1 relationship, where should you place the foreign key if one side is mandatory and one
side is optional? Should the foreign key be mandatory or optional?

O n l i n e C o n t e n t

Answers to selected ReviewQuestions and Problems for this chapter are contained in the PremiumWebsite for
this book.

FIGURE
Q5.7

The PRODUCT data model

166 C H A P T E R 5

15. What are time-variant data, and how would you deal with such data from a database design point of view?

16. What is the most common design trap, and how does it occur?

P r o b l e m s

1. Given the following business scenario, create a Crow’s Foot ERD using a specialization hierarchy if appropriate.

Two-Bit Drilling Company keeps information on employees and their insurance dependents. Each employee has
an employee number, name, date of hire, and title. If an employee is an inspector, then the date of certification
and the renewal date for that certification should also be recorded in the system. For all employees, the Social
Security number and dependent names should be kept. All dependents must be associated with one and only one
employee. Some employees will not have dependents, while others will have many dependents.

2. Given the following business scenario, create a Crow’s Foot ERD using a specialization hierarchy if appropriate.

Tiny Hospital keeps information on patients and hospital rooms. The system assigns each patient a patient ID
number. In addition, the patient’s name and date of birth are recorded. Some patients are resident patients (they
spend at least one night in the hospital) and others are outpatients (they are treated and released). Resident patients
are assigned to a room. Each room is identified by a room number. The system also stores the room type (private
or semiprivate) and room fee. Over time, each room will have many patients who stay in it. Each resident patient will
stay in only one room. Every room must have had a patient, and every resident patient must have a room.

3. Given the following business scenario, create a Crow’s Foot ERD using a specialization hierarchy if appropriate.
Granite Sales Company keeps information on employees and the departments that they work in. For each
department, the department name, internal mail box number, and office phone extension are kept. A department
can have many assigned employees, and each employee is assigned to only one department. Employees can be
salaried employees, hourly employees, or contract employees. All employees are assigned an employee number.
This is kept along with the employee’s name and address. For hourly employees, hourly wage and target weekly
work hours are stored (e.g., the company may target 40 hours/week for some, 32 hours/week for others, and
20 hours/week for others). Some salaried employees are salespeople who can earn a commission in addition to
their base salary. For all salaried employees, the yearly salary amount is recorded in the system. For salespeople,
their commission percentage on sales and commission percentage on profit are stored in the system. For
example, John is a salesperson with a base salary of $50,000 per year plus 2% commission on the sales price
for all sales he makes, plus another 5% of the profit on each of those sales. For contract employees, the
beginning date and end date of their contract are stored along with the billing rate for their hours.

4. In Chapter 4, you saw the creation of the Tiny College database design. That design reflected such business rules
as “a professor may advise many students” and “a professor may chair one department.” Modify the design
shown in Figure 4.36 to include these business rules:

� An employee could be staff or a professor or an administrator.

� A professor may also be an administrator.

� Staff employees have a work level classification, such as Level I and Level II.

� Only professors can chair a department. A department is chaired by only one professor.

� Only professors can serve as the dean of a college. Each of the university’s colleges is served by one dean.

� A professor can teach many classes.

� Administrators have a position title.

Given that information, create the complete ERD containing all primary keys, foreign keys, and main attributes.

5. Tiny College wants to keep track of the history of all administrative appointments (date of appointment and date
of termination). (Hint: Time-variant data are at work.) The Tiny College chancellor may want to know how many
deans worked in the College of Business between January 1, 1960, and January 1, 2010, or who the dean of
the College of Education was in 1990. Given that information, create the complete ERD containing all primary
keys, foreign keys, and main attributes.

167A D V A N C E D D A T A M O D E L I N G

6. Some Tiny College staff employees are information technology (IT) personnel. Some IT personnel provide
technology support for academic programs. Some IT personnel provide technology infrastructure support. Some
IT personnel provide technology support for academic programs and technology infrastructure support. IT
personnel are not professors. IT personnel are required to take periodic training to retain their technical
expertise. Tiny College tracks all IT personnel training by date, type, and results (completed vs. not completed).
Given that information, create the complete ERD containing all primary keys, foreign keys, and main attributes.

7. The FlyRight Aircraft Maintenance (FRAM) division of the FlyRight Company (FRC) performs all maintenance for
FRC’s aircraft. Produce a data model segment that reflects the following business rules:

� All mechanics are FRC employees. Not all employees are mechanics.

� Some mechanics are specialized in engine (EN) maintenance. Some mechanics are specialized in airframe
(AF) maintenance. Some mechanics are specialized in avionics (AV) maintenance. (Avionics are the
electronic components of an aircraft that are used in communication and navigation.) All mechanics take
periodic refresher courses to stay current in their areas of expertise. FRC tracks all courses taken by each
mechanic—date, course type, certification (Y/N), and performance.

� FRC keeps a history of the employment of all mechanics. The history includes the date hired, date promoted,
date terminated, and so on. (Note: The “and so on” component is, of course, not a real-world requirement.
Instead, it has been used here to limit the number of attributes you will show in your design.)

Given those requirements, create the Crow’s Foot ERD segment.

C a s e s

8. “Martial Arts R Us” (MARU) needs a database. MARU is a martial arts school with hundreds of students. It is
necessary to keep track of all the different classes that are being offered, who is assigned to teach each class, and
which students attend each class. Also, it is important to track the progress of each student as they advance.
Create a complete Crow’s Foot ERD for these requirements:

� Students are given a student number when they join the school. This is stored along with their name, date
of birth, and the date they joined the school.

� All instructors are also students, but clearly, not all students are instructors. In addition to the normal student
information, for all instructors, the date that they start working as an instructor must be recorded, along with
their instructor status (compensated or volunteer).

� An instructor may be assigned to teach any number of classes, but each class has one and only one assigned
instructor. Some instructors, especially volunteer instructors, may not be assigned to any class.

� A class is offered for a specific level at a specific time, day of the week, and location. For example, one class
taught on Mondays at 5:00 p.m. in Room #1 is an intermediate-level class. Another class taught on Mondays
at 6:00 p.m. in Room #1 is a beginner-level class. A third class taught on Tuesdays at 5:00 p.m. in
Room #2 is an advanced-level class.

� Students may attend any class of the appropriate level during each week, so there is no expectation that any
particular student will attend any particular class session. Therefore, the actual attendance of students at each
individual class meeting must be tracked.

� A student will attend many different class meetings, and each class meeting is normally attended by many
students. Some class meetings may have no students show up for that meeting. New students may not have
attended any class meetings yet.

� At any given meeting of a class, instructors other than the assigned instructor may show up to help.
Therefore, a given class meeting may have several instructors (a head instructor and many assistant
instructors), but it will always have at least the one instructor who is assigned to that class. For each class
meeting, the date that the class was taught and the instructors’ roles (head instructor or assistant instructor)
need to be recorded. For example, Mr. Jones is assigned to teach the Monday, 5:00 p.m., intermediate class
in Room #1. During one particular meeting of that class, Mr. Jones was present as the head instructor and
Ms. Chen came to help as an assistant instructor.

168 C H A P T E R 5

� Each student holds a rank in the martial arts. The rank name, belt color, and rank requirements are stored.
Each rank will have numerous rank requirements. Each requirement is considered a requirement just for the
rank at which the requirement is introduced. Every requirement is associated with a particular rank. All ranks
except white belt have at least one requirement.

� A given rank may be held by many students. While it is customary to think of a student as having a single
rank, it is necessary to track each student’s progress through the ranks. Therefore, every rank that a student
attains is kept in the system. New students joining the school are automatically given a white belt rank. The
date that a student is awarded each rank should be kept in the system. All ranks have at least one student
who has achieved that rank at some time.

9. The Journal of E-commerce Research Knowledge is a prestigious information systems research journal. It uses
a peer-review process to select manuscripts for publication. Only about 10 percent of the manuscripts submitted
to the journal are accepted for publication. A new issue of the journal is published each quarter. Create a
complete ERD to support the business needs described below.

� Unsolicited manuscripts are submitted by authors. When a manuscript is received, the editor will assign the
manuscript a number, and record some basic information about it in the system. The title of the manuscript,
the date it was received, and a manuscript status of “received” are entered. Information about the author(s) is
also recorded. For each author, the author’s name, mailing address, e-mail address, and affiliation (school or
company for which the author works) are recorded. Every manuscript must have an author. Only authors who
have submitted manuscripts are kept in the system. It is typical for a manuscript to have several authors. A single
author may have submitted many different manuscripts to the journal. Additionally, when a manuscript has
multiple authors, it is important to record the order in which the authors are listed in the manuscript credits.

� At her earliest convenience, the editor will briefly review the topic of the manuscript to ensure that the
manuscript’s contents fall within the scope of the journal. If the content is not within the scope of the journal,
the manuscript’s status is changed to “rejected” and the author is notified via e-mail. If the content is within
the scope of the journal, then the editor selects three or more reviewers to review the manuscript. Reviewers
work for other companies or universities and read manuscripts to ensure the scientific validity of the
manuscripts. For each reviewer, the system records a reviewer number, name, e-mail address, affiliation, and
areas of interest. Areas of interest are predefined areas of expertise that the reviewer has specified. An area
of interest is identified by an IS code and includes a description (e.g., IS2003 is the code for “database
modeling”). A reviewer can have many areas of interest, and an area of interest can be associated with many
reviewers. All reviewers must specify at least one area of interest. It is unusual, but it is possible, to have an
area of interest for which the journal has no reviewers. The editor will change the status of the manuscript
to “under review” and record which reviewers the manuscript was sent to and the date on which it was sent
to each reviewer. A reviewer will typically receive several manuscripts to review each year, although new
reviewers may not have received any manuscripts yet.

� The reviewers will read the manuscript at their earliest convenience and provide feedback to the editor regarding
the manuscript. The feedback from each reviewer includes rating the manuscript on a 10-point scale for
appropriateness, clarity, methodology, and contribution to the field, as well as a recommendation for publication
(accept or reject). The editor will record all of this information in the system for each review received from each
reviewer and the date that the feedback was received. Once all of the reviewers have provided their evaluation
of the manuscript, the editor will decide whether or not to publish the manuscript. If the editor decides to publish
the manuscript, the manuscript’s status is changed to “accepted,” and the date of acceptance for the manuscript
is recorded. If the manuscript is not to be published, the status is changed to “rejected.”

� Once a manuscript has been accepted for publication, it must be scheduled. For each issue of the journal,
the publication period (fall, winter, spring, or summer), publication year, volume, and number are recorded.
An issue will contain many manuscripts, although the issue may be created in the system before it is known
which manuscripts will go in that issue. An accepted manuscript appears in only one issue of the journal.
Each manuscript goes through a typesetting process that formats the content (font, font size, line spacing,
justification, etc.). Once the manuscript has been typeset, the number of pages that the manuscript will

169A D V A N C E D D A T A M O D E L I N G

occupy is recorded in the system. The editor will then make decisions about which issue each accepted
manuscript will appear in and the order of manuscripts within each issue. The order and the beginning page
number for each manuscript must be stored in the system. Once the manuscript has been scheduled for an
issue, the status of the manuscript is changed to “scheduled.” Once an issue is published, the print date for
the issue is recorded, and the statuses of all of the manuscripts in that issue are changed to “published.”

10. Global Computer Solutions (GCS) is an information technology consulting company with many offices located
throughout the United States. The company’s success is based on its ability to maximize its resources—that is,
its ability to match highly skilled employees with projects according to region. To better manage its projects, GCS
has contacted you to design a database so that GCS managers can keep track of their customers, employees,
projects, project schedules, assignments, and invoices.

The GCS database must support all of GCS’s operations and information requirements. A basic description of
the main entities follows:

� The employees working for GCS have an employee ID, an employee last name, a middle initial, a first
name, a region, and a date of hire.

� Valid regions are as follows: Northwest (NW), Southwest (SW), Midwest North (MN), Midwest South (MS),
Northeast (NE), and Southeast (SE).

� Each employee has many skills, and many employees have the same skill.

� Each skill has a skill ID, description, and rate of pay. Valid skills are as follows: data entry I, data entry II,
systems analyst I, systems analyst II, database designer I, database designer II, Cobol I, Cobol II, C++ I,
C++ II, VB I, VB II, ColdFusion I, ColdFusion II, ASP I, ASP II, Oracle DBA, MS SQL Server DBA, network
engineer I, network engineer II, Web administrator, technical writer, and project manager. Table P5.10a
shows an example of the Skills Inventory.

TABLE
P5.10a

SKILL EMPLOYEE
Data Entry I Seaton Amy; Williams Josh; Underwood Trish
Data Entry II Williams Josh; Seaton Amy
Systems Analyst I Craig Brett; Sewell Beth; Robbins Erin; Bush Emily; Zebras Steve
Systems Analyst II Chandler Joseph; Burklow Shane; Robbins Erin
DB Designer I Yarbrough Peter; Smith Mary
DB Designer II Yarbrough Peter; Pascoe Jonathan
Cobol I Kattan Chris; Ephanor Victor; Summers Anna; Ellis Maria
Cobol II Kattan Chris; Ephanor Victor; Batts Melissa
C++ I Smith Jose; Rogers Adam; Cope Leslie
C++ II Rogers Adam; Bible Hanah
VB I Zebras Steve; Ellis Maria
VB II Zebras Steve; Newton Christopher
ColdFusion I Duarte Miriam; Bush Emily
ColdFusion II Bush Emily; Newton Christopher
ASP I Duarte Miriam; Bush Emily
ASP II Duarte Miriam; Newton Christopher
Oracle DBA Smith Jose; Pascoe Jonathan
SQL Server DBA Yarbrough Peter; Smith Jose
Network Engineer I Bush Emily; Smith Mary
Network Engineer II Bush Emily; Smith Mary
Web Administrator Bush Emily; Smith Mary; Newton Christopher
Technical Writer Kilby Surgena; Bender Larry
Project Manager Paine Brad; Mudd Roger; Kenyon Tiffany; Connor Sean

170 C H A P T E R 5

� GCS has many customers. Each customer has a customer ID, customer name, phone number, and region.

� GCS works by projects. A project is based on a contract between the customer and GCS to design, develop,
and implement a computerized solution. Each project has specific characteristics such as the project ID, the
customer to which the project belongs, a brief description, a project date (that is, the date on which the
project’s contract was signed), a project start date (an estimate), a project end date (also an estimate), a
project budget (total estimated cost of the project), an actual start date, an actual end date, an actual cost,
and one employee assigned as the manager of the project.

� The actual cost of the project is updated each Friday by adding that week’s cost (computed by multiplying
the hours each employee worked by the rate of pay for that skill) to the actual cost.

� The employee who is the manager of the project must complete a project schedule, which is, in effect, a
design and development plan. In the project schedule (or plan), the manager must determine the tasks that
will be performed to take the project from beginning to end. Each task has a task ID, a brief task description,
the task’s starting and ending dates, the types of skills needed, and the number of employees (with the
required skills) required to complete the task. General tasks are initial interview, database and system design,
implementation, coding, testing, and final evaluation and sign-off. For example, GCS might have the project
schedule shown in Table P5.10b.

� Assignments: GCS pools all of its employees by region, and from this pool, employees are assigned to a specific
task scheduled by the project manager. For example, for the first project’s schedule, you know that for the period
3/1/10 to 3/6/10, a Systems Analyst II, a Database Designer I, and a Project Manager are needed. (The
project manager is assigned when the project is created and remains for the duration of the project.) Using that
information, GCS searches the employees who are located in the same region as the customer, matching the
skills required and assigning them to the project task.

TABLE
P5.10b

PROJECT ID: 1 DESCRIPTION: SALES MANAGEMENT SYSTEM
COMPANY : SEE ROCKS CONTRACT DATE: 2/12/2010 REGION: NW
START DATE: 3/1/2010 END DATE: 7/1/2010 BUDGET: $15,500
START
DATE

END DATE TASK DESCRIPTION SKILL(S) REQUIRED QUANTITY
REQUIRED

3/1/10 3/6/10 Initial Interview Project Manager
Systems Analyst II
DB Designer I

1
1
1

3/11/10 3/15/10 Database Design DB Designer I 1
3/11/10 4/12/10 System Design Systems Analyst II

Systems Analyst I
1
2

3/18/10 3/22/10 Database Implementation Oracle DBA 1
3/25/10 5/20/10 System Coding & Testing Cobol I

Cobol II
Oracle DBA

2
1
1

3/25/10 6/7/10 System Documentation Technical Writer 1
6/10/10 6/14/10 Final Evaluation Project Manager

Systems Analyst II
DB Designer I
Cobol II

1
1
1
1

6/17/10 6/21/10 On-Site System Online and
Data Loading

Project Manager
Systems Analyst II
DB Designer I
Cobol II

1
1
1
1

7/1/10 7/1/10 Sign-Off Project Manager 1

171A D V A N C E D D A T A M O D E L I N G

� Each project schedule task can have many employees assigned to it, and a given employee can work on
multiple project tasks. However, an employee can work on only one project task at a time. For example, if
an employee is already assigned to work on a project task from 2/20/10 to 3/3/10, (s)he cannot work on
another task until the current assignment is closed (ends). The date on which an assignment is closed does
not necessarily match the ending date of the project schedule task, because a task can be completed ahead
of or behind schedule.

� Given all of the preceding information, you can see that the assignment associates an employee with a
project task, using the project schedule. Therefore, to keep track of the assignment, you require at least the
following information: assignment ID, employee, project schedule task, date assignment starts, and date
assignment ends (which could be any date, as some projects run ahead of or behind schedule). Table P5.10c
shows a sample assignment form.

(Note: The assignment number is shown as a prefix of the employee name; for example, 101, 102.) Assume that
the assignments shown previously are the only ones existing as of the date of this design. The assignment number
can be whatever number matches your database design.

� The hours an employee works are kept in a work log containing a record of the actual hours worked by an
employee on a given assignment. The work log is a weekly form that the employee fills out at the end of
each week (Friday) or at the end of each month. The form contains the date (of each Friday of the month

TABLE
P5.10c

PROJECT ID: 1 DESCRIPTION: SALES MANAGEMENT SYSTEM
COMPANY: SEE ROCKS CONTRACT DATE: 2/12/2010 AS OF: 03/29/10

SCHEDULED ACTUAL ASSIGNMENTS
Project Task Start

Date
End Date Skill Employee Start

Date
End Date

Initial Interview 3/1/10 3/6/10 Project Mgr.
Sys. Analyst II
DB Designer I

101—Connor S.
102—Burklow S.
103—Smith M.

3/1/10
3/1/10
3/1/10

3/6/10
3/6/10
3/6/10

Database Design 3/11/10 3/15/10 DB Designer I 104—Smith M. 3/11/10 3/14/10
System Design 3/11/10 4/12/10 Sys. Analyst II

Sys. Analyst I
Sys. Analyst I

105—Burklow S.
106—Bush E.
107—Zebras S.

3/11/10
3/11/10
3/11/10

Database
Implementation

3/18/10 3/22/10 Oracle DBA 108—Smith J. 3/15/10 3/19/10

System Coding &
Testing

3/25/10 5/20/10 Cobol I
Cobol I
Cobol II
Oracle DBA

109—Summers A.
110—Ellis M.
111—Ephanor V.
112—Smith J.

3/21/10
3/21/10
3/21/10
3/21/10

System
Documentation

3/25/10 6/7/10 Tech. Writer 113—Kilby S. 3/25/10

Final Evaluation 6/10/10 6/14/10 Project Mgr.
Sys. Analyst II
DB Designer I
Cobol II

On-Site System
Online and Data
Loading

6/17/10 6/21/10 Project Mgr.
Sys. Analyst II
DB Designer I
Cobol II

Sign-Off 7/1/10 7/1/10 Project Mgr.

172 C H A P T E R 5

or the last workday of the month, if it doesn’t fall on a Friday), the assignment ID, the total hours worked
that week (or up to the end of the month), and the number of the bill to which the work-log entry is charged.
Obviously, each work-log entry can be related to only one bill. A sample list of the current work-log entries
for the first sample project is shown in Table P5.10d.

� Finally, every 15 days, a bill is written and sent to the customer, totaling the hours worked on the project
that period. When GCS generates a bill, it uses the bill number to update the work-log entries that are part
of that bill. In summary, a bill can refer to many work-log entries, and each work-log entry can be related
to only one bill. GCS sent one bill on 3/15/10 for the first project (SEE ROCKS), totaling the hours worked
between 3/1/10 and 3/15/10. Therefore, you can safely assume that there is only one bill in this table and
that that bill covers the work-log entries shown in the above form.

Your assignment is to create a database that will fulfill the operations described in this problem. The minimum
required entities are employee, skill, customer, region, project, project schedule, assignment, work log, and bill.
(There are additional required entities that are not listed.)

� Create all of the required tables and all of the required relationships.

� Create the required indexes to maintain entity integrity when using surrogate primary keys.

� Populate the tables as needed (as indicated in the sample data and forms).

TABLE
P5.10d

EMPLOYEE NAME WEEK ENDING ASSIGNMENT NUMBER HOURS WORKED BILL NUMBER
Burklow S. 3/1/10 1-102 4 xxx
Connor S. 3/1/10 1-101 4 xxx
Smith M. 3/1/10 1-103 4 xxx
Burklow S. 3/8/10 1-102 24 xxx
Connor S. 3/8/10 1-101 24 xxx
Smith M. 3/8/10 1-103 24 xxx
Burklow S. 3/15/10 1-105 40 xxx
Bush E. 3/15/10 1-106 40 xxx
Smith J. 3/15/10 1-108 6 xxx
Smith M. 3/15/10 1-104 32 xxx
Zebras S. 3/15/10 1-107 35 xxx
Burklow S. 3/22/10 1-105 40
Bush E. 3/22/10 1-106 40
Ellis M. 3/22/10 1-110 12
Ephanor V. 3/22/10 1-111 12
Smith J. 3/22/10 1-108 12
Smith J. 3/22/10 1-112 12
Summers A. 3/22/10 1-109 12
Zebras S. 3/22/10 1-107 35
Burklow S. 3/29/10 1-105 40
Bush E. 3/29/10 1-106 40
Ellis M. 3/29/10 1-110 35
Ephanor V. 3/29/10 1-111 35
Kilby S. 3/29/10 1-113 40
Smith J. 3/29/10 1-112 35
Summers A. 3/29/10 1-109 35
Zebras S. 3/29/10 1-107 35
Note: xxx represents the bill ID. Use the one that matches the bill number in your database.

173A D V A N C E D D A T A M O D E L I N G

Preview

Normalization of Database Tables

In this chapter, you will learn:

� What normalization is and what role it plays in the database design process

� About the normal forms 1NF, 2NF, 3NF, BCNF, and 4NF

� How normal forms can be transformed from lower normal forms to higher normal forms

� That normalization and ER modeling are used concurrently to produce a good database
design

� That some situations require denormalization to generate information efficiently

Good database design must be matched to good table structures. In this chapter, you will

learn to evaluate and design good table structures to control data redundancies, thereby

avoiding data anomalies. The process that yields such desirable results is known as

normalization.

In order to recognize and appreciate the characteristics of a good table structure, it is useful

to examine a poor one.Therefore, the chapter begins by examining the characteristics of a

poor table structure and the problems it creates. You then learn how to correct a poor

table structure. This methodology will yield important dividends: you will know how to

design a good table structure and how to repair an existing poor one.

You will discover not only that data anomalies can be eliminated through normalization, but

also that a properly normalized set of table structures is actually less complicated to use

than an unnormalized set. In addition, you will learn that the normalized set of table

structures more faithfully reflects an organization’s real operations.

6
S

I
X

6.1 DATABASE TABLES AND NORMALIZATION

Having good relational database software is not enough to avoid the data redundancy discussed in Chapter 1, Database
Systems. If the database tables are treated as though they are files in a file system, the relational database management
system (RDBMS) never has a chance to demonstrate its superior data-handling capabilities.

The table is the basic building block of database design. Consequently, the table’s structure is of great interest. Ideally,
the database design process explored in Chapter 4, Entity Relationship (ER) Modeling, yields good table structures. Yet
it is possible to create poor table structures even in a good database design. So how do you recognize a poor table
structure, and how do you produce a good table? The answer to both questions involves normalization.
Normalization is a process for evaluating and correcting table structures to minimize data redundancies, thereby
reducing the likelihood of data anomalies. The normalization process involves assigning attributes to tables based on
the concept of determination you learned about in Chapter 3, The Relational Database Model.

Normalization works through a series of stages called normal forms. The first three stages are described as first normal
form (1NF), second normal form (2NF), and third normal form (3NF). From a structural point of view, 2NF is better
than 1NF, and 3NF is better than 2NF. For most purposes in business database design, 3NF is as high as you need
to go in the normalization process. However, you will discover that properly designed 3NF structures also meet the
requirements of fourth normal form (4NF).

Although normalization is a very important database design ingredient, you should not assume that the highest level
of normalization is always the most desirable. Generally, the higher the normal form, the more relational join
operations are required to produce a specified output and the more resources are required by the database system to
respond to end-user queries. A successful design must also consider end-user demand for fast performance. Therefore,
you will occasionally be expected to denormalize some portions of a database design in order to meet performance
requirements. Denormalization produces a lower normal form; that is, a 3NF will be converted to a 2NF through
denormalization. However, the price you pay for increased performance through denormalization is greater data
redundancy.

6.2 THE NEED FOR NORMALIZATION

Normalization is typically used in conjunction with the entity relationship modeling that you learned in the previous
chapters. There are two common situations in which database designers use normalization. When designing a new
database structure based on the business requirements of the end users, the database designer will construct a data
model using a technique such as Crow’s Foot notation ERDs. After the initial design is complete, the designer can use
normalization to analyze the relationships that exist among the attributes within each entity, to determine if the
structure can be improved through normalization. Alternatively, database designers are often asked to modify existing
data structures that can be in the form of flat files, spreadsheets, or older database structures. Again, through an
analysis of the relationships among the attributes or fields in the data structure, the database designer can use the
normalization process to improve the existing data structure to create an appropriate database design. Whether
designing a new database structure or modifying an existing one, the normalization process is the same.

Note

Although the word table is used throughout this chapter, formally, normalization is concerned with relations. In
Chapter 3 you learned that the terms table and relation are frequently used interchangeably. In fact, you can say
that a table is the implementation view of a logical relation that meets some specific conditions. (See Table 3.1.)
However, being more rigorous, the mathematical relation does not allow duplicate tuples, whereas duplicate
tuples could exist in tables (see Section 6.5). Also, in normalization terminology, any attribute that is at least part
of a key is known as a prime attribute instead of the more common term key attribute, which was introduced
earlier. Conversely, a nonprime attribute, or a nonkey attribute, is not part of any candidate key.

175N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

To get a better idea of the normalization process, consider the simplified database activities of a construction company
that manages several building projects. Each project has its own project number, name, employees assigned to it, and
so on. Each employee has an employee number, name, and job classification, such as engineer or computer
technician.

The company charges its clients by billing the hours spent on each contract. The hourly billing rate is dependent on
the employee’s position. For example, one hour of computer technician time is billed at a different rate than one hour
of engineer time. Periodically, a report is generated that contains the information displayed in Table 6.1.

The total charge in Table 6.1 is a derived attribute and, at this point, is not stored in the table.

The easiest short-term way to generate the required report might seem to be a table whose contents correspond to
the reporting requirements. (See Figure 6.1.)

Note that the data in Figure 6.1 reflect the assignment of employees to projects. Apparently, an employee can be
assigned to more than one project. For example, Darlene Smithson (EMP_NUM = 112) has been assigned to two
projects: Amber Wave and Starflight. Given the structure of the dataset, each project includes only a single occurrence
of any one employee. Therefore, knowing the PROJ_NUM and EMP_NUM value will let you find the job classification
and its hourly charge. In addition, you will know the total number of hours each employee worked on each project.
(The total charge—a derived attribute whose value can be computed by multiplying the hours billed and the charge per
hour—has not been included in Figure 6.1. No structural harm is done if this derived attribute is included.)

FIGURE
6.1

Tabular representation of the report format

Table name: RPT_FORMAT Database name: Ch06_ConstructCo

O n l i n e C o n t e n t

The databases used to illustrate the material in this chapter are found in the Premium Website for this book.

176 C H A P T E R 6

TA
BL

E
6.

1
A

Sa
m

pl
e

Re
po

rt
La

yo
ut

PR
O

JE
C

T
N

U
M

BE
R

PR
O

JE
C

T
N

AM
E

EM
PL

O
YE

E
N

U
M

BE
R

EM
PL

O
YE

E
N

AM
E

JO
B

C
LA

SS
C

H
AR

G
E/

H
O

U
R

H
O

U
RS

BI
LL

ED
TO

TA
L

C
H

AR
G

E
15

Ev
er
gr
ee
n

10
3

10
1

10
5

10
6

10
2

Ju
ne

E.
Ar
bo
ug
h

Jo
hn

G
.N
ew
s

Al
ic
e

K.
Jo
hn
so
n

*
W
ill
ia
m

Sm
ith
fie
ld

D
av
id

H
.S
en
io
r

El
ec
.E
ng
in
ee
r

D
at
ab
as
e
D
es
ig
ne
r

D
at
ab
as
e
D
es
ig
ne
r

Pr
og
ra
m
m
er

Sy
st
em
s

An
al
ys
t

$
85
.5

0
$1

05
.0

0
$1

05
.0

0
$

35
.7

5
$

96
.7

5

23
.8

19
.4

35
.7

12
.6

23
.8

$
2,

03
4.

90
$

2,
03

7.
00

$
3,

74
8.

50
$

45
0.

45
$

2,
30

2.
65

Su
bt

ot
al

$1
0 ,

57
3.

50
18

A
m
be
r
W
av
e

11
4

11
8

10
4

11
2

An
ne
lis
e

Jo
ne
s

Ja
m
es

J.
Fr
om
m
er

An
ne

K.
Ra
m
or
as

*
D
ar
le
ne

M
.S
m
ith
so
n

Ap
pl
ic
at
io
ns
D
es
ig
ne
r

G
en
er
al

Su
pp
or
t

Sy
st
em
s

An
al
ys
t

D
SS

An
al
ys
t

$
48
.1

0
$

18
.3

6
$

96
.7

5
$

45
.9

5

25
.6

45
.3

32
.4

45
.0

$
1,

18
3.

26
$

83
1.

71
$

3,
13

4.
70

$
2,

06
7.

75
Su

bt
ot

al
$

7,
26

5.
52

22
Ro
lli
ng
Ti
de

10
5

10
4

11
3

11
1

10
6

Al
ic
e

K.
Jo
hn
so
n

An
ne

K.
Ra
m
or
as

D
el
be
rt

K.
Jo
en
br
oo
d

G
eo
ff

B.
W
ab
as
h

W
ill
ia
m

Sm
ith
fie
ld

D
at
ab
as
e
D
es
ig
ne
r

Sy
st
em
s

An
al
ys
t

Ap
pl
ic
at
io
ns
D
es
ig
ne
r

C
le
ric
al

Su
pp
or
t

Pr
og
ra
m
m
er

$1
05
.0

0
$

96
.7

5
$

48
.1

0
$

26
.8

7
$

35
.7

5

65
.7

48
.4

23
.6

22
.0

12
.8

$
6,

99
8.

50
$

4,
68

2.
70

$
1,

13
5.

16
$

59
1.

14
$

45
7.

60
Su

bt
ot

al
$1

3,
76

5.
10

25
St
ar
fli
gh
t

10
7

11
5

10
1

11
4

10
8

11
8

11
2

M
ar
ia
D
.A
lo
nz
o

Tr
av
is

B.
Ba
w
an
gi

Jo
hn

G
.N
ew
s

*
An
ne
lis
e

Jo
ne
s

Ra
lp
h

B.
W
as
hi
ng
to
n

Ja
m
es

J.
Fr
om
m
er

D
ar
le
ne

M
.S
m
ith
so
n

Pr
og
ra
m
m
er

Sy
st
em
s

An
al
ys
t

D
at
ab
as
e
D
es
ig
ne
r

Ap
pl
ic
at
io
ns
D
es
ig
ne
r

Sy
st
em
s

An
al
ys
t

G
en
er
al

Su
pp
or
t

D
SS

An
al
ys
t

$
35
.7

5
$

96
.7

5
$1

05
.0

0
$

48
.1

0
$

96
.7

5
$

18
.3

6
$

45
.9

5

25
.6

45
.8

56
.3

33
.1

23
.6

30
.5

41
.4

$
91

5 .
20

$
4,

43
1.

15
$

5,
91

1.
50

$
1,

59
2.

11
$

2,
28

3.
30

$
55

9.
98

$
1,

90
2.

33
Su

bt
ot

al
$1

7,
59

5.
57

To
ta

l
$4

9,
19

9.
69

N
ot
e:

*
in
di
ca
te
s
pr
oj
ec
tl
ea
de
r

177N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

Unfortunately, the structure of the dataset in Figure 6.1 does not conform to the requirements discussed in Chapter 3,
nor does it handle data very well. Consider the following deficiencies:

1. The project number (PROJ_NUM) is apparently intended to be a primary key or at least a part of a PK, but it
contains nulls. (Given the preceding discussion, you know that PROJ_NUM + EMP_NUM will define each row.)

2. The table entries invite data inconsistencies. For example, the JOB_CLASS value “Elect. Engineer” might be
entered as “Elect.Eng.” in some cases, “El. Eng.” in others, and “EE” in still others.

3. The table displays data redundancies. Those data redundancies yield the following anomalies:

a. Update anomalies. Modifying the JOB_CLASS for employee number 105 requires (potentially) many
alterations, one for each EMP_NUM = 105.

b. Insertion anomalies. Just to complete a row definition, a new employee must be assigned to a project. If
the employee is not yet assigned, a phantom project must be created to complete the employee data entry.

c. Deletion anomalies. Suppose that only one employee is associated with a given project. If that employee
leaves the company and the employee data are deleted, the project information will also be deleted. To
prevent the loss of the project information, a fictitious employee must be created just to save the project
information.

In spite of those structural deficiencies, the table structure appears to work; the report is generated with ease.
Unfortunately, the report might yield varying results depending on what data anomaly has occurred. For example, if
you want to print a report to show the total “hours worked” value by the job classification “Database Designer,” that
report will not include data for “DB Design” and “Database Design” data entries. Such reporting anomalies cause a
multitude of problems for managers—and cannot be fixed through applications programming.

Even if very careful data-entry auditing can eliminate most of the reporting problems (at a high cost), it is easy to
demonstrate that even a simple data entry becomes inefficient. Given the existence of update anomalies, suppose
Darlene M. Smithson is assigned to work on the Evergreen project. The data-entry clerk must update the PROJECT
file with the entry:

15 Evergreen 112 Darlene M Smithson DSS Analyst $45.95 0.0

to match the attributes PROJ_NUM, PROJ_NAME, EMP_NUM, EMP_NAME, JOB_CLASS, CHG_HOUR, and
HOURS. (When Ms. Smithson has just been assigned to the project, she has not yet worked, so the total number of
hours worked is 0.0.)

Each time another employee is assigned to a project, some data entries (such as PROJ_NAME, EMP_NAME, and
CHG_HOUR) are unnecessarily repeated. Imagine the data-entry chore when 200 or 300 table entries must be made!
Note that the entry of the employee number should be sufficient to identify Darlene M. Smithson, her job description,
and her hourly charge. Because there is only one person identified by the number 112, that person’s characteristics
(name, job classification, and so on) should not have to be typed in each time the main file is updated. Unfortunately,
the structure displayed in Figure 6.1 does not make allowances for that possibility.

Note

Remember that the naming convention makes it easy to see what each attribute stands for and what its likely
origin is. For example, PROJ_NAME uses the prefix PROJ to indicate that the attribute is associated with the
PROJECT table, while theNAME component is self-documenting, too.However, keep in mind that name length
is also an issue, especially in the prefix designation. For that reason, the prefix CHG was used rather than
CHARGE. (Given the database’s context, it is not likely that that prefix will be misunderstood.)

178 C H A P T E R 6

The data redundancy evident in Figure 6.1 leads to wasted disk space. What’s more, data redundancy produces data
anomalies. For example, suppose the data-entry clerk had entered the data as:

15 Evergeen 112 Darla Smithson DCS Analyst $45.95 0.0

At first glance, the data entry appears to be correct. But is Evergeen the same project as Evergreen? And is DCS
Analyst supposed to be DSS Analyst? Is Darla Smithson the same person as Darlene M. Smithson? Such confusion
is a data integrity problem that was caused because the data entry failed to conform to the rule that all copies of
redundant data must be identical.

The possibility of introducing data integrity problems caused by data redundancy must be considered when a database
is designed. The relational database environment is especially well suited to help the designer overcome those
problems.

6.3 THE NORMALIZATION PROCESS

In this section, you will learn how to use normalization to produce a set of normalized tables to store the data that will
be used to generate the required information. The objective of normalization is to ensure that each table conforms to
the concept of well-formed relations—that is, tables that have the following characteristics:

� Each table represents a single subject. For example, a course table will contain only data that directly pertain
to courses. Similarly, a student table will contain only student data.

� No data item will be unnecessarily stored in more than one table (in short, tables have minimum controlled
redundancy). The reason for this requirement is to ensure that the data are updated in only one place.

� All nonprime attributes in a table are dependent on the primary key—the entire primary key and nothing but
the primary key. The reason for this requirement is to ensure that the data are uniquely identifiable by a primary
key value.

� Each table is void of insertion, update, or deletion anomalies. This is to ensure the integrity and consistency
of the data.

To accomplish the objective, the normalization process takes you through the steps that lead to successively higher
normal forms. The most common normal forms and their basic characteristic are listed in Table 6.2. You will learn the
details of these normal forms in the indicated sections.

TABLE
6.2

Normal Forms

NORMAL FORM CHARACTERISTIC SECTION
First normal form (1NF) Table format, no repeating groups, and PK identified 6.3.1
Second normal form (2NF) 1NF and no partial dependencies 6.3.2
Third normal form (3NF) 2NF and no transitive dependencies 6.3.3
Boyce-Codd normal form (BCNF) Every determinant is a candidate key (special case of 3NF) 6.6.1
Fourth normal form (4NF) 3NF and no independent multivalued dependencies 6.6.2

The concept of keys is central to the discussion of normalization. Recall from Chapter 3 that a candidate key is a
minimal (irreducible) superkey. The primary key is the candidate key that is selected to be the primary means used to
identify the rows in the table. Although normalization is typically presented from the perspective of candidate keys, for
the sake of simplicity while initially explaining the normalization process, we will make the assumption that for each
table there is only one candidate key, and therefore, that candidate key is the primary key.

From the data modeler’s point of view, the objective of normalization is to ensure that all tables are at least in third
normal form (3NF). Even higher-level normal forms exist. However, normal forms such as the fifth normal form (5NF)

179N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

and domain-key normal form (DKNF) are not likely to be encountered in a business environment and are mainly of
theoretical interest. More often than not, such higher normal forms increase joins (slowing performance) without
adding any value in the elimination of data redundancy. Some very specialized applications, such as statistical research,
might require normalization beyond the 4NF, but those applications fall outside the scope of most business operations.
Because this book focuses on practical applications of database techniques, the higher-level normal forms are not
covered.

Functional Dependence
Before outlining the normalization process, it’s a good idea to review the concepts of determination and functional
dependence that were covered in detail in Chapter 3. Table 6.3 summarizes the main concepts.

TABLE
6.3

Functional Dependence Concepts

CONCEPT DEFINITION
Functional dependence The attribute B is fully functionally dependent on the attribute A if each value of A

determines one and only one value of B.
Example: PROJ_NUM → PROJ_NAME
(read as “PROJ_NUM functionally determines PROJ_NAME”)
In this case, the attribute PROJ_NUM is known as the “determinant” attribute,
and the attribute PROJ_NAME is known as the “dependent” attribute.

Functional dependence
(generalized definition)

Attribute A determines attribute B (that is, B is functionally dependent on A) if all
of the rows in the table that agree in value for attribute A also agree in value for
attribute B.

Fully functional dependence
(composite key)

If attribute B is functionally dependent on a composite key A but not on any sub-
set of that composite key, the attribute B is fully functionally dependent on A.

It is crucial to understand these concepts because they are used to derive the set of functional dependencies for a given
relation. The normalization process works one relation at a time, identifying the dependencies on that relation and
normalizing the relation. As you will see in the following sections, normalization starts by identifying the dependencies
of a given relation and progressively breaking up the relation (table) into a set of new relations (tables) based on the
identified dependencies.

Two types of functional dependencies that are of special interest in normalization are partial dependencies and
transitive dependencies. A partial dependency exists when there is a functional dependence in which the
determinant is only part of the primary key (remember we are assuming there is only one candidate key). For example,
if (A, B) → (C,D), B → C, and (A, B) is the primary key, then the functional dependence B → C is a partial dependency
because only part of the primary key (B) is needed to determine the value of C. Partial dependencies tend to be rather
straightforward and easy to identify.

A transitive dependency exists when there are functional dependencies such that X → Y, Y → Z, and X is the
primary key. In that case, the dependency X → Z is a transitive dependency because X determines the value of Z via
Y. Unlike partial dependencies, transitive dependencies are more difficult to identify among a set of data. Fortunately,
there is an easier way to identify transitive dependencies. A transitive dependency will occur only when a functional
dependence exists among nonprime attributes. In the previous example, the actual transitive dependency is X → Z.
However, the dependency Y → Z signals that a transitive dependency exists. Hence, throughout the discussion of the
normalization process, the existence of a functional dependence among nonprime attributes will be considered a sign
of a transitive dependency. To address the problems related to transitive dependencies, changes to the table structure
are made based on the functional dependence that signals the transitive dependency’s existence. Therefore, to simplify
the description of normalization, from this point forward we will refer to the signaling dependency as the transitive
dependency.

180 C H A P T E R 6

6.3.1 Conversion to First Normal Form

Because the relational model views data as part of a table or a collection of tables in which all key values must be
identified, the data depicted in Figure 6.1 might not be stored as shown. Note that Figure 6.1 contains what is known
as repeating groups. A repeating group derives its name from the fact that a group of multiple entries of the same
type can exist for any single key attribute occurrence. In Figure 6.1, note that each single project number
(PROJ_NUM) occurrence can reference a group of related data entries. For example, the Evergreen project
(PROJ_NUM = 15) shows five entries at this point—and those entries are related because they each share the
PROJ_NUM = 15 characteristic. Each time a new record is entered for the Evergreen project, the number of entries
in the group grows by one.

A relational table must not contain repeating groups. The existence of repeating groups provides evidence that the
RPT_FORMAT table in Figure 6.1 fails to meet even the lowest normal form requirements, thus reflecting data
redundancies.

Normalizing the table structure will reduce the data redundancies. If repeating groups do exist, they must be eliminated
by making sure that each row defines a single entity. In addition, the dependencies must be identified to diagnose the
normal form. Identification of the normal form will let you know where you are in the normalization process. The
normalization process starts with a simple three-step procedure.

Step 1: Eliminate the Repeating Groups
Start by presenting the data in a tabular format, where each cell has a single value and there are no repeating groups.
To eliminate the repeating groups, eliminate the nulls by making sure that each repeating group attribute contains an
appropriate data value. That change converts the table in Figure 6.1 to 1NF in Figure 6.2.

Step 2: Identify the Primary Key
The layout in Figure 6.2 represents more than a mere cosmetic change. Even a casual observer will note that
PROJ_NUM is not an adequate primary key because the project number does not uniquely identify all of the remaining
entity (row) attributes. For example, the PROJ_NUM value 15 can identify any one of five employees. To maintain a

FIGURE
6.2

A table in first normal form

Table name: DATA_ORG_1NF Database name: Ch06_ConstructCo

181N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

proper primary key that will uniquely identify any attribute value, the new key must be composed of a combination
of PROJ_NUM and EMP_NUM. For example, using the data shown in Figure 6.2, if you know that PROJ_NUM =
15 and EMP_NUM = 103, the entries for the attributes PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOUR, and
HOURS must be Evergreen, June E. Arbough, Elect. Engineer, $84.50, and 23.8, respectively.

Step 3: Identify All Dependencies
The identification of the PK in Step 2 means that you have already identified the following dependency:

PROJ_NUM, EMP_NUM → PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOUR, HOURS

That is, the PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOUR, and HOURS values are all dependent on—that
is, they are determined by—the combination of PROJ_NUM and EMP_NUM. There are additional dependencies. For
example, the project number identifies (determines) the project name. In other words, the project name is dependent
on the project number. You can write that dependency as:

PROJ_NUM → PROJ_NAME

Also, if you know an employee number, you also know that employee’s name, that employee’s job classification, and
that employee’s charge per hour. Therefore, you can identify the dependency shown next:

EMP_NUM → EMP_NAME, JOB_CLASS, CHG_HOUR

However, given the previous dependency components, you can see that knowing the job classification means knowing
the charge per hour for that job classification. In other words, you can identify one last dependency:

JOB_CLASS → CHG_HOUR

This dependency exists between two nonprime attributes; therefore it is a signal that a transitive dependency exists,
and we will refer to it as a transitive dependency. The dependencies you have just examined can also be depicted with
the help of the diagram shown in Figure 6.3. Because such a diagram depicts all dependencies found within a given
table structure, it is known as a dependency diagram. Dependency diagrams are very helpful in getting a bird’s-eye
view of all of the relationships among a table’s attributes, and their use makes it less likely that you will overlook an
important dependency.

As you examine Figure 6.3, note the following dependency diagram features:

1. The primary key attributes are bold, underlined, and shaded in a different color.

2. The arrows above the attributes indicate all desirable dependencies, that is, dependencies that are based on the
primary key. In this case, note that the entity’s attributes are dependent on the combination of PROJ_NUM
and EMP_NUM.

3. The arrows below the dependency diagram indicate less desirable dependencies. Two types of such
dependencies exist:

a. Partial dependencies. You need to know only the PROJ_NUM to determine the PROJ_NAME; that is, the
PROJ_NAME is dependent on only part of the primary key. And you need to know only the EMP_NUM
to find the EMP_NAME, the JOB_CLASS, and the CHG_HOUR. A dependency based on only a part of
a composite primary key is a partial dependency.

b. Transitive dependencies. Note that CHG_HOUR is dependent on JOB_CLASS. Because neither
CHG_HOUR nor JOB_CLASS is a prime attribute—that is, neither attribute is at least part of a key—the
condition is a transitive dependency. In other words, a transitive dependency is a dependency of one
nonprime attribute on another nonprime attribute. The problem with transitive dependencies is that they
still yield data anomalies.

182 C H A P T E R 6

Note that Figure 6.3 includes the relational schema for the table in 1NF and a textual notation for each identified
dependency.

All relational tables satisfy the 1NF requirements. The problem with the 1NF table structure shown in Figure 6.3 is that
it contains partial dependencies—that is, dependencies based on only a part of the primary key.

While partial dependencies are sometimes used for performance reasons, they should be used with caution. (If the
information requirements seem to dictate the use of partial dependencies, it is time to evaluate the need for a data
warehouse design, discussed in Chapter 13, Business Intelligence and Data Warehouses.) Such caution is warranted
because a table that contains partial dependencies is still subject to data redundancies, and therefore, to various
anomalies. The data redundancies occur because every row entry requires duplication of data. For example, if Alice
K. Johnson submits her work log, then the user would have to make multiple entries during the course of a day. For
each entry, the EMP_NAME, JOB_CLASS, and CHG_HOUR must be entered each time, even though the attribute
values are identical for each row entered. Such duplication of effort is very inefficient. What’s more, the duplication
of effort helps create data anomalies; nothing prevents the user from typing slightly different versions of the employee
name, the position, or the hourly pay. For instance, the employee name for EMP_NUM = 102 might be entered as
Dave Senior or D. Senior. The project name might also be entered correctly as Evergreen or misspelled as Evergeen.
Such data anomalies violate the relational database’s integrity and consistency rules.

TRANSITIVE DEPENDENCY:
 (JOB CLASS CHG_HOUR)

PARTIAL DEPENDENCIES:
 (PROJ_NUM PROJ_NAME)
 (EMP_NUM EMP_NAME, JOB_CLASS, CHG_HOUR)

EMP_NUM EMP_NAMEPROJ_NUM PROJ_NAME CHG_HOURJOB_CLASS HOURS

Transitive
dependency

Partial dependency

Partial dependencies

1NF (PROJ_NUM, EMP_NUM, PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOURS, HOURS)

FIGURE
6.3

First normal form (1NF) dependency diagram

Note

The term first normal form (1NF) describes the tabular format in which:

• All of the key attributes are defined.

• There are no repeating groups in the table. In other words, each row/column intersection contains one and
only one value, not a set of values.

• All attributes are dependent on the primary key.

183N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

6.3.2 Conversion to Second Normal Form

Converting to 2NF is done only when the 1NF has a composite primary key. If the 1NF has a single-attribute primary
key, then the table is automatically in 2NF. The 1NF-to-2NF conversion is simple. Starting with the 1NF format
displayed in Figure 6.3, you do the following:

Step 1: Make New Tables to Eliminate Partial Dependencies
For each component of the primary key that acts as a determinant in a partial dependency, create a new table with
a copy of that component as the primary key. While these components are placed in the new tables, it is important
that they also remain in the original table as well. It is important that the determinants remain in the original table
because they will be the foreign keys for the relationships that are needed to relate these new tables to the original
table. For the construction of our revised dependency diagram, write each key component on a separate line; then
write the original (composite) key on the last line. For example:

PROJ_NUM

EMP_NUM

PROJ_NUM EMP_NUM

Each component will become the key in a new table. In other words, the original table is now divided into three tables
(PROJECT, EMPLOYEE, and ASSIGNMENT).

Step 2: Reassign Corresponding Dependent Attributes
Use Figure 6.3 to determine those attributes that are dependent in the partial dependencies. The dependencies for the
original key components are found by examining the arrows below the dependency diagram shown in Figure 6.3. The
attributes that are dependent in a partial dependency are removed from the original table and placed in the new table
with its determinant. Any attributes that are not dependent in a partial dependency will remain in the original table.
In other words, the three tables that result from the conversion to 2NF are given appropriate names (PROJECT,
EMPLOYEE, and ASSIGNMENT) and are described by the following relational schemas:

PROJECT (PROJ_NUM, PROJ_NAME)

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS, CHG_HOUR)

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

Because the number of hours spent on each project by each employee is dependent on both PROJ_NUM and
EMP_NUM in the ASSIGNMENT table, you leave those hours in the ASSIGNMENT table as ASSIGN_HOURS.
Notice that the ASSIGNMENT table contains a composite primary key composed of the attributes PROJ_NUM and
EMP_NUM. Notice that by leaving the determinants in the original table as well as making them the primary keys of
the new tables, primary key/foreign key relationships have been created. For example, in the EMPLOYEE table,
EMP_NUM is the primary key. In the ASSIGNMENT table, EMP_NUM is part of the composite primary key
(PROJ_NUM, EMP_NUM) and is a foreign key relating the EMPLOYEE table to the ASSIGNMENT table.

The results of Steps 1 and 2 are displayed in Figure 6.4. At this point, most of the anomalies discussed earlier have
been eliminated. For example, if you now want to add, change, or delete a PROJECT record, you need to go only to
the PROJECT table and make the change to only one row.

Because a partial dependency can exist only when a table’s primary key is composed of several attributes, a table
whose primary key consists of only a single attribute is automatically in 2NF once it is in 1NF.

Figure 6.4 still shows a transitive dependency, which can generate anomalies. For example, if the charge per hour
changes for a job classification held by many employees, that change must be made for each of those employees. If

184 C H A P T E R 6

you forget to update some of the employee records that are affected by the charge per hour change, different
employees with the same job description will generate different hourly charges.

6.3.3 Conversion to Third Normal Form

The data anomalies created by the database organization shown in Figure 6.4 are easily eliminated by completing the
following two steps:

Step 1: Make New Tables to Eliminate Transitive Dependencies
For every transitive dependency, write a copy of its determinant as a primary key for a new table. A determinant is
any attribute whose value determines other values within a row. If you have three different transitive dependencies, you
will have three different determinants. As with the conversion to 2NF, it is important that the determinant remain in
the original table to serve as a foreign key. Figure 6.4 shows only one table that contains a transitive dependency.

 TRANSITIVE DEPENDENCY
 (JOB_CLASS CHG_HOUR)

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS, CHG_HOUR)

PROJECT (PROJ_NUM, PROJ_NAME)

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

FIGURE
6.4

Second normal form (2NF) conversion results

Table name: ASSIGNMENT

Table name: EMPLOYEE

PROJ_NUM PROJ_NAME

Table name: PROJECT

PROJ_NUM EMP_NUM ASSIGN_HOURS

EMP_NUM EMP_NAME CHG_HOURJOB_CLASS

Transitive
dependency

Note

A table is in second normal form (2NF) when:

• It is in 1NF.
and

• It includes no partial dependencies; that is, no attribute is dependent on only a portion of the primary key.
Note that it is still possible for a table in 2NF to exhibit transitive dependency; that is, the primary key may

rely on one or more nonprime attributes to functionally determine other nonprime attributes, as is indicated by
a functional dependence among the nonprime attributes.

185N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

Therefore, write the determinant for this transitive dependency as:

JOB_CLASS

Step 2: Reassign Corresponding Dependent Attributes
Using Figure 6.4, identify the attributes that are dependent on each determinant identified in Step 1. Place the
dependent attributes in the new tables with their determinants and remove them from their original tables. In this
example, eliminate CHG_HOUR from the EMPLOYEE table shown in Figure 6.4 to leave the EMPLOYEE table
dependency definition as:

EMP_NUM → EMP_NAME, JOB_CLASS

Draw a new dependency diagram to show all of the tables you have defined in Steps 1 and 2. Name the table to reflect
its contents and function. In this case, JOB seems appropriate. Check all of the tables to make sure that each table
has a determinant and that no table contains inappropriate dependencies. When you have completed these steps, you
will see the results in Figure 6.5.

In other words, after the 3NF conversion has been completed, your database will contain four tables:

PROJECT (PROJ_NUM, PROJ_NAME)

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS)

JOB (JOB_CLASS, CHG_HOUR)

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

Note that this conversion has eliminated the original EMPLOYEE table’s transitive dependency; the tables are now said
to be in third normal form (3NF).

FIGURE
6.5

Third normal form (3NF) conversion results

Table name: JOB

JOB (JOB_CLASS, CHG_HOUR)

JOB_CLASS CHG_HOUR

Table name: PROJECT

PROJECT (PROJ_NUM, PROJ_NAME)

PROJ_NUM PROJ_NAME EMP_NUM EMP_NAME JOB_CLASS

Table name: EMPLOYEE

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS)

PROJ_NUM EMP_NUM ASSIGN_HOURS

Table name: ASSIGNMENT

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

186 C H A P T E R 6

It is interesting to note the similarities between resolving 2NF and 3NF problems. To convert a table from 1NF to 2NF,
it is necessary to remove the partial dependencies. To convert a table from 2NF to 3NF, it is necessary to remove the
transitive dependencies. No matter whether the “problem” dependency is a partial dependency or a transitive
dependency, the solution is the same. Create a new table for each problem dependency. The determinant of the
problem dependency remains in the original table and is placed as the primary key of the new table. The dependents
of the problem dependency are removed from the original table and placed as nonprime attributes in the new table.

Be aware, however, that while the technique is the same, it is imperative that 2NF be achieved before moving on to
3NF; be certain to resolve the partial dependencies before resolving the transitive dependencies. Recall, however, the
assumption that was made at the beginning of the discussion of the normalization process—that each table has only
one candidate key, which is the primary key. If a table has multiple candidate keys, then the overall process remains
the same, but there are additional considerations.

For example, if a table has multiple candidate keys and one of those candidate keys is a composite key, the table can
have partial dependencies based on this composite candidate key, even when the primary key chosen is a single
attribute. In those cases, following the process described above, those dependencies would be perceived as transitive
dependencies and would not be resolved until 3NF. The simplified process described above will allow the designer to
achieve the correct result, but through practice, you should recognize all candidate keys and their dependencies as
such, and resolve them appropriately. The existence of multiple candidate keys can also influence the identification of
transitive dependencies. Previously, a transitive dependency was defined to exist when one nonprime attribute
determined another nonprime attribute. In the presence of multiple candidate keys, the definition of a nonprime
attribute as an attribute that is not a part of any candidate key is critical. If the determinant of a functional dependence
is not the primary key but is a part of another candidate key, then it is not a nonprime attribute and does not signal
the presence of a transitive dependency.

6.4 IMPROVING THE DESIGN

The table structures are cleaned up to eliminate the troublesome partial and transitive dependencies. You can now
focus on improving the database’s ability to provide information and on enhancing its operational characteristics. In
the next few paragraphs, you will learn about the various types of issues you need to address to produce a good
normalized set of tables. Please note that for space issues, each section presents just one example—the designer must
apply the principle to all remaining tables in the design. Remember that normalization cannot, by itself, be relied on
to make good designs. Instead, normalization is valuable because its use helps eliminate data redundancies.

Evaluate PK Assignments
Each time a new employee is entered into the EMPLOYEE table, a JOB_CLASS value must be entered. Unfortunately,
it is too easy to make data-entry errors that lead to referential integrity violations. For example, entering DB Designer
instead of Database Designer for the JOB_CLASS attribute in the EMPLOYEE table will trigger such a violation.
Therefore, it would be better to add a JOB_CODE attribute to create a unique identifier. The addition of a JOB_CODE
attribute produces the dependency:

JOB_CODE → JOB_CLASS, CHG_HOUR

Note

A table is in third normal form (3NF) when:

• It is in 2NF.
and

• It contains no transitive dependencies.

187N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

If you assume that the JOB_CODE is a proper primary key, this new attribute does produce the dependency:

JOB_CLASS → CHG_HOUR

However, this dependency is not a transitive dependency because the determinant is a candidate key. Further, the
presence of JOB_CODE greatly decreases the likelihood of referential integrity violations. Note that the new JOB table
now has two candidate keys—JOB_CODE and JOB_CLASS. In this case, JOB_CODE is the chosen primary key as
well as a surrogate key. A surrogate key, as you should recall, is an artificial PK introduced by the designer with the
purpose of simplifying the assignment of primary keys to tables. Surrogate keys are usually numeric, they are often
automatically generated by the DBMS, they are free of semantic content (they have no special meaning), and they are
usually hidden from the end users.

Evaluate Naming Conventions
It is best to adhere to the naming conventions outlined in Chapter 2, Data Models. Therefore, CHG_HOUR will be
changed to JOB_CHG_HOUR to indicate its association with the JOB table. In addition, the attribute name JOB_CLASS
does not quite describe entries such as Systems Analyst, Database Designer, and so on; the label JOB_DESCRIPTION
fits the entries better. Also, you might have noticed that HOURS was changed to ASSIGN_HOURS in the conversion
from 1NF to 2NF. That change lets you associate the hours worked with the ASSIGNMENT table.

Refine Attribute Atomicity
It is generally good practice to pay attention to the atomicity requirement. An atomic attribute is one that cannot
be further subdivided. Such an attribute is said to display atomicity. Clearly, the use of the EMP_NAME in the
EMPLOYEE table is not atomic because EMP_NAME can be decomposed into a last name, a first name, and an initial.
By improving the degree of atomicity, you also gain querying flexibility. For example, if you use EMP_LNAME,
EMP_FNAME, and EMP_INITIAL, you can easily generate phone lists by sorting last names, first names, and initials.
Such a task would be very difficult if the name components were within a single attribute. In general, designers prefer
to use simple, single-valued attributes as indicated by the business rules and processing requirements.

Identify New Attributes
If the EMPLOYEE table were used in a real-world environment, several other attributes would have to be added. For
example, year-to-date gross salary payments, Social Security payments, and Medicare payments would be desirable.
An employee hire date attribute (EMP_HIREDATE) could be used to track an employee’s job longevity and serve as
a basis for awarding bonuses to long-term employees and for other morale-enhancing measures. The same principle
must be applied to all other tables in your design.

Identify New Relationships
According to the original report, the users need to track which employee is acting as the manager of each project. This
can be implemented as a relationship between EMPLOYEE and PROJECT. From the original report, it is clear that
each project has only one manager. Therefore, the system’s ability to supply detailed information about each project’s
manager is ensured by using the EMP_NUM as a foreign key in PROJECT. That action ensures that you can access
the details of each PROJECT’s manager data without producing unnecessary and undesirable data duplication. The
designer must take care to place the right attributes in the right tables by using normalization principles.

Refine Primary Keys as Required for Data Granularity
Granularity refers to the level of detail represented by the values stored in a table’s row. Data stored at their lowest
level of granularity are said to be atomic data, as explained earlier. In Figure 6.5, the ASSIGNMENT table in 3NF uses
the ASSIGN_HOURS attribute to represent the hours worked by a given employee on a given project. However, are
those values recorded at their lowest level of granularity? In other words, does ASSIGN_HOURS represent the hourly
total, daily total, weekly total, monthly total, or yearly total? Clearly, ASSIGN_HOURS requires more careful

188 C H A P T E R 6

definition. In this case, the relevant question would be as follows: For what time frame—hour, day, week, month, and
so on—do you want to record the ASSIGN_HOURS data?

For example, assume that the combination of EMP_NUM and PROJ_NUM is an acceptable (composite) primary key
in the ASSIGNMENT table. That primary key is useful in representing only the total number of hours an employee
worked on a project since its start. Using a surrogate primary key such as ASSIGN_NUM provides lower granularity
and yields greater flexibility. For example, assume that the EMP_NUM and PROJ_NUM combination is used as the
primary key, and then an employee makes two “hours worked” entries in the ASSIGNMENT table. That action violates
the entity integrity requirement. Even if you add the ASSIGN_DATE as part of a composite PK, an entity integrity
violation is still generated if any employee makes two or more entries for the same project on the same day. (The
employee might have worked on the project a few hours in the morning and then worked on it again later in the day.)
The same data entry yields no problems when ASSIGN_NUM is used as the primary key.

Maintain Historical Accuracy
Writing the job charge per hour into the ASSIGNMENT table is crucial to maintaining the historical accuracy of the data
in the ASSIGNMENT table. It would be appropriate to name this attribute ASSIGN_CHG_HOUR. Although this attribute
would appear to have the same value as JOB_CHG_HOUR, this is true only if the JOB_CHG_HOUR value remains
the same forever. However, it is reasonable to assume that the job charge per hour will change over time. But suppose
that the charges to each project were figured (and billed) by multiplying the hours worked on the project, found in the
ASSIGNMENT table, by the charge per hour, found in the JOB table. Those charges would always show the current
charge per hour stored in the JOB table, rather than the charge per hour that was in effect at the time of the
assignment.

Evaluate Using Derived Attributes
Finally, you can use a derived attribute in the ASSIGNMENT table to store the actual charge made to a project. That
derived attribute, to be named ASSIGN_CHARGE, is the result of multiplying ASSIGN_HOURS by ASSIGN_CHG_
HOUR. This creates a transitive dependency such that

(ASSIGN_CHARGE + ASSIGN_HOURS) → ASSIGN_CHG_HOUR.

From a strictly database point of view, such derived attribute values can be calculated when they are needed to write
reports or invoices. However, storing the derived attribute in the table makes it easy to write the application software
to produce the desired results. Also, if many transactions must be reported and/or summarized, the availability of the
derived attribute will save reporting time. (If the calculation is done at the time of data entry, it will be completed when
the end user presses the Enter key, thus speeding up the process.)

The enhancements described in the preceding sections are illustrated in the tables and dependency diagrams shown
in Figure 6.6.

Note

In an ideal (database design) world, the level of desired granularity is determined at the conceptual design or at
the requirements-gathering phase. However, as you have already seen in this chapter, many database designs
involve the refinement of existing data requirements, thus triggering design modifications. In a real-world
environment, changing granularity requirements might dictate changes in primary key selection, and those
changes might ultimately require the use of surrogate keys.

189N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

Figure 6.6 is a vast improvement over the original database design. If the application software is designed properly,
the most active table (ASSIGNMENT) requires the entry of only the PROJ_NUM, EMP_NUM, and ASSIGN_HOURS

Table name: PROJECT Table name: JOB

Database name: Ch06_ConstructCo

Table name: JOB

Table name: ASSIGNMENT

ASSIGN_NUM ASSIGN_DATE PROJ_NUM EMP_NUM ASSIGN_HOURS ASSIGN_CHG_HOUR ASSIGN_CHARGE

Table name: ASSIGNMENT

FIGURE
6.6

The completed database

Table name: PROJECT

PROJ_NUM PROJ_NAME EMP_NUM JOB_CODE JOB_DESCRIPTION JOB_CHG_HOUR

190 C H A P T E R 6

values. The values for the attributes ASSIGN_NUM and ASSIGN_DATE can be generated by the application. For
example, the ASSIGN_NUM can be created by using a counter, and the ASSIGN_DATE can be the system date read
by the application and automatically entered into the ASSIGNMENT table. In addition, the application software can
automatically insert the correct ASSIGN_CHG_HOUR value by writing the appropriate JOB table’s JOB_CHG_
HOUR value into the ASSIGNMENT table. (The JOB and ASSIGNMENT tables are related through the JOB_CODE
attribute.) If the JOB table’s JOB_CHG_HOUR value changes, the next insertion of that value into the ASSIGNMENT
table will reflect the change automatically. The table structure thus minimizes the need for human intervention. In fact,
if the system requires the employees to enter their own work hours, they can scan their EMP_NUM into the
ASSIGNMENT table by using a magnetic card reader that enters their identity. Thus, the ASSIGNMENT table’s
structure can set the stage for maintaining some desired level of security.

6.5 SURROGATE KEY CONSIDERATIONS

Although this design meets the vital entity and referential integrity requirements, the designer must still address some
concerns. For example, a composite primary key might become too cumbersome to use as the number of attributes
grows. (It becomes difficult to create a suitable foreign key when the related table uses a composite primary key. In
addition, a composite primary key makes it more difficult to write search routines.) Or a primary key attribute might
simply have too much descriptive content to be usable—which is why the JOB_CODE attribute was added to the JOB
table to serve as that table’s primary key. When, for whatever reason, the primary key is considered to be unsuitable,
designers use surrogate keys, as discussed in the previous chapter.

FIGURE
6.6

The completed database (continued)

Table name: EMPLOYEE

EMP_NUM EMP_LNAME EMP_FNAME EMP_INITIAL EMP_HIREDATE JOB_CODE

Table name: EMPLOYEE

191N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

At the implementation level, a surrogate key is a system-defined attribute generally created and managed via the
DBMS. Usually, a system-defined surrogate key is numeric, and its value is automatically incremented for each new
row. For example, Microsoft Access uses an AutoNumber data type, Microsoft SQL Server uses an identity column,
and Oracle uses a sequence object.

Recall from Section 6.4 that the JOB_CODE attribute was designated to be the JOB table’s primary key. However,
remember that the JOB_CODE does not prevent duplicate entries from being made, as shown in the JOB table in
Table 6.4.

TABLE
6.4

Duplicate Entries in the Job Table

JOB_CODE JOB_DESCRIPTION JOB_CHG_HOUR
511 Programmer $35.75
512 Programmer $35.75

Clearly, the data entries in Table 6.4 are inappropriate because they duplicate existing records—yet there has been no
violation of either entity integrity or referential integrity. This “multiple duplicate records” problem was created when
the JOB_CODE attribute was added as the PK. (When the JOB_DESCRIPTION was initially designated to be the PK,
the DBMS would ensure unique values for all job description entries when it was asked to enforce entity integrity. But
that option created the problems that caused the use of the JOB_CODE attribute in the first place!) In any case, if
JOB_CODE is to be the surrogate PK, you still must ensure the existence of unique values in the JOB_DESCRIPTION
through the use of a unique index.

Note that all of the remaining tables (PROJECT, ASSIGNMENT, and EMPLOYEE) are subject to the same limitations.
For example, if you use the EMP_NUM attribute in the EMPLOYEE table as the PK, you can make multiple entries
for the same employee. To avoid that problem, you might create a unique index for EMP_LNAME, EMP_FNAME, and
EMP_INITIAL. But how would you then deal with two employees named Joe B. Smith? In that case, you might use
another (preferably externally defined) attribute to serve as the basis for a unique index.

It is worth repeating that database design often involves trade-offs and the exercise of professional judgment. In a
real-world environment, you must strike a balance between design integrity and flexibility. For example, you might
design the ASSIGNMENT table to use a unique index on PROJ_NUM, EMP_NUM, and ASSIGN_DATE if you want
to limit an employee to only one ASSIGN_HOURS entry per date. That limitation would ensure that employees
couldn’t enter the same hours multiple times for any given date. Unfortunately, that limitation is likely to be undesirable
from a managerial point of view. After all, if an employee works several different times on a project during any given
day, it must be possible to make multiple entries for that same employee and the same project during that day. In that
case, the best solution might be to add a new externally defined attribute—such as a stub, voucher, or ticket
number—to ensure uniqueness. In any case, frequent data audits would be appropriate.

6.6 HIGHER-LEVEL NORMAL FORMS

Tables in 3NF will perform suitably in business transactional databases. However, there are occasions when higher
normal forms are useful. In this section, you will learn about a special case of 3NF, known as Boyce-Codd normal form
(BCNF), and about fourth normal form (4NF).

6.6.1 The Boyce-Codd Normal Form (BCNF)

A table is in Boyce-Codd normal form (BCNF) when every determinant in the table is a candidate key. (Recall from
Chapter 3 that a candidate key has the same characteristics as a primary key, but for some reason, it was not chosen
to be the primary key.) Clearly, when a table contains only one candidate key, the 3NF and the BCNF are equivalent.

192 C H A P T E R 6

Putting that proposition another way, BCNF can be violated only when the table contains more than one
candidate key.

Most designers consider the BCNF to be a special case of the 3NF. In fact, if the techniques shown here are used, most
tables conform to the BCNF requirements once the 3NF is reached. So how can a table be in 3NF and not be in
BCNF? To answer that question, you must keep in mind that a transitive dependency exists when one nonprime
attribute is dependent on another nonprime attribute.

In other words, a table is in 3NF when it is in 2NF and there are no transitive dependencies. But what about a case
in which a nonkey attribute is the determinant of a key attribute? That condition does not violate 3NF, yet it fails to
meet the BCNF requirements because BCNF requires that every determinant in the table be a candidate key. The
situation just described (a 3NF table that fails to meet BCNF requirements) is shown in Figure 6.7.

Note these functional dependencies in Figure 6.7:

A + B → C, D

A + C → B, D

C → B

Notice that this structure has two candidate keys: (A + B) and
(A + C). The table structure shown in Figure 6.7 has no partial
dependencies, nor does it contain transitive dependencies.
(The condition C → B indicates that a nonkey attribute
determines part of the primary key—and that dependency
is not transitive or partial because the dependent is a prime
attribute!) Thus, the table structure in Figure 6.7 meets the

3NF requirements. Yet the condition C → B causes the table to fail to meet the BCNF requirements.

To convert the table structure in Figure 6.7 into table structures that are in 3NF and in BCNF, first change the primary
key to A + C. That is an appropriate action because the dependency C → B means that C is, in effect, a superset of
B. At this point, the table is in 1NF because it contains a partial dependency, C → B. Next, follow the standard
decomposition procedures to produce the results shown in Figure 6.8.

To see how this procedure can be applied to an actual problem, examine the sample data in Table 6.5.

TABLE
6.5

Sample Data for a BCNF Conversion

STU_ID STAFF_ID CLASS_CODE ENROLL_GRADE
125 25 21334 A
125 20 32456 C
135 20 28458 B
144 25 27563 C
144 20 32456 B

Note

A table is in Boyce-Codd normal form (BCNF) when every determinant in the table is a candidate key.

A B C D

FIGURE
6.7

A table that is in 3NF but not
in BCNF

193N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

Table 6.5 reflects the following conditions:

� Each CLASS_CODE identifies a class uniquely. This condition illustrates the case in which a course might
generate many classes. For example, a course labeled INFS 420 might be taught in two classes (sections), each
identified by a unique code to facilitate registration. Thus, the CLASS_CODE 32456 might identify INFS 420,
class section 1, while the CLASS_CODE 32457 might identify INFS 420, class section 2. Or the
CLASS_CODE 28458 might identify QM 362, class section 5.

� A student can take many classes. Note, for example, that student 125 has taken both 21334 and 32456,
earning the grades A and C, respectively.

� A staff member can teach many classes, but each class is taught by only one staff member. Note that staff
member 20 teaches the classes identified as 32456 and 28458.

The structure shown in Table 6.5 is reflected in Panel A of Figure 6.9:

STU_ID + STAFF_ID → CLASS_CODE, ENROLL_GRADE

CLASS_CODE → STAFF_ID

Panel A of Figure 6.9 shows a structure that is clearly in 3NF, but the table represented by this structure has a major
problem, because it is trying to describe two things: staff assignments to classes and student enrollment information.
Such a dual-purpose table structure will cause anomalies. For example, if a different staff member is assigned to teach
class 32456, two rows will require updates, thus producing an update anomaly. And if student 135 drops class 28458,

A B C D

A C B D

A C D C B

3NF, but not BCNF

1NF

Partial dependency

3NF and BCNF 3NF and BCNF

FIGURE
6.8

Decomposition to BCNF

194 C H A P T E R 6

information about who taught that class is lost, thus producing a deletion anomaly. The solution to the problem is to
decompose the table structure, following the procedure outlined earlier. Note that the decomposition of Panel B shown
in Figure 6.9 yields two table structures that conform to both 3NF and BCNF requirements.

Remember that a table is in BCNF when every determinant in that table is a candidate key. Therefore, when a table
contains only one candidate key, 3NF and BCNF are equivalent.

CLASS_CODE STAFF_IDSTU_ID CLASS_CODE ENROLL_GRADE

STU_ID STAFF_ID CLASS_CODE ENROLL_GRADE

Panel A: 3NF, but not BCNF

Panel B: 3NF and BCNF

FIGURE
6.9

Another BCNF decomposition

195N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

6.6.2 Fourth Normal Form (4NF)

You might encounter poorly designed databases, or you might be asked to convert spreadsheets into a database format
in which multiple multivalued attributes exist. For example, consider the possibility that an employee can have multiple
assignments and can also be involved in multiple service organizations. Suppose employee 10123 does volunteer work
for the Red Cross and United Way. In addition, the same employee might be assigned to work on three projects: 1,
3, and 4. Figure 6.10 illustrates how that set of facts can be recorded in very different ways.

There is a problem with the tables in Figure 6.10. The attributes ORG_CODE and ASSIGN_NUM each may have
many different values. In normalization terminology, this situation is referred to as a multivalued dependency. A
multivalued dependency occurs when one key determines multiple values of two other attributes and those attributes
are independent of each other. (One employee can have many service entries and many assignment entries. Therefore,
one EMP_NUM can determine multiple values of ORG_CODE and multiple values of ASSIGN_NUM; however,
ORG_CODE and ASSIGN_NUM are independent of each other.) The presence of a multivalued dependency means
that if versions 1 and 2 are implemented, the tables are likely to contain quite a few null values; in fact, the tables do
not even have a viable candidate key. (The EMP_NUM values are not unique, so they cannot be PKs. No combination
of the attributes in table versions 1 and 2 can be used to create a PK because some of them contain nulls.) Such a
condition is not desirable, especially when there are thousands of employees, many of whom may have multiple job
assignments and many service activities. Version 3 at least has a PK, but it is composed of all of the attributes in the
table. In fact, version 3 meets 3NF requirements, yet it contains many redundancies that are clearly undesirable.

The solution is to eliminate the problems caused by the multivalued dependency. You do this by creating new tables
for the components of the multivalued dependency. In this example, the multivalued dependency is resolved by creating
the ASSIGNMENT and SERVICE_V1 tables depicted in Figure 6.11. Note that in Figure 6.11, neither the
ASSIGNMENT nor the SERVICE_V1 table contains a multivalued dependency. Those tables are said to be in 4NF.

If you follow the proper design procedures illustrated in this book, you shouldn’t encounter the previously described
problem. Specifically, the discussion of 4NF is largely academic if you make sure that your tables conform to the
following two rules:

1. All attributes must be dependent on the primary key, but they must be independent of each other.

2. No row may contain two or more multivalued facts about an entity.

Table name: VOLUNTEER_V1

Database name: Ch06_Service

Table name: VOLUNTEER_V3

Table name: VOLUNTEER_V2

FIGURE
6.10

Tables with multivalued dependencies

196 C H A P T E R 6

6.7 NORMALIZATION AND DATABASE DESIGN

The tables shown in Figure 6.6 illustrate how normalization procedures can be used to produce good tables from poor
ones. You will likely have ample opportunity to put this skill into practice when you begin to work with real-world
databases. Normalization should be part of the design process. Therefore, make sure that proposed entities meet
the required normal form before the table structures are created. Keep in mind that if you follow the design procedures
discussed in Chapter 3 and Chapter 4, the likelihood of data anomalies will be small. But even the best database
designers are known to make occasional mistakes that come to light during normalization checks. However, many of
the real-world databases you encounter will have been improperly designed or burdened with anomalies if they were
improperly modified over the course of time. And that means you might be asked to redesign and modify existing
databases that are, in effect, anomaly traps. Therefore, you should be aware of good design principles and procedures
as well as normalization procedures.

First, an ERD is created through an iterative process. You begin by identifying relevant entities, their attributes, and
their relationships. Then you use the results to identify additional entities and attributes. The ERD provides the big
picture, or macro view, of an organization’s data requirements and operations.

The relational diagram

FIGURE
6.11

A set of tables in 4NF

Table name: EMPLOYEE

Database name: CH06_Service

Table name: PROJECT

Table name: ORGANIZATION

Table name: ASSIGNMENT

Table name: SERVICE_V1

Note

A table is in fourth normal form (4NF) when it is in 3NF and has no multivalued dependencies.

197N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

Second, normalization focuses on the characteristics of specific entities; that is, normalization represents a micro view
of the entities within the ERD. And as you learned in the previous sections of this chapter, the normalization process
might yield additional entities and attributes to be incorporated into the ERD. Therefore, it is difficult to separate the
normalization process from the ER modeling process; the two techniques are used in an iterative and incremental
process.

To illustrate the proper role of normalization in the design process, let’s reexamine the operations of the contracting
company whose tables were normalized in the preceding sections. Those operations can be summarized by using the
following business rules:

� The company manages many projects.

� Each project requires the services of many employees.

� An employee may be assigned to several different projects.

� Some employees are not assigned to a project and perform duties not specifically related to a project. Some
employees are part of a labor pool, to be shared by all project teams. For example, the company’s executive
secretary would not be assigned to any one particular project.

� Each employee has a single primary job classification. That job classification determines the hourly billing rate.

� Many employees can have the same job classification. For example, the company employs more than one
electrical engineer.

Given that simple description of the company’s operations, two entities and their attributes are initially defined:

� PROJECT (PROJ_NUM, PROJ_NAME)

� EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, JOB_DESCRIPTION,
JOB_CHG_HOUR)

Those two entities constitute the initial ERD shown in Figure 6.12.

After creating the initial ERD shown in Figure 6.12, the
normal forms are defined:

� PROJECT is in 3NF and needs no modification at
this point.

� EMPLOYEE requires additional scrutiny. The JOB_
DESCRIPTION attribute defines job classifications
such as Systems Analyst, Database Designer, and
Programmer. In turn, those classifications determine
the billing rate, JOB_CHG_HOUR. Therefore,
EMPLOYEE contains a transitive dependency.

The removal of EMPLOYEE’s transitive dependency yields three entities:

� PROJECT (PROJ_NUM, PROJ_NAME)

� EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, JOB_CODE)

� JOB (JOB_CODE, JOB_DESCRIPTION, JOB_CHG_HOUR)

Because the normalization process yields an additional entity (JOB), the initial ERD is modified as shown in
Figure 6.13.

To represent the M:N relationship between EMPLOYEE and PROJECT, you might think that two 1:M relationships
could be used—an employee can be assigned to many projects, and each project can have many employees assigned
to it. (See Figure 6.14.) Unfortunately, that representation yields a design that cannot be correctly implemented.

Because the M:N relationship between EMPLOYEE and PROJECT cannot be implemented, the ERD in Figure 6.14
must be modified to include the ASSIGNMENT entity to track the assignment of employees to projects, thus yielding

FIGURE
6.12

Initial contracting company
ERD

198 C H A P T E R 6

the ERD shown in Figure 6.15. The ASSIGNMENT entity in Figure 6.15 uses the primary keys from the entities
PROJECT and EMPLOYEE to serve as its foreign keys. However, note that in this implementation, the ASSIGNMENT
entity’s surrogate primary key is ASSIGN_NUM, to avoid the use of a composite primary key. Therefore, the “enters”
relationship between EMPLOYEE and ASSIGNMENT and the “requires” relationship between PROJECT and
ASSIGNMENT are shown as weak or nonidentifying.

Note that in Figure 6.15, the ASSIGN_HOURS attribute is assigned to the composite entity named ASSIGNMENT.
Because you will likely need detailed information about each project’s manager, the creation of a “manages”
relationship is useful. The “manages” relationship is implemented through the foreign key in PROJECT. Finally, some
additional attributes may be created to improve the system’s ability to generate additional information. For example,

FIGURE
6.13

Modified contracting company ERD

FIGURE
6.14

Incorrect M:N relationship representation

199N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

you may want to include the date on which the employee was hired (EMP_HIREDATE) to keep track of worker
longevity. Based on this last modification, the model should include four entities and their attributes:

PROJECT (PROJ_NUM, PROJ_NAME, EMP_NUM)

EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_HIREDATE, JOB_CODE)

JOB (JOB_CODE, JOB_DESCRIPTION, JOB_CHG_HOUR)

ASSIGNMENT (ASSIGN_NUM, ASSIGN_DATE, PROJ_NUM, EMP_NUM, ASSIGN_HOURS, ASSIGN_CHG_
HOUR, ASSIGN_CHARGE)

The design process is now on the right track. The ERD represents the operations accurately, and the entities now
reflect their conformance to 3NF. The combination of normalization and ER modeling yields a useful ERD, whose
entities may now be translated into appropriate table structures. In Figure 6.15, note that PROJECT is optional to
EMPLOYEE in the “manages” relationship. This optionality exists because not all employees manage projects. The
final database contents are shown in Figure 6.16.

6.8 DENORMALIZATION

It’s important to remember that the optimal relational database implementation requires that all tables be at least in
third normal form (3NF). A good relational DBMS excels at managing normalized relations; that is, relations void of
any unnecessary redundancies that might cause data anomalies. Although the creation of normalized relations is an
important database design goal, it is only one of many such goals. Good database design also considers processing (or
reporting) requirements and processing speed. The problem with normalization is that as tables are decomposed to
conform to normalization requirements, the number of database tables expands. Therefore, in order to generate
information, data must be put together from various tables. Joining a large number of tables takes additional
input/output (I/O) operations and processing logic, thereby reducing system speed. Most relational database systems
are able to handle joins very efficiently. However, rare and occasional circumstances may allow some degree of
denormalization so processing speed can be increased.

FIGURE
6.15

Final contracting company ERD

200 C H A P T E R 6

Keep in mind that the advantage of higher processing speed must be carefully weighed against the disadvantage of data
anomalies. On the other hand, some anomalies are of only theoretical interest. For example, should people in a
real-world database environment worry that a ZIP_CODE determines CITY in a CUSTOMER table whose primary key
is the customer number? Is it really practical to produce a separate table for

ZIP (ZIP_CODE, CITY)

to eliminate a transitive dependency from the CUSTOMER table? (Perhaps your answer to that question changes if you
are in the business of producing mailing lists.) As explained earlier, the problem with denormalized relations and
redundant data is that the data integrity could be compromised due to the possibility of data anomalies (insert, update,
and deletion anomalies). The advice is simple: use common sense during the normalization process.

Table name: EMPLOYEE

Table name: JOB

Table name: ASSIGNMENT

Database name: Ch06_ConstructCo

Table name: PROJECT

FIGURE
6.16

The implemented database

201N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

Furthermore, the database design process could, in some cases, introduce some small degree of redundant data in the
model (as seen in the previous example). This, in effect, creates “denormalized” relations. Table 6.6 shows some
common examples of data redundancy that are generally found in database implementations.

TABLE
6.6

Common Denormalization Examples

CASE EXAMPLE RATIONALE AND CONTROLS
Redundant data Storing ZIP and CITY attributes in the CUSTOMER

table when ZIP determines CITY. (See Table 1.4.)
• Avoid extra joint operations.
• Program can validate city

(drop-down box) based on the
zip code.

Derived data Storing STU_HRS and STU_CLASS (student classifica-
tion) when STU_HRS determines STU_CLASS. (See
Figure 3.29.)

• Avoid extra joint operations.
• Program can validate classifica-
tion (lookup) based on the stu-
dent hours.

Preaggregated
data (also derived
data)

Storing the student grade point average (STU_GPA)
aggregate value in the STUDENT table when this can
be calculated from the ENROLL and COURSE tables.
(See Figure 3.29.)

• Avoid extra joint operations.
• Program computes the GPA
every time a grade is entered or
updated.

• STU_GPA can be updated only
via administrative routine.

Information
requirements

Using a temporary denormalized table to hold report
data. This is required when creating a tabular report in
which the columns represent data that are stored in
the table as rows. (See Figure 6.17 and Figure 6.18.)

• Impossible to generate the data
required by the report using plain
SQL.

• No need to maintain table.
Temporary table is deleted once
report is done.

• Processing speed is not an issue.

A more comprehensive example of the need for denormalization due to reporting requirements is the case of a faculty
evaluation report in which each row list the scores obtained during the last four semesters taught. (See Figure 6.17.)

Although this report seems simple enough, the problem arises from the fact that the data are stored in a normalized
table in which each row represents a different score for a given faculty member in a given semester. (See Figure 6.18.)

The difficulty of transposing multirow data to multicolumnar data is compounded by the fact that the last four semesters
taught are not necessarily the same for all faculty members (some might have taken sabbaticals, some might have had

FIGURE
6.17

The faculty evaluation report

202 C H A P T E R 6

research appointments, some might be new faculty with only two semesters on the job, etc.). To generate this report,
the two tables you see in Figure 6.18 were used. The EVALDATA table is the master data table containing the
evaluation scores for each faculty member for each semester taught; this table is normalized. The FACHIST table
contains the last four data points—that is, evaluation score and semester—for each faculty member. The FACHIST
table is a temporary denormalized table created from the EVALDATA table via a series of queries. (The FACHIST table
is the basis for the report shown in Figure 6.17.)

As seen in the faculty evaluation report, the conflicts between design efficiency, information requirements, and
performance are often resolved through compromises that may include denormalization. In this case, and assuming
there is enough storage space, the designer’s choices could be narrowed down to:

� Store the data in a permanent denormalized table. This is not the recommended solution, because the
denormalized table is subject to data anomalies (insert, update, and delete). This solution is viable only if
performance is an issue.

� Create a temporary denormalized table from the permanent normalized table(s). Because the denormalized
table exists only as long as it takes to generate the report, it disappears after the report is produced. Therefore,
there are no data anomaly problems. This solution is practical only if performance is not an issue and there
are no other viable processing options.

As shown, normalization purity is often difficult to sustain in the modern database environment. You will learn
in Chapter 13, Business Intelligence and Data Warehouses, that lower normalization forms occur (and are even
required) in specialized databases known as data warehouses. Such specialized databases reflect the ever-growing
demand for greater scope and depth in the data on which decision support systems increasingly rely. You will discover
that the data warehouse routinely uses 2NF structures in its complex, multilevel, multisource data environment. In
short, although normalization is very important, especially in the so-called production database environment, 2NF is
no longer disregarded as it once was.

FIGURE
6.18

The EVALDATA and FACHIST tables

Table name: FACHIST Database name: Ch06_EVALTable name: EVALDATA

Denormalized

Normalized

Repeating Group

203N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

Although 2NF tables cannot always be avoided, the problem of working with tables that contain partial and/or
transitive dependencies in a production database environment should not be minimized. Aside from the possibility of
troublesome data anomalies being created, unnormalized tables in a production database tend to suffer from these
defects:

� Data updates are less efficient because programs that read and update tables must deal with larger tables.

� Indexing is more cumbersome. It is simply not practical to build all of the indexes required for the many
attributes that might be located in a single unnormalized table.

� Unnormalized tables yield no simple strategies for creating virtual tables known as views. You will learn how
to create and use views in Chapter 7, Introduction to Structured Query Language (SQL).

Remember that good design cannot be created in the application programs that use a database. Also keep in mind that
unnormalized database tables often lead to various data redundancy disasters in production databases such as the ones
examined thus far. In other words, use denormalization cautiously and make sure that you can explain why the
unnormalized tables are a better choice in certain situations than their normalized counterparts.

6.9 DATA-MODELING CHECKLIST

In the chapters of Part II, you have learned how data modeling translates a specific real-world environment into a data
model that represents the real-world data, users, processes, and interactions. The modeling techniques you have
learned thus far give you the tools needed to produce successful database designs. However, just as any good pilot uses
a checklist to ensure that all is in order for a successful flight, the data-modeling checklist shown in Table 6.7 will help
ensure that you perform data-modeling tasks successfully based on the concepts and tools you have learned in this text.

Note

You can also find this Data-Modeling Checklist on the inside back cover of this book for easy reference.

204 C H A P T E R 6

TABLE
6.7

Data-Modeling Checklist

DATA-MODELING CHECKLIST
BUSINESS RULES

• Properly document and verify all business rules with the end users.
• Ensure that all business rules are written precisely, clearly, and simply. The business rules must help identify
entities, attributes, relationships, and constraints.

• Identify the source of all business rules, and ensure that each business rule is justified, dated, and signed off by
an approving authority.

DATA MODELING
Naming Conventions: All names should be limited in length (database-dependent size).

• Entity Names:
• Should be nouns that are familiar to business and should be short and meaningful
• Should document abbreviations, synonyms, and aliases for each entity
• Should be unique within the model
• For composite entities, may include a combination of abbreviated names of the entities linked through the
composite entity

• Attribute Names:
• Should be unique within the entity
• Should use the entity abbreviation as a prefix
• Should be descriptive of the characteristic
• Should use suffixes such as _ID, _NUM, or _CODE for the PK attribute
• Should not be a reserved word
• Should not contain spaces or special characters such as @, !, or &

• Relationship Names:
• Should be active or passive verbs that clearly indicate the nature of the relationship

Entities:
• Each entity should represent a single subject.
• Each entity should represent a set of distinguishable entity instances.
• All entities should be in 3NF or higher. Any entities below 3NF should be justified.
• The granularity of the entity instance should be clearly defined.
• The PK should be clearly defined and support the selected data granularity.

Attributes:
• Should be simple and single-valued (atomic data)
• Should document default values, constraints, synonyms, and aliases
• Derived attributes should be clearly identified and include source(s)
• Should not be redundant unless this is required for transaction accuracy, performance, or
maintaining a history

• Nonkey attributes must be fully dependent on the PK attribute
Relationships:

• Should clearly identify relationship participants
• Should clearly define participation, connectivity, and document cardinality

ER Model:
• Should be validated against expected processes: inserts, updates, and deletes
• Should evaluate where, when, and how to maintain a history
• Should not contain redundant relationships except as required (see attributes)
• Should minimize data redundancy to ensure single-place updates
• Should conform to the minimal data rule: “All that is needed is there, and all that is there is needed.”

205N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

S u m m a r y

◗ Normalization is a technique used to design tables in which data redundancies are minimized. The first three normal
forms (1NF, 2NF, and 3NF) are most commonly encountered. From a structural point of view, higher normal forms
are better than lower normal forms, because higher normal forms yield relatively fewer data redundancies in the
database. Almost all business designs use 3NF as the ideal normal form. A special, more restricted 3NF known as
Boyce-Codd normal form, or BCNF, is also used.

◗ A table is in 1NF when all key attributes are defined and when all remaining attributes are dependent on the primary
key. However, a table in 1NF can still contain both partial and transitive dependencies. (A partial dependency is one
in which an attribute is functionally dependent on only a part of a multiattribute primary key. A transitive
dependency is one in which one attribute is functionally dependent on another nonkey attribute.) A table with a
single-attribute primary key cannot exhibit partial dependencies.

◗ A table is in 2NF when it is in 1NF and contains no partial dependencies. Therefore, a 1NF table is automatically
in 2NF when its primary key is based on only a single attribute. A table in 2NF may still contain transitive
dependencies.

◗ A table is in 3NF when it is in 2NF and contains no transitive dependencies. Given that definition of 3NF, the
Boyce-Codd normal form (BCNF) is merely a special 3NF case in which all determinant keys are candidate keys.
When a table has only a single candidate key, a 3NF table is automatically in BCNF.

◗ A table that is not in 3NF may be split into new tables until all of the tables meet the 3NF requirements.

◗ Normalization is an important part—but only a part—of the design process. As entities and attributes are defined
during the ER modeling process, subject each entity (set) to normalization checks and form new entity (sets) as
required. Incorporate the normalized entities into the ERD and continue the iterative ER process until all entities
and their attributes are defined and all equivalent tables are in 3NF.

◗ A table in 3NF might contain multivalued dependencies that produce either numerous null values or redundant data.
Therefore, it might be necessary to convert a 3NF table to the fourth normal form (4NF) by splitting the table to
remove the multivalued dependencies. Thus, a table is in 4NF when it is in 3NF and contains no multivalued
dependencies.

◗ The larger the number of tables, the more additional I/O operations and processing logic required to join them.
Therefore, tables are sometimes denormalized to yield less I/O in order to increase processing speed. Unfortu-
nately, with larger tables, you pay for the increased processing speed by making the data updates less efficient, by
making indexing more cumbersome, and by introducing data redundancies that are likely to yield data anomalies.
In the design of production databases, use denormalization sparingly and cautiously.

◗ The Data-Modeling Checklist provides a way for the designer to check that the ERD meets a set of minimum
requirements.

K e y T e r m s

atomic attribute, 188

atomicity, 188

Boyce-Codd normal form
(BCNF), 192

denormalization, 175

dependency diagram, 182

determinant, 185

first normal form (1NF), 183

fourth normal form (4NF), 197

granularity, 188

key attribute, 175

nonkey attribute, 175

nonprime attribute, 175

normalization, 175

partial dependency, 180

prime attribute, 175

repeating group, 181

second normal form (2NF), 185

third normal form (3NF), 187

transitive dependency, 180

206 C H A P T E R 6

R e v i e w Q u e s t i o n s

1. What is normalization?

2. When is a table in 1NF?

3. When is a table in 2NF?

4. When is a table in 3NF?

5. When is a table in BCNF?

6. Given the dependency diagram shown in Figure Q6.6, answer Items 6a−6c.

a. Identify and discuss each of the indicated dependencies.

b. Create a database whose tables are at least in 2NF, showing the dependency diagrams for each table.

c. Create a database whose tables are at least in 3NF, showing the dependency diagrams for each table.

7. The dependency diagram in Figure Q6.7 indicates that authors are paid royalties for each book that they write
for a publisher. The amount of the royalty can vary by author, by book, and by edition of the book.

O n l i n e C o n t e n t

Answers to selected ReviewQuestions and Problems for this chapter are contained in the PremiumWebsite for
this book.

C1 C2 C3 C4 C5

FIGURE
Q6.6

Dependency diagram for Question 6

ISBN BookTitle LastNameAuthor_Num Publisher Royalty Edition

FIGURE
Q6.7

Book royalty dependency diagram

207N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

a. Based on the dependency diagram, create a database whose tables are at least in 2NF, showing the
dependency diagram for each table.

b. Create a database whose tables are at least in 3NF, showing the dependency diagram for each table.

8. The dependency diagram in Figure Q6.8 indicates that a patient can receive many prescriptions for one or more
medicines over time. Based on the dependency diagram, create a database whose tables are in at least 2NF,
showing the dependency diagram for each table.

9. What is a partial dependency? With what normal form is it associated?

10. What three data anomalies are likely to be the result of data redundancy? How can such anomalies be eliminated?

11. Define and discuss the concept of transitive dependency.

12. What is a surrogate key, and when should you use one?

13. Why is a table whose primary key consists of a single attribute automatically in 2NF when it is in 1NF?

14. How would you describe a condition in which one attribute is dependent on another attribute, when neither
attribute is part of the primary key?

15. Suppose that someone tells you that an attribute that is part of a composite primary key is also a candidate key.
How would you respond to that statement?

16. A table is in normal form when it is in and there are no transitive
dependencies.

P r o b l e m s

1. Using the descriptions of the attributes given in the figure, convert the ERD shown in Figure P6.1 into a
dependency diagram that is in at least 3NF.

2. Using the descriptions of the attributes given in the figure, convert the ERD shown in Figure P6.2 into a
dependency diagram that is in at least 3NF.

3. Using the INVOICE table structure shown in Table P6.3, do the following:

a. Write the relational schema, draw its dependency diagram, and identify all dependencies, including all partial
and transitive dependencies. You can assume that the table does not contain repeating groups and that an
invoice number references more than one product. (Hint: This table uses a composite primary key.)

b. Remove all partial dependencies, write the relational schema, and draw the new dependency diagrams.
Identify the normal forms for each table structure you created.

c. Remove all transitive dependencies, write the relational schema, and draw the new dependency diagrams.
Also identify the normal forms for each table structure you created.

d. Draw the Crow’s Foot ERD.

MedName PatientID RefillsAllowedDate PatientName Dosage ShelfLife

FIGURE
Q6.8

Prescription dependency diagram

208 C H A P T E R 6

FIGURE
P6.1

Appointment ERD for Problem 1

FIGURE
P6.2

Presentation ERD for Problem 2

209N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

4. Using the STUDENT table structure shown in Table P6.4 do the following:

a. Write the relational schema and draw its dependency diagram. Identify all dependencies, including all
transitive dependencies.

b. Write the relational schema and draw the dependency diagram to meet the 3NF requirements to the greatest
practical extent possible. If you believe that practical considerations dictate using a 2NF structure, explain why
your decision to retain 2NF is appropriate. If necessary, add or modify attributes to create appropriate
determinants and to adhere to the naming conventions.

TABLE
P6.3

ATTRIBUTE
NAME

SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE

INV_NUM 211347 211347 211347 211348 211349
PROD_NUM AA-E3422QW QD-300932X RU-995748G AA-E3422QW GH-778345P
SALE_DATE 15-Jan-2010 15-Jan-2010 15-Jan-2010 15-Jan-2010 16-Jan-2010
PROD_LABEL Rotary sander 0.25-in. drill bit Band saw Rotary sander Power drill
VEND_CODE 211 211 309 211 157
VEND_NAME NeverFail, Inc. NeverFail, Inc. BeGood, Inc. NeverFail, Inc. ToughGo, Inc.
QUANT_SOLD 1 8 1 2 1
PROD_PRICE $49.95 $3.45 $39.99 $49.95 $87.75

Note

You can assume that any given product is supplied by a single vendor, but a vendor can supply many products.
Therefore, it is proper to conclude that the following dependency exists:

PROD_NUM → PROD_DESCRIPTION, PROD_PRICE, VEND_CODE, VEND_NAME

(Hint: Your actions should produce three dependency diagrams.)

TABLE
P6.4

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
STU_NUM 211343 200128 199876 199876 223456
STU_LNAME Stephanos Smith Jones Ortiz McKulski
STU_MAJOR Accounting Accounting Marketing Marketing Statistics
DEPT_CODE ACCT ACCT MKTG MKTG MATH
DEPT_NAME Accounting Accounting Marketing Marketing Mathematics
DEPT_PHONE 4356 4356 4378 4378 3420
COLLEGE_NAME Business Admin Business Admin Business Admin Business Admin Arts & Sciences
ADVISOR_LNAME Grastrand Grastrand Gentry Tillery Chen
ADVISOR_OFFICE T201 T201 T228 T356 J331
ADVISOR_BLDG Torre Building Torre Building Torre Building Torre Building Jones Building
ADVISOR_PHONE 2115 2115 2123 2159 3209
STU_GPA 3.87 2.78 2.31 3.45 3.58
STU_HOURS 75 45 117 113 87
STU_CLASS Junior Sophomore Senior Senior Junior

210 C H A P T E R 6

c. Write the relational schema and draw the dependency diagram to meet the 3NF requirements to the greatest
practical extent possible. If you believe that practical considerations dictate using a 2NF structure, explain why
your decision to retain 2NF is appropriate. If necessary, add or modify attributes to create appropriate
determinants and to adhere to the naming conventions.

d. Using the results of Problem 4, draw the Crow’s Foot ERD.

5. To keep track of office furniture, computers, printers, and so on, the FOUNDIT Company uses the table structure
shown in Table P6.5.

a. Given that information, write the relational schema and draw the dependency diagram. Make sure that you
label the transitive and/or partial dependencies.

b. Write the relational schema and create a set of dependency diagrams that meet 3NF requirements. Rename
attributes to meet the naming conventions and create new entities and attributes as necessary.

c. Draw the Crow’s Foot ERD.

Note

Although the completed student hours (STU_HOURS) do determine the student classification (STU_CLASS),
this dependency is not as obvious as you might initially assume it to be. For example, a student is considered a
junior if that student has completed between 61 and 90 credit hours. Therefore, a student who is classified as
a junior may have completed 66, 72, or 87 hours or any other number of hours within the specified range of
61−90 hours. In short, any hour value within a specified range will define the classification.

TABLE
P6.5

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
ITEM_ID 231134-678 342245-225 254668-449
ITEM_LABEL HP DeskJet 895Cse HP Toner DT Scanner
ROOM_NUMBER 325 325 123
BLDG_CODE NTC NTC CSF
BLDG_NAME Nottooclear Nottoclear Canseefar
BLDG_MANAGER I. B. Rightonit I. B. Rightonit May B. Next

211N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

6. The table structure shown in Table P6.6 contains many unsatisfactory components and characteristics. For example,
there are several multivalued attributes, naming conventions are violated, and some attributes are not atomic.

a. Given the structure shown in Table P6.6, write the relational schema and draw its dependency diagram. Label
all transitive and/or partial dependencies.

b. Draw the dependency diagrams that are in 3NF. (Hint: You might have to create a few new attributes. Also
make sure that the new dependency diagrams contain attributes that meet proper design criteria; that is,
make sure that there are no multivalued attributes, that the naming conventions are met, and so on.)

c. Draw the relational diagram.

d. Draw the Crow’s Foot ERD.

7. Suppose you are given the following business rules to form the basis for a database design. The database must
enable the manager of a company dinner club to mail invitations to the club’s members, to plan the meals, to
keep track of who attends the dinners, and so on.

� Each dinner serves many members, and each member may attend many dinners.

� A member receives many invitations, and each invitation is mailed to many members.

� A dinner is based on a single entree, but an entree may be used as the basis for many dinners. For example,
a dinner may be composed of a fish entree, rice, and corn; or the dinner may be composed of a fish entree,
a baked potato, and string beans.

� A member may attend many dinners, and each dinner may be attended by many members.

Because the manager is not a database expert, the first attempt at creating the database uses the structure shown
in Table P6.7.

a. Given the table structure illustrated in Table P6.7, write the relational schema and draw its dependency
diagram. Label all transitive and/or partial dependencies. (Hint: This structure uses a composite primary key.)

b. Break up the dependency diagram you drew in Problem 7a to produce dependency diagrams that are in 3NF,
and write the relational schema. (Hint: You might have to create a few new attributes. Also, make sure that
the new dependency diagrams contain attributes that meet proper design criteria; that is, make sure that there
are no multivalued attributes, that the naming conventions are met, and so on.)

c. Using the results of Problem 7b, draw the Crow’s Foot ERD.

TABLE
P6.6

EMP_NUM 1003 1018 1019 1023
EMP_LNAME Willaker Smith McGuire McGuire
EMP_EDUCATION BBA, MBA BBA BS, MS, Ph.D.
JOB_CLASS SLS SLS JNT DBA
EMP_DEPENDENTS Gerald (spouse),

Mary (daughter),
John (son)

JoAnne (spouse) George (spouse)
Jill (daughter)

DEPT_CODE MKTG MKTG SVC INFS
DEPT_NAME Marketing Marketing General Service Info. Systems
DEPT_MANAGER Jill H. Martin Jill H. Martin Hank B. Jones Carlos G. Ortez
EMP_TITLE Sales Agent Sales Agent Janitor DB Admin
EMP_DOB 23-Dec-1968 28-Mar-1979 18-May-1982 20-Jul-1959
EMP_HIRE_DATE 14-Oct-1997 15-Jan-2006 21-Apr-2003 15-Jul-1999
EMP_TRAINING L1, L2 L1 L1 L1, L3, L8, L15
EMP_BASE_SALARY $38,255.00 $30,500.00 $19,750.00 $127,900.00
EMP_COMMISSION_RATE 0.015 0.010

212 C H A P T E R 6

8. Use the dependency diagram shown in Figure P6.8 to work the following problems.

a. Break up the dependency diagram shown in Figure P6.8 to create two new dependency diagrams, one in
3NF and one in 2NF.

b. Modify the dependency diagrams you created in Problem 8a to produce a set of dependency diagrams that
are in 3NF. (Hint: One of your dependency diagrams will be in 3NF but not in BCNF.)

c. Modify the dependency diagrams you created in Problem 8b to produce a collection of dependency diagrams
that are in 3NF and BCNF.

TABLE
P6.7

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
MEMBER_NUM 214 235 214
MEMBER_NAME Alice B. VanderVoort Gerald M. Gallega Alice B. VanderVoort
MEMBER_ADDRESS 325 Meadow Park 123 Rose Court 325 Meadow Park
MEMBER_CITY Murkywater Highlight Murkywater
MEMBER_ZIPCODE 12345 12349 12345
INVITE_NUM 8 9 10
INVITE_DATE 23-Feb-2008 12-Mar-2008 23-Feb-2008
ACCEPT_DATE 27-Feb-2008 15-Mar-2008 27-Feb-2008
DINNER_DATE 15-Mar-2008 17-Mar-2008 15-Mar-2008
DINNER_ATTENDED Yes Yes No
DINNER_CODE DI5 DI5 DI2
DINNER_DESCRIPTION Glowing ea Delight Glowing Sea Delight Ranch Superb
ENTREE_CODE EN3 EN3 EN5
ENTREE_DESCRIPTION Stuffed crab Stuffed crab Marinated steak
DESSERT_CODE DE8 DE5 DE2
DESSERT_DESCRIPTION Chocolate mousse

with raspberry sauce
Cherries jubilee Apple pie with honey

crust

A B C D E F G

FIGURE
P6.8

Initial dependency diagram for Problem 8

213N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

9. Suppose you have been given the table structure and data shown in Table P6.9, which was imported from an
Excel spreadsheet. The data reflect that a professor can have multiple advisees, can serve on multiple committees,
and can edit more than one journal.

Given the information in Table P6.9:

a. Draw the dependency diagram.

b. Identify the multivalued dependencies.

c. Create the dependency diagrams to yield a set of table structures in 3NF.

d. Eliminate the multivalued dependencies by converting the affected table structures to 4NF.

e. Draw the Crow’s Foot ERD to reflect the dependency diagrams you drew in Problem 9c. (Note: You might
have to create additional attributes to define the proper PKs and FKs. Make sure that all of your attributes
conform to the naming conventions.)

10. The manager of a consulting firm has asked you to evaluate a database that contains the table structure shown
in Table P6.10.

Table P6.10 was created to enable the manager to match clients with consultants. The objective is to match a
client within a given region with a consultant in that region and to make sure that the client’s need for specific
consulting services is properly matched to the consultant’s expertise. For example, if the client needs help with
database design and is located in the Southeast, the objective is to make a match with a consultant who is located
in the Southeast and whose expertise is in database design. (Although the consulting company manager tries to
match consultant and client locations to minimize travel expense, it is not always possible to do so.) The following
basic business rules are maintained:

� Each client is located in one region.

� A region can contain many clients.

� Each consultant can work on many contracts.

� Each contract might require the services of many consultants.

� A client can sign more than one contract, but each contract is signed by only one client.

� Each contract might cover multiple consulting classifications. (For example, a contract may list consulting
services in database design and networking.)

� Each consultant is located in one region.

TABLE
P6.9

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
EMP_NUM 123 104 118
PROF_RANK Professor Asst. Professor Assoc. Professor Assoc. Professor
EMP_NAME Ghee Rankin Ortega Smith
DEPT_CODE CIS CHEM CIS ENG
DEPT_NAME Computer Info.

Systems
Chemistry Computer Info.

Systems
English

PROF_OFFICE KDD-567 BLF-119 KDD-562 PRT-345
ADVISEE 1215, 2312, 3233,

2218, 2098
3102, 2782,
3311, 2008,
2876, 2222,
3745, 1783,
2378

2134, 2789, 3456,
2002, 2046, 2018,
2764

2873, 2765, 2238,
2901, 2308

COMMITTEE_CODE PROMO, TRAF,
APPL, DEV

DEV SPR, TRAF PROMO, SPR,
DEV

JOURNAL_CODE JMIS, QED,
JMGT

JCIS, JMGT

214 C H A P T E R 6

� A region can contain many consultants.

� Each consultant has one or more areas of expertise (class). For example, a consultant might be classified as
an expert in both database design and networking.

� Each area of expertise (class) can have many consultants in it. For example, the consulting company might
employ many consultants who are networking experts.

a. Given this brief description of the requirements and the business rules, write the relational schema and draw
the dependency diagram for the preceding (and very poor) table structure. Label all transitive and/or partial
dependencies.

b. Break up the dependency diagram you drew in Problem 10a to produce dependency diagrams that are in
3NF and write the relational schema. (Hint: You might have to create a few new attributes. Also make sure
that the new dependency diagrams contain attributes that meet proper design criteria; that is, make sure that
there are no multivalued attributes, that the naming conventions are met, and so on.)

c. Using the results of Problem 10b, draw the Crow’s Foot ERD.

TABLE
P6.10

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
CLIENT_NUM 298 289 289
CLIENT_NAME Marianne R. Brown James D. Smith James D. Smith
CLIENT_REGION Midwest Southeast Southeast
CONTRACT_DATE 10-Feb-2010 15-Feb-2010 12-Mar-2010
CONTRACT_NUMBER 5841 5842 5843
CONTRACT_AMOUNT $2,985,000.00 $670,300.00 $1,250,000.00
CONSULT_CLASS_1 Database Administration Internet Services Database Design
CONSULT_CLASS_2 Web Applications Database Administration
CONSULT_CLASS_3 Network Installation
CONSULT_CLASS_4
CONSULTANT_NUM_1 29 34 25
CONSULTANT_NAME_1 Rachel G. Carson Gerald K. Ricardo Angela M. Jamison
CONSULTANT_REGION_1 Midwest Southeast Southeast
CONSULTANT_NUM_2 56 38 34
CONSULTANT_NAME_2 Karl M. Spenser Anne T. Dimarco Gerald K. Ricardo
CONSULTANT_REGION_2 Midwest Southeast Southeast
CONSULTANT_NUM_3 22 45
CONSULTANT_NAME_3 Julian H. Donatello Geraldo J. Rivera
CONSULTANT_REGION_3 Midwest Southeast
CONSULTANT_NUM_4 18
CONSULTANT_NAME_4 Donald Chen
CONSULTANT_REGION_4 West

215N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

11. Given the sample records in the CHARTER table shown in Table P6.11, do the following:

a. Write the relational schema and draw the dependency diagram for the table structure. Make sure that you
label all dependencies. CHAR_PAX indicates the number of passengers carried. The CHAR_MILES entry is
based on round-trip miles, including pickup points. (Hint: Look at the data values to determine the nature of
the relationships. For example, note that employee Melton has flown two charter trips as pilot and one trip
as copilot.)

b. Decompose the dependency diagram you drew to solve Problem 11a to create table structures that are in
3NF and write the relational schema.

c. Draw the Crow’s Foot ERD to reflect the properly decomposed dependency diagrams you created in
Problem 11b. Make sure that the ERD yields a database that can track all of the data shown in Problem 11.
Show all entities, relationships, connectivities, optionalities, and cardinalities.

TABLE
P6.11

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
CHAR_TRIP 10232 10233 10234 10235
CHAR_DATE 15-Jan-2008 15-Jan-2008 16-Jan-2008 17-Jan-2008
CHAR_CITY STL MIA TYS ATL
CHAR_MILES 580 1,290 524 768
CUST_NUM 784 231 544 784
CUST_LNAME Brown Hanson Bryana Brown
CHAR_PAX 5 12 2 5
CHAR_CARGO 235 lbs. 18,940 lbs. 348 lbs. 155 lbs.
PILOT Melton Chen Henderson Melton
COPILOT Henderson Melton
FLT_ENGINEER O'Shaski
LOAD_MASTER Benkasi
AC_NUMBER 1234Q 3456Y 1234Q 2256W
MODEL_CODE PA31-350 CV-580 PA31-350 PA31-350
MODEL_SEATS 10 38 10 10
MODEL_CHG_MILE $2.79 $23.36 $2.79 $2.79

216 C H A P T E R 6

This page intentionally left blank

PART

III
Advanced Design and

Implementation

7Introduction to Structured Query
Language (SQL)

8Advanced SQL

9Database Design

B
V

usiness
ignette

The Many Benefits of BI

Since its inception in 1962, the financial service company Raymond James has distin-

guished itself by focusing on the financial needs of its clients. Raymond James was the first

financial service company to introduce a client bill of rights, and it invested heavily in tools

and strategies to help clients meet their financial goals. Today it is one of the largest

financial service companies in the United States, with annual revenues of $3.2 billion in

2008 and over 5,000 financial advisors worldwide.

When financial firms faced hard times following the crisis of 2008, Raymond James

responded by improving services though IT innovation.The company created a business

intelligence (BI) system that provided faster, more accurate information to help financial

advisors evaluate the performance of investment programs and client portfolios.

With increased regulations, rising acquisitions, and the credit crises, Raymond James

decided to expand its existing data warehouse and BI services. In 2003, Raymond James

had pioneered a data warehouse employing Microsoft® SQL Server® 2000 data

management software to build the database and SQL Server 2000 Analysis Services to

develop a BI product they called Business Analyzer. Business Analyzer saved considerable

time for financial advisors who previously had to jump between numerous software

applications to get the information they needed. In 2009, they upgraded to SQL Server

2008 Enterprise and made use of its Integration Services, which allowed them to add

transactional data to their data warehouse from over a dozen databases running on

different platforms.The company also made use of SQL Server 2008 Analysis Services and

Reporting Services to create a new BI tool, Reports Center, that provides more data

analysis and richer graphic tools. Reports Center responds to queries much faster, cutting

fact-processing time from 10 hours to 40 minutes. Increased efficiency meant more

people were using the new system. In the months following deployment, usage rose

40 percent as the user base swelled from 4,000 to 6,600. The upgrade also meant

significant cost savings for the company, not only because of increased efficiencybut also

because of the data compression feature that compressed parts of the database by as

much as 80 percent.The size of the database fell from 2 terabytes to about 600 gigabytes.

The cost savings was important to Raymond James at a time when financial service firms

were looking to the U.S. government for bailout loans. In May 2009, Raymond James

decided that its position was secure enough to allow it to turn down the federal monies.

The company predicted that even if the economy worsened, it could sustain about

$300 million in losses and it would be able to stay afloat during these tough times.

Preview

Introduction to Structured Query Language (SQL)

In this chapter, you will learn:

� The basic commands and functions of SQL

� How to use SQL for data administration (to create tables, indexes, and views)

� How to use SQL for data manipulation (to add, modify, delete, and retrieve data)

� How to use SQL to query a database for useful information

In this chapter, you will learn the basics of Structured Query Language (SQL). SQL,

pronounced S-Q-L by some and “sequel” by others, is composed of commands that enable

users to create database and table structures, perform various types of data manipulation

and data administration, and query the database to extract useful information.All relational

DBMS software supports SQL, and many software vendors have developed extensions to

the basic SQL command set.

Because SQL’s vocabulary is simple, the language is relatively easy to learn. Its simplicity is

enhanced by the fact that much of its work takes place behind the scenes. For example, a

single command creates the complex table structures required to store and manipulate data

successfully. Furthermore, SQL is a nonprocedural language; that is, the user specifies what

must be done, but not how it is to be done. To issue SQL commands, end users and

programmers do not need to know the physical data storage format or the complex

activities that take place when a SQL command is executed.

Although quite useful and powerful, SQL is not meant to stand alone in the applications

arena. Data entry with SQL is possible but awkward, as are data corrections and additions.

SQL itself does not create menus, special report forms, overlays, pop-ups, or any of the

other utilities and screen devices that end users usually expect. Instead, those features are

available as vendor-supplied enhancements. SQL focuses on data definition (creating tables,

indexes, and views) and data manipulation (adding, modifying, deleting, and retrieving data);

we will cover these basic functions in this chapter. In spite of its limitations, SQL is a

powerful tool for extracting information and managing data.

7
S

E
V

E
N

7.1 INTRODUCTION TO SQL

Ideally, a database language allows you to create database and table structures, to perform basic data management
chores (add, delete, and modify), and to perform complex queries designed to transform the raw data into useful
information. Moreover, a database language must perform such basic functions with minimal user effort, and its
command structure and syntax must be easy to learn. Finally, it must be portable; that is, it must conform to some basic
standard so that an individual does not have to relearn the basics when moving from one RDBMS to another. SQL
meets those ideal database language requirements well.

SQL functions fit into two broad categories:

� It is a data definition language (DDL): SQL includes commands to create database objects such as tables,
indexes, and views, as well as commands to define access rights to those database objects. The data definition
commands you will learn in this chapter are listed in Table 7.1.

TABLE
7.1

SQL Data Definition Commands

COMMAND OR OPTION DESCRIPTION
CREATE SCHEMA AUTHORIZATION Creates a database schema
CREATE TABLE Creates a new table in the user's database schema
NOT NULL Ensures that a column will not have null values
UNIQUE Ensures that a column will not have duplicate values
PRIMARY KEY Defines a primary key for a table
FOREIGN KEY Defines a foreign key for a table
DEFAULT Defines a default value for a column (when no value is given)
CHECK Validates data in an attribute
CREATE INDEX Creates an index for a table
CREATE VIEW Creates a dynamic subset of rows/columns from one or more

tables
ALTER TABLE Modifies a tables definition (adds, modifies, or deletes attributes

or constraints)
CREATE TABLE AS Creates a new table based on a query in the user's database

schema
DROP TABLE Permanently deletes a table (and its data)
DROP INDEX Permanently deletes an index
DROP VIEW Permanently deletes a view

� It is a data manipulation language (DML): SQL includes commands to insert, update, delete, and retrieve
data within the database tables. The data manipulation commands you will learn in this chapter are listed in
Table 7.2.

TABLE
7.2

SQL Data Manipulation Commands

COMMAND OR OPTION DESCRIPTION
INSERT Inserts row(s) into a table
SELECT Selects attributes from rows in one or more tables or views

WHERE Restricts the selection of rows based on a conditional expression
GROUP BY Groups the selected rows based on one or more attributes
HAVING Restricts the selection of grouped rows based on a condition
ORDER BY Orders the selected rows based on one or more attributes

UPDATE Modifies an attribute’s values in one or more table’s rows

221I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

TABLE
7.2

SQL Data Manipulation Commands (continued)

COMMAND OR OPTION DESCRIPTION
DELETE Deletes one or more rows from a table
COMMIT Permanently saves data changes
ROLLBACK Restores data to their original values
COMPARISON OPERATORS
=, <, >, <=, >=, <> Used in conditional expressions
LOGICAL OPERATORS
AND/OR/NOT Used in conditional expressions
SPECIAL OPERATORS Used in conditional expressions
BETWEEN Checks whether an attribute value is within a range
IS NULL Checks whether an attribute value is null
LIKE Checks whether an attribute value matches a given string pattern
IN Checks whether an attribute value matches any value within a value list
EXISTS Checks whether a subquery returns any rows
DISTINCT Limits values to unique values
AGGREGATE FUNCTIONS Used with SELECT to return mathematical summaries on columns
COUNT Returns the number of rows with non-null values for a given column
MIN Returns the minimum attribute value found in a given column
MAX Returns the maximum attribute value found in a given column
SUM Returns the sum of all values for a given column
AVG Returns the average of all values for a given column

You will be happy to know that SQL is relatively easy to learn. Its basic command set has a vocabulary of fewer than
100 words. Better yet, SQL is a nonprocedural language: you merely command what is to be done; you don’t have to
worry about how it is to be done. The American National Standards Institute (ANSI) prescribes a standard SQL—the
current fully approved version is SQL-2003. The ANSI SQL standards are also accepted by the International
Organization for Standardization (ISO), a consortium composed of national standards bodies of more than
150 countries. Although adherence to the ANSI/ISO SQL standard is usually required in commercial and government
contract database specifications, many RDBMS vendors add their own special enhancements. Consequently, it is
seldom possible to move a SQL-based application from one RDBMS to another without making some changes.

However, even though there are several different SQL “dialects,” the differences among them are minor. Whether you
use Oracle, Microsoft SQL Server, MySQL, IBM’s DB2, Microsoft Access, or any other well-established RDBMS, a
software manual should be sufficient to get you up to speed if you know the material presented in this chapter.

At the heart of SQL is the query. In Chapter 1, Database Systems, you learned that a query is a spur-of-the-moment
question. Actually, in the SQL environment, the word query covers both questions and actions. Most SQL queries are
used to answer questions such as these: “What products currently held in inventory are priced over $100, and what
is the quantity on hand for each of those products?” “How many employees have been hired since January 1, 2008
by each of the company’s departments?” However, many SQL queries are used to perform actions such as adding or
deleting table rows or changing attribute values within tables. Still other SQL queries create new tables or indexes. In
short, for a DBMS, a query is simply a SQL statement that must be executed. But before you can use SQL to query
a database, you must define the database environment for SQL with its data definition commands.

222 C H A P T E R 7

7.2 DATA DEFINITION COMMANDS

Before examining the SQL syntax for creating and defining tables and other elements, let’s first examine the simple
database model and the database tables that will form the basis for the many SQL examples you’ll explore in this
chapter.

7.2.1 The Database Model

A simple database composed of the following tables is used to illustrate the SQL commands in this chapter:
CUSTOMER, INVOICE, LINE, PRODUCT, and VENDOR. This database model is shown in Figure 7.1.

The database model in Figure 7.1 reflects the following business rules:

� A customer may generate many invoices. Each invoice is generated by one customer.

� An invoice contains one or more invoice lines. Each invoice line is associated with one invoice.

� Each invoice line references one product. A product may be found in many invoice lines. (You can sell more
than one hammer to more than one customer.)

� A vendor may supply many products. Some vendors do not (yet?) supply products. (For example, a vendor list
may include potential vendors.)

� If a product is vendor-supplied, that product is supplied by only a single vendor.

� Some products are not supplied by a vendor. (For example, some products may be produced in-house or
bought on the open market.)

As you can see in Figure 7.1, the database model contains many tables. However, to illustrate the initial set of data
definition commands, the focus of attention will be the PRODUCT and VENDOR tables. You will have the opportunity
to use the remaining tables later in this chapter and in the problem section.

FIGURE
7.1

The database model

223I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

So that you have a point of reference for understanding the effect of the SQL queries, the contents of the PRODUCT
and VENDOR tables are listed in Figure 7.2.

Note the following about these tables. (The features correspond to the business rules reflected in the ERD shown in
Figure 7.1.)

� The VENDOR table contains vendors who are not referenced in the PRODUCT table. Database designers note
that possibility by saying that PRODUCT is optional to VENDOR; a vendor may exist without a reference to
a product. You examined such optional relationships in detail in Chapter 4, Entity Relationship (ER) Modeling.

O n l i n e C o n t e n t

The database model in Figure 7.1 is implemented in the Microsoft Access Ch07_SaleCo database located in
the Premium Website for this book. (This database contains a few additional tables that are not reflected in
Figure 7.1. These tables are used for discussion purposes only.) If you useMS Access, you can use the database
supplied online. However, it is strongly suggested that you create your own database structures so you can
practice the SQL commands illustrated in this chapter.

SQL script files for creating the tables and loading the data in Oracle andMS SQL Server are also located in the
Premium Website. How you connect to your database depends on how the software was installed on your
computer. Follow the instructions provided by your instructor or school.

FIGURE
7.2

The VENDOR and PRODUCT tables

Table name: VENDOR

Table name: PRODUCT

Database name: Ch07_SaleCo

224 C H A P T E R 7

� Existing V_CODE values in the PRODUCT table must (and do) have a match in the VENDOR table to ensure
referential integrity.

� A few products are supplied factory-direct, a few are made in-house, and a few may have been bought in a
warehouse sale. In other words, a product is not necessarily supplied by a vendor. Therefore, VENDOR is
optional to PRODUCT.

A few of the conditions just described were made for the sake of illustrating specific SQL features. For example, null
V_CODE values were used in the PRODUCT table to illustrate (later) how you can track such nulls using SQL.

7.2.2 Creating the Database

Before you can use a new RDBMS, you must complete two tasks: first, create the database structure, and second,
create the tables that will hold the end-user data. To complete the first task, the RDBMS creates the physical files that
will hold the database. When you create a new database, the RDBMS automatically creates the data dictionary tables
in which to store the metadata and creates a default database administrator. Creating the physical files that will hold
the database means interacting with the operating system and the file systems supported by the operating system.
Therefore, creating the database structure is the one feature that tends to differ substantially from one RDBMS to
another. The good news is that it is relatively easy to create a database structure, regardless of which RDBMS you use.

If you use Microsoft Access, creating the database is simple: start Access, select File → New → Blank Database, specify
the folder in which you want to store the database, and then name the database. However, if you work in a database
environment typically used by larger organizations, you will probably use an enterprise RDBMS such as Oracle, SQL
Server, MySQL, or DB2. Given their security requirements and greater complexity, those database products require
a more elaborate database creation process. (See Appendix N, Creating a New Database using Oracle 11g, for an
illustration of specific instructions to create a database structure in Oracle.)

You will be relieved to discover that, with the exception of the database creation process, most RDBMS vendors use
SQL that deviates little from the ANSI standard SQL. For example, most RDBMSs require that each SQL command
ends with a semicolon. However, some SQL implementations do not use a semicolon. Important syntax differences
among implementations will be highlighted in the Note boxes.

If you are using an enterprise RDBMS, before you can start creating tables you must be authenticated by the RDBMS.
Authentication is the process through which the DBMS verifies that only registered users may access the database.
To be authenticated, you must log on to the RDBMS using a user ID and a password created by the database
administrator. In an enterprise RDBMS, every user ID is associated with a database schema.

7.2.3 The Database Schema

In the SQL environment, a schema is a group of database objects—such as tables and indexes—that are related to
each other. Usually, the schema belongs to a single user or application. A single database can hold multiple schemas
belonging to different users or applications. Think of a schema as a logical grouping of database objects, such as tables,
indexes, and views. Schemas are useful in that they group tables by owner (or function) and enforce a first level of
security by allowing each user to see only the tables that belong to that user.

ANSI SQL standards define a command to create a database schema:

CREATE SCHEMA AUTHORIZATION {creator};

Therefore, if the creator is JONES, use the command:

CREATE SCHEMA AUTHORIZATION JONES;

225I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Most enterprise RDBMSs support that command. However, the command is seldom used directly—that is, from the
command line. (When a user is created, the DBMS automatically assigns a schema to that user.) When the DBMS is
used, the CREATE SCHEMA AUTHORIZATION command must be issued by the user who owns the schema. That
is, if you log on as JONES, you can only use CREATE SCHEMA AUTHORIZATION JONES.

For most RDBMSs, the CREATE SCHEMA AUTHORIZATION is optional. That is why this chapter focuses on the
ANSI SQL commands required to create and manipulate tables.

7.2.4 Data Types

In the data dictionary in Table 7.3, note particularly the data types selected. Keep in mind that data-type selection is
usually dictated by the nature of the data and by the intended use. For example:

� P_PRICE clearly requires some kind of numeric data type; defining it as a character field is not acceptable.

� Just as clearly, a vendor name is an obvious candidate for a character data type. For example, VARCHAR2(35)
fits well because vendor names are “variable-length” character strings, and in this case, such strings may be up
to 35 characters long.

� At first glance, it might seem logical to select a numeric data type for V_AREACODE because it contains only
digits. However, adding and subtracting area codes does not yield meaningful results. Therefore, selecting a
character data type is more appropriate. This is true for many common attributes found in business data models.
For example, even though zip codes contain all digits, they must be defined as character data because some zip
codes begin with the digit zero (0), and a numeric data type would cause the leading zero to be dropped.

� U.S. state abbreviations are always two characters, so CHAR(2) is a logical choice.

� Selecting P_INDATE to be a (Julian) DATE field rather than a character field is desirable because the Julian
dates allow you to make simple date comparisons and to perform date arithmetic. For instance, if you have
used DATE fields, you can determine how many days there are between them.

If you use DATE fields, you can also determine what the date will be in say, 60 days from a given P_INDATE by using
P_INDATE + 60. Or you can use the RDBMS’s system date—SYSDATE in Oracle, GETDATE() in MS SQL Server,
and Date() in Access—to determine the answer to questions such as, “What will be the date 60 days from today?” For
example, you might use SYSDATE + 60 (in Oracle), GETDATE() + 60 (in MS SQL Server), or Date() + 60 (in Access).

Date arithmetic capability is particularly useful in billing. Perhaps you want your system to start charging interest on
a customer balance 60 days after the invoice is generated. Such simple date arithmetic would be impossible if you used
a character data type.

Data-type selection sometimes requires professional judgment. For example, you must make a decision about the
V_CODE’s data type as follows:

� If you want the computer to generate new vendor codes by adding 1 to the largest recorded vendor code, you
must classify V_CODE as a numeric attribute. (You cannot perform mathematical procedures on character
data.) The designation INTEGER will ensure that only the counting numbers (integers) can be used. Most SQL
implementations also permit the use of SMALLINT for integer values up to six digits.

� If you do not want to perform mathematical procedures based on V_CODE, you should classify it as a character
attribute, even though it is composed entirely of numbers. Character data are “quicker” to process in queries.
Therefore, when there is no need to perform mathematical procedures on the attribute, store it as a character
attribute.

The first option is used to demonstrate the SQL procedures in this chapter.

226 C H A P T E R 7

TA
BL

E
7.

3
D

at
a

D
ic

tio
na

ry
fo

r
th

e
C

H
07

_S
AL

EC
O

D
at

ab
as

e

TA
BL

E
N

AM
E

AT
TR

IB
U

TE
N

AM
E

C
O

N
TE

N
TS

TY
PE

FO
RM

AT
RA

N
G

E*
RE

Q
U

IR
ED

PK O
R

FK

FK RE
FE

RE
N

C
ED

TA
BL

E
PR
O
D

U
C
T

P_
C
O
D

E
Pr
od
uc
tc
od
e

C
H

AR
(1

0)
XX

XX
XX

XX
XX

N
A

Y
PK

P_
D

ES
C

RI
PT

Pr
od
uc
td
es
cr
ip
tio
n

VA
RC

H
AR

(3
5)

Xx
xx
xx
xx
xx
xx

N
A

Y
P_
IN
D

AT
E

St
oc
ki
ng
da
te

D
AT

E
D
D

-M
O

N
-Y

YY
Y

N
A

Y
P_

Q
O

H
U
ni
ts
av
ai
la
bl
e

SM
AL

LI
N
T

#
#

#
#

0-
99

99
Y

P_
M
IN

M
in
im
um

un
its

SM
AL

LI
N
T

#
#

#
#

0-
99

99
Y

P_
PR
IC

E
Pr
od
uc
tp
ric
e

N
U

M
BE

R(
8,

2)
#

#
#

#
.#

#
0.

00
-9

99
9.

00
Y

P_
D
IS
C
O

U
N
T

D
isc
ou
nt
ra
te

N
U

M
BE

R(
5,

2)
0.

#
#

0.
00

-0
.2

0
Y

V
_C
O
D

E
Ve
nd
or
co
de

IN
TE

G
ER

#
#

#
10

0-
99

9
FK

VE
N
D
O

R

V
EN
D
O

R
V

_C
O
D

E
Ve
nd
or
co
de

IN
TE

G
ER

#
#

#
#

#
10

00
-9

99
9

Y
PK

V
_N

AM
E

Ve
nd
or
na
m
e

C
H

AR
(3

5)
Xx
xx
xx
xx
xx
xx
xx

N
A

Y
V

_C
O

N
TA
C
T

C
on
ta
ct
pe
rs
on

C
H

AR
(2

5)
Xx
xx
xx
xx
xx
xx
xx

N
A

Y
V_

AR
EA
C
O
D

E
Ar
ea
co
de

C
H

AR
(3

)
99

9
N

A
Y

V
_P

H
O

N
E

Ph
on
e
nu
m
be
r

C
H

AR
(8

)
99

9-
99

99
N

A
Y

V
_S
TA
TE

St
at
e

C
H

AR
(2

)
XX

N
A

Y
V_
O

RD
ER

Pr
ev
io
us
or
de
r

C
H

AR
(1

)
X

Y
or

N
Y

FK
=

Fo
re
ig
n
ke
y

PK
=
Pr
im
ar
y
ke
y

C
H

AR
=

Fi
xe
d
ch
ar
ac
te
r
le
ng
th
da
ta
,1
to

25
5
ch
ar
ac
te
rs

VA
RC

H
AR

=
Va
ria
bl
e
ch
ar
ac
te
r
le
ng
th
da
ta
,1
to

2,
00

0
ch
ar
ac
te
rs
.V

AR
C

H
AR

is
au
to
m
at
ic
al
ly
co
nv
er
te
d
to

VA
RC

H
AR

2
in
O
ra
cl
e.

N
U

M
BE

R
=

N
um
er
ic
da
ta
.N

U
M

BE
R(

9,
2)
is
us
ed
to
sp
ec
ify
nu
m
be
rs
w
ith
tw
o
de
ci
m
al
pl
ac
es
an
d
up
to
ni
ne
di
gi
ts
lo
ng
,i
nc
lu
di
ng
th
e
de
ci
m
al
pl
ac
es
.S
om
e

RD
BM

Ss
pe
rm
it
th
e
us
e
of
a

M
O

N
EY
or
a
C

U
RR

EN
C

Y
da
ta
ty
pe
.

IN
T

=
In
te
ge
r
va
lu
es
on
ly

SM
A

LL
IN
T

=
Sm
al
li
nt
eg
er
va
lu
es
on
ly

D
AT

E
fo
rm
at
s
va
ry
.C
om
m
on
ly
ac
ce
pt
ed
fo
rm
at
s
ar
e:

’D
D

-M
O

N
-Y

YY
Y’
,’
D
D

-M
O

N
-Y

Y’
,’

M
M

/D
D

/Y
YY

Y’
,a
nd

’M
M

/D
D

/Y
Y’

*
N
ot
al
lt
he
ra
ng
es
sh
ow
n
he
re
w
ill
be
ill
us
tra
te
d
in
th
is
ch
ap
te
r.

H
ow
ev
er
,y
ou
ca
n
us
e
th
es
e
co
ns
tra
in
ts
to
pr
ac
tic
e
w
rit
in
g
yo
ur
ow
n
co
ns
tra
in
ts
.

227I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

When you define the attribute’s data type, you must pay close attention to the expected use of the attributes for sorting
and data-retrieval purposes. For example, in a real estate application, an attribute that represents the numbers of
bathrooms in a home (H_BATH_NUM) could be assigned the CHAR(3) data type because it is highly unlikely the
application will do any addition, multiplication, or division with the number of bathrooms. Based on the CHAR(3)
data-type definition, valid H_BATH_NUM values would be '2','1','2.5','10'. However, this data-type decision creates
potential problems. For example, if an application sorts the homes by number of bathrooms, a query would “see” the
value '10' as less than '2', which is clearly incorrect. So you must give some thought to the expected use of the data
in order to properly define the attribute data type.

The data dictionary in Table 7.3 contains only a few of the data types supported by SQL. For teaching purposes, the
selection of data types is limited to ensure that almost any RDBMS can be used to implement the examples. If your
RDBMS is fully compliant with ANSI SQL, it will support many more data types than the ones shown in Table 7.4.
And many RDBMSs support data types beyond the ones specified in ANSI SQL.

TABLE
7.4

Some Common SQL Data Types

DATA TYPE FORMAT COMMENTS
Numeric NUMBER(L,D)

INTEGER

SMALLINT

DECIMAL(L,D)

The declaration NUMBER(7,2) indicates numbers that will be stored with
two decimal places and may be up to seven digits long, including the sign
and the decimal place. Examples: 12.32, -134.99.

May be abbreviated as INT. Integers are (whole) counting numbers, so they
cannot be used if you want to store numbers that require decimal places.

Like INTEGER but limited to integer values up to six digits. If your integer
values are relatively small, use SMALLINT instead of INT.

Like the NUMBER specification, but the storage length is a minimum
specification. That is, greater lengths are acceptable, but smaller ones are not.
DECIMAL(9,2), DECIMAL(9), and DECIMAL are all acceptable.

Character CHAR(L)

VARCHAR(L) or
VARCHAR2(L)

Fixed-length character data for up to 255 characters. If you store strings that
are not as long as the CHAR parameter value, the remaining spaces are left
unused. Therefore, if you specify CHAR(25), strings such as Smith and
Katzenjammer are each stored as 25 characters. However, a U.S. area code
is always three digits long, so CHAR(3) would be appropriate if you wanted
to store such codes.

Variable-length character data. The designation VARCHAR2(25) will let you
store characters up to 25 characters long. However, VARCHAR will not leave
unused spaces. Oracle automatically converts VARCHAR to VARCHAR2.

Date DATE Stores dates in the Julian date format.

In addition to the data types shown in Table 7.4, SQL supports several other data types, including TIME, TIMESTAMP,
REAL, DOUBLE, FLOAT, and intervals such as INTERVAL DAY TO HOUR. Many RDBMSs have also expanded the
list to include other types of data, such as LOGICAL, CURRENCY, AutoNumber (Access), and sequence (Oracle).
However, because this chapter is designed to introduce the SQL basics, the discussion is limited to the data types
summarized in Table 7.4.

228 C H A P T E R 7

7.2.5 Creating Table Structures

Now you are ready to implement the PRODUCT and VENDOR table structures with the help of SQL, using the
CREATE TABLE syntax shown next.

CREATE TABLE tablename (
column1 data type [constraint] [,
column2 data type [constraint]] [,
PRIMARY KEY (column1 [, column2])] [,
FOREIGN KEY (column1 [, column2]) REFERENCES tablename] [,
CONSTRAINT constraint]);

To make the SQL code more readable, most SQL programmers use one line per column (attribute) definition. In
addition, spaces are used to line up the attribute characteristics and constraints. Finally, both table and attribute names
are fully capitalized. Those conventions are used in the following examples that create VENDOR and PRODUCT tables
and throughout the book.

O n l i n e C o n t e n t

All the SQL commands you will see in this chapter are located in script files in the Premium Website for this
book. You can copy and paste the SQL commands into your SQL program. Script files are provided for Oracle
and SQL Server users.

Note

SQL SYNTAX
Syntax notation for SQL commands used in this book:

CAPITALS Required SQL command keywords

italics An end-user-provided parameter (generally required)

{a | b | ..} A mandatory parameter; use one option from the list separated by |

[��] An optional parameter—anything inside square brackets is optional

Tablename The name of a table

Column The name of an attribute in a table

data type A valid data-type definition

constraint A valid constraint definition

condition A valid conditional expression (evaluates to true or false)

columnlist One or more column names or expressions separated by commas

tablelist One or more table names separated by commas

conditionlist One or more conditional expressions separated by logical operators

expression A simple value (such as 76 or Married) or a formula (such as P_PRICE − 10)

229I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

CREATE TABLE VENDOR (
V_CODE INTEGER NOT NULL UNIQUE,
V_NAME VARCHAR(35) NOT NULL,
V_CONTACT VARCHAR(15) NOT NULL,
V_AREACODE CHAR(3) NOT NULL,
V_PHONE CHAR(8) NOT NULL,
V_STATE CHAR(2) NOT NULL,
V_ORDER CHAR(1) NOT NULL,
PRIMARY KEY (V_CODE));

CREATE TABLE PRODUCT (
P_CODE VARCHAR(10) NOT NULL UNIQUE,
P_DESCRIPT VARCHAR(35) NOT NULL,
P_INDATE DATE NOT NULL,
P_QOH SMALLINT NOT NULL,
P_MIN SMALLINT NOT NULL,
P_PRICE NUMBER(8,2) NOT NULL,
P_DISCOUNT NUMBER(5,2) NOT NULL,
V_CODE INTEGER,
PRIMARY KEY (P_CODE),
FOREIGN KEY (V_CODE) REFERENCES VENDOR ON UPDATE CASCADE);

As you examine the preceding SQL table-creating command sequences, note the following features:

� The NOT NULL specifications for the attributes ensure that a data entry will be made. When it is crucial to have
the data available, the NOT NULL specification will not allow the end user to leave the attribute empty (with
no data entry at all). Because this specification is made at the table level and stored in the data dictionary,
application programs can use this information to create the data dictionary validation automatically.

� The UNIQUE specification creates a unique index in the respective attribute. Use it to avoid having duplicated
values in a column.

Note

• Because the PRODUCT table contains a foreign key that references the VENDOR table, create the
VENDOR table first. (In fact, the M side of a relationship always references the 1 side. Therefore, in a
1:M relationship, you must always create the table for the 1 side first.)

• If your RDBMS does not support the VARCHAR2 and FCHAR format, use CHAR.

• Oracle accepts the VARCHAR data type and automatically converts it to VARCHAR2.

• If your RDBMS does not support SINT or SMALLINT, use INTEGER or INT. If INTEGER is not supported,
use NUMBER.

• If you use Access, you can use the NUMBER data type, but you cannot use the number delimiters at the
SQL level. For example, using NUMBER(8,2) to indicate numbers with up to eight characters and two
decimal places is fine in Oracle, but you cannot use it in Access—you must use NUMBER without the
delimiters.

• If your RDBMS does not support primary and foreign key designations or the UNIQUE specification,
delete them from the SQL code shown here.

• If you use the PRIMARY KEY designation in Oracle, you do not need the NOT NULL and UNIQUE
specifications.

• The ON UPDATE CASCADE clause is part of the ANSI standard, but it may not be supported by your
RDBMS. In that case, delete the ON UPDATE CASCADE clause.

230 C H A P T E R 7

� The primary key attributes contain both a NOT NULL and a UNIQUE specification. Those specifications
enforce the entity integrity requirements. If the NOT NULL and UNIQUE specifications are not supported, use
PRIMARY KEY without the specifications. (For example, if you designate the PK in MS Access, the NOT
NULL and UNIQUE specifications are automatically assumed and are not spelled out.)

� The entire table definition is enclosed in parentheses. A comma is used to separate each table element
(attributes, primary key, and foreign key) definition.

� The ON UPDATE CASCADE specification ensures that if you make a change in any VENDOR’s V_CODE,
that change is automatically applied to all foreign key references throughout the system (cascade) to ensure that
referential integrity is maintained. (Although the ON UPDATE CASCADE clause is part of the ANSI standard,
some RDBMSs, such as Oracle, do not support ON UPDATE CASCADE. If your RDBMS does not support
the clause, delete it from the code shown here.)

� An RDBMS will automatically enforce referential integrity for foreign keys. That is, you cannot have an invalid
entry in the foreign key column; at the same time, you cannot delete a vendor row as long as a product row
references that vendor.

� The command sequence ends with a semicolon. (Remember, your RDBMS may require that you omit the
semicolon.)

Note

If you are working with a composite primary key, all of the primary key’s attributes are contained within the
parentheses and are separated with commas. For example, the LINE table in Figure 7.1 has a primary key that
consists of the two attributes INV_NUMBER and LINE_NUMBER. Therefore, you would define the primary key
by typing:

PRIMARY KEY (INV_NUMBER, LINE_NUMBER),

The order of the primary key components is important because the indexing starts with the first-mentioned
attribute, then proceeds with the next attribute, and so on. In this example, the line numbers would be ordered
within each of the invoice numbers:

INV_NUMBER LINE_NUMBER

1001 1
1001 2
1002 1
1003 1
1003 2

Note

NOTE ABOUT COLUMN NAMES
Do not use mathematical symbols such as +, −, and / in your column names; instead, use an underscore to
separate words, if necessary. For example, PER-NUM might generate an error message, but PER_NUM is
acceptable. Also, do not use reserved words. Reserved words are words used by SQL to perform specific functions.
For example, in some RDBMSs, the column name INITIAL will generate the message invalid column name.

231I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

7.2.6 SQL Constraints

In Chapter 3, The Relational Database Model, you learned that adherence to rules on entity integrity and referential
integrity is crucial in a relational database environment. Fortunately, most SQL implementations support both integrity
rules. Entity integrity is enforced automatically when the primary key is specified in the CREATE TABLE command
sequence. For example, you can create the VENDOR table structure and set the stage for the enforcement of entity
integrity rules by using:

PRIMARY KEY (V_CODE)

In the PRODUCT table’s CREATE TABLE sequence, note that referential integrity has been enforced by specifying in
the PRODUCT table:

FOREIGN KEY (V_CODE) REFERENCES VENDOR ON UPDATE CASCADE

Note

NOTE TO ORACLE USERS
When you press the Enter key after typing each line, a line number is automatically generated as long as you do
not type a semicolon before pressing the Enter key. For example, Oracle's execution of the CREATE TABLE
command will look like this:

CREATE TABLE PRODUCT (

2 P_CODE VARCHAR2(10)
3 CONSTRAINT PRODUCT_P_CODE_PK PRIMARY KEY,
4 P_DESCRIPT VARCHAR2(35) NOT NULL,
5 P_INDATE DATE NOT NULL,
6 P_QOH NUMBER NOT NULL,
7 P_MIN NUMBER NOT NULL,
8 P_PRICE NUMBER(8,2) NOT NULL,
9 P_DISCOUNT NUMBER(5,2) NOT NULL,

10 V_CODE NUMBER,
11 CONSTRAINT PRODUCT_V_CODE_FK
12 FOREIGN KEY V_CODE REFERENCES VENDOR)
13 ;

In the preceding SQL command sequence, note the following:

• The attribute definition for P_CODE starts in line 2 and ends with a comma at the end of line 3.

• The CONSTRAINT clause (line 3) allows you to define and name a constraint in Oracle. You can name the
constraint to meet your own naming conventions. In this case, the constraint was named PRODUCT_P_
CODE_PK.

• Examples of constraints are NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, and CHECK. For
additional details about constraints, see below.

• To define a PRIMARY KEY constraint, you could also use the following syntax: P_CODE VARCHAR2(10)
PRIMARY KEY,.

• In this case, Oracle would automatically name the constraint.

• Lines 11 and 12 define a FOREIGN KEY constraint name PRODUCT_V_CODE_FK for the attribute
V_CODE. The CONSTRAINT clause is generally used at the end of the CREATE TABLE command
sequence.

• If you do not name the constraints yourself, Oracle will automatically assign a name. Unfortunately, the
Oracle-assigned name makes sense only to Oracle, so you will have a difficult time deciphering it later. You
should assign a name that makes sense to human beings!

232 C H A P T E R 7

That foreign key constraint definition ensures that:

� You cannot delete a vendor from the VENDOR table if at least one product row references that vendor. This
is the default behavior for the treatment of foreign keys.

� On the other hand, if a change is made in an existing VENDOR table’s V_CODE, that change must be reflected
automatically in any PRODUCT table V_CODE reference (ON UPDATE CASCADE). That restriction makes
it impossible for a V_CODE value to exist in the PRODUCT table pointing to a nonexistent VENDOR table
V_CODE value. In other words, the ON UPDATE CASCADE specification ensures the preservation of
referential integrity. (Oracle does not support ON UPDATE CASCADE.)

In general, ANSI SQL permits the use of ON DELETE and ON UPDATE clauses to cover CASCADE, SET NULL, or
SET DEFAULT.

Besides the PRIMARY KEY and FOREIGN KEY constraints, the ANSI SQL standard also defines the following
constraints:

� The NOT NULL constraint ensures that a column does not accept nulls.

� The UNIQUE constraint ensures that all values in a column are unique.

� The DEFAULT constraint assigns a value to an attribute when a new row is added to a table. The end user may,
of course, enter a value other than the default value.

� The CHECK constraint is used to validate data when an attribute value is entered. The CHECK constraint does
precisely what its name suggests: it checks to see that a specified condition exists. Examples of such constraints
include the following:

- The minimum order value must be at least 10.

- The date must be after April 15, 2010.

O n l i n e C o n t e n t

For a more detailed discussion of the options for the ON DELETE and ON UPDATE clauses, see Appendix D,
Converting an ER Model into a Database Structure, Section D.2, General Rules Governing Relationships
Among Tables. Appendix D is in the Premium Website.

Note

NOTE ABOUT REFERENTIAL CONSTRAINT ACTIONS
The support for the referential constraints actions varies from product to product. For example:

• MS Access, SQL Server, and Oracle support ON DELETE CASCADE.

• MS Access and SQL Server support ON UPDATE CASCADE.

• Oracle does not support ON UPDATE CASCADE.

• Oracle supports SET NULL.

• MS Access and SQL Server do not support SET NULL.

• Refer to your product manuals for additional information on referential constraints.
While MS Access does not support ON DELETE CASCADE or ON UPDATE CASCADE at the SQL

command-line level, it does support them through the relationship window interface. In fact, whenever you try
to establish a relationship between two tables in Access, the relationship window interface will automatically
pop up.

233I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

If the CHECK constraint is met for the specified attribute (that is, the condition is true), the data are accepted for that
attribute. If the condition is found to be false, an error message is generated and the data are not accepted.

Note that the CREATE TABLE command lets you define constraints in two different places:

� When you create the column definition (known as a column constraint).

� When you use the CONSTRAINT keyword (known as a table constraint).

A column constraint applies to just one column; a table constraint may apply to many columns. Those constraints are
supported at varying levels of compliance by enterprise RDBMSs.

In this chapter, Oracle is used to illustrate SQL constraints. For example, note that the following SQL command
sequence uses the DEFAULT and CHECK constraints to define the table named CUSTOMER.

CREATE TABLE CUSTOMER (
CUS_CODE NUMBER PRIMARY KEY,
CUS_LNAME VARCHAR(15) NOT NULL,
CUS_FNAME VARCHAR(15) NOT NULL,
CUS_INITIAL CHAR(1),
CUS_AREACODE CHAR(3) DEFAULT '615' NOT NULL

CHECK(CUS_AREACODE IN ('615','713','931')),
CUS_PHONE CHAR(8) NOT NULL,
CUS_BALANCE NUMBER(9,2) DEFAULT 0.00,
CONSTRAINT CUS_UI1 UNIQUE (CUS_LNAME, CUS_FNAME));

In this case, the CUS_AREACODE attribute is assigned a default value of '615'. Therefore, if a new CUSTOMER table row
is added and the end user makes no entry for the area code, the '615' value will be recorded. Also note that the CHECK
condition restricts the values for the customer’s area code to 615, 713, and 931; any other values will be rejected.

It is important to note that the DEFAULT value applies only when new rows are added to a table and then only when
no value is entered for the customer’s area code. (The default value is not used when the table is modified.) In contrast,
the CHECK condition is validated whether a customer row is added or modified. However, while the CHECK
condition may include any valid expression, it applies only to the attributes in the table being checked. If you want to
check for conditions that include attributes in other tables, you must use triggers. (See Chapter 8, Advanced SQL.)
Finally, the last line of the CREATE TABLE command sequence creates a unique index constraint (named CUS_UI1)
on the customer’s last name and first name. The index will prevent the entry of two customers with the same last name
and first name. (This index merely illustrates the process. Clearly, it should be possible to have more than one person
named John Smith in the CUSTOMER table.)

In the following SQL command to create the INVOICE table, the DEFAULT constraint assigns a default date to a new
invoice, and the CHECK constraint validates that the invoice date is greater than January 1, 2010.

CREATE TABLE INVOICE (
INV_NUMBER NUMBER PRIMARY KEY,
CUS_CODE NUMBER NOT NULL REFERENCES CUSTOMER(CUS_CODE),
INV_DATE DATE DEFAULT SYSDATE NOT NULL,
CONSTRAINT INV_CK1 CHECK (INV_DATE > TO_DATE('01-JAN-2010','DD-MON-YYYY')));

Note

NOTE TO MS ACCESS USERS
MS Access does not accept the DEFAULT or CHECK constraints. However, MS Access will accept the
CONSTRAINT CUS_UI1 UNIQUE (CUS_LNAME, CUS_FNAME) line and create the unique index.

234 C H A P T E R 7

In this case, notice the following:

� The CUS_CODE attribute definition contains REFERENCES CUSTOMER (CUS_CODE) to indicate that the
CUS_CODE is a foreign key. This is another way to define a foreign key.

� The DEFAULT constraint uses the SYSDATE special function. This function always returns today’s date.

� The invoice date (INV_DATE) attribute is automatically given today’s date (returned by SYSDATE) when a new
row is added and no value is given for the attribute.

� A CHECK constraint is used to validate that the invoice date is greater than 'January 1, 2010'. When
comparing a date to a manually entered date in a CHECK clause, Oracle requires the use of the TO_DATE
function. The TO_DATE function takes two parameters: the literal date and the date format used.

The final SQL command sequence creates the LINE table. The LINE table has a composite primary key (INV_
NUMBER, LINE_NUMBER) and uses a UNIQUE constraint in INV_NUMBER and P_CODE to ensure that the same
product is not ordered twice in the same invoice.

CREATE TABLE LINE (
INV_NUMBER NUMBER NOT NULL,
LINE_NUMBER NUMBER(2,0) NOT NULL,
P_CODE VARCHAR(10) NOT NULL,
LINE_UNITS NUMBER(9,2) DEFAULT 0.00 NOT NULL,
LINE_PRICE NUMBER(9,2) DEFAULT 0.00 NOT NULL,
PRIMARY KEY (INV_NUMBER, LINE_NUMBER),
FOREIGN KEY (INV_NUMBER) REFERENCES INVOICE ON DELETE CASCADE,
FOREIGN KEY (P_CODE) REFERENCES PRODUCT(P_CODE),
CONSTRAINT LINE_UI1 UNIQUE(INV_NUMBER, P_CODE));

In the creation of the LINE table, note that a UNIQUE constraint is added to prevent the duplication of an invoice line.
A UNIQUE constraint is enforced through the creation of a unique index. Also note that the ON DELETE CASCADE
foreign key action enforces referential integrity. The use of ON DELETE CASCADE is recommended for weak entities
to ensure that the deletion of a row in the strong entity automatically triggers the deletion of the corresponding rows
in the dependent weak entity. In that case, the deletion of an INVOICE row will automatically delete all of the LINE
rows related to the invoice. In the following section, you will learn more about indexes and how to use SQL commands
to create them.

7.2.7 SQL Indexes

You learned in Chapter 3 that indexes can be used to improve the efficiency of searches and to avoid duplicate column
values. In the previous section, you saw how to declare unique indexes on selected attributes when the table is created.
In fact, when you declare a primary key, the DBMS automatically creates a unique index. Even with this feature, you
often need additional indexes. The ability to create indexes quickly and efficiently is important. Using the CREATE
INDEX command, SQL indexes can be created on the basis of any selected attribute. The syntax is:

CREATE [UNIQUE] INDEX indexname ON tablename(column1 [, column2])

For example, based on the attribute P_INDATE stored in the PRODUCT table, the following command creates an
index named P_INDATEX:

CREATE INDEX P_INDATEX ON PRODUCT(P_INDATE);

SQL does not let you write over an existing index without warning you first, thus preserving the index structure within
the data dictionary. Using the UNIQUE index qualifier, you can even create an index that prevents you from using a
value that has been used before. Such a feature is especially useful when the index attribute is a candidate key whose
values must not be duplicated:

235I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

CREATE UNIQUE INDEX P_CODEX ON PRODUCT(P_CODE);

If you now try to enter a duplicate P_CODE value, SQL produces the error message “duplicate value in index.” Many
RDBMSs, including Access, automatically create a unique index on the PK attribute(s) when you declare the PK.

A common practice is to create an index on any field that is used as a search key, in comparison operations in a
conditional expression, or when you want to list rows in a specific order. For example, if you want to create a report
of all products by vendor, it would be useful to create an index on the V_CODE attribute in the PRODUCT table.
Remember that a vendor can supply many products. Therefore, you should not create a UNIQUE index in this case.
Better yet, to make the search as efficient as possible, using a composite index is recommended.

Unique composite indexes are often used to prevent data duplication. For example, consider the case illustrated in
Table 7.5, in which required employee test scores are stored. (An employee can take a test only once on a given date.)
Given the structure of Table 7.5, the PK is EMP_NUM + TEST_NUM. The third test entry for employee 111 meets
entity integrity requirements—the combination 111,3 is unique—yet the WEA test entry is clearly duplicated.

TABLE
7.5

A Duplicated Test Record

EMP_NUM TEST_NUM TEST_CODE TEST_DATE TEST_SCORE
110 1 WEA 15-Jan-2010 93
110 2 WEA 12-Jan-2010 87
111 1 HAZ 14-Dec-2009 91
111 2 WEA 18-Feb-2010 95
111 3 WEA 18-Feb-2010 95
112 1 CHEM 17-Aug-2009 91

Such duplication could have been avoided through the use of a unique composite index, using the attributes
EMP_NUM, TEST_CODE, and TEST_DATE:

CREATE UNIQUE INDEX EMP_TESTDEX ON TEST(EMP_NUM, TEST_CODE, TEST_DATE);

By default, all indexes produce results that are listed in ascending order, but you can create an index that yields output
in descending order. For example, if you routinely print a report that lists all products ordered by price from highest
to lowest, you could create an index named PROD_PRICEX by typing:

CREATE INDEX PROD_PRICEX ON PRODUCT(P_PRICE DESC);

To delete an index, use the DROP INDEX command:

DROP INDEX indexname

For example, if you want to eliminate the PROD_PRICEX index, type:

DROP INDEX PROD_PRICEX;

After creating the tables and some indexes, you are ready to start entering data. The following sections use two tables
(VENDOR and PRODUCT) to demonstrate most of the data manipulation commands.

236 C H A P T E R 7

7.3 DATA MANIPULATION COMMANDS

In this section, you will learn how to use the basic SQL data manipulation commands INSERT, SELECT, COMMIT,
UPDATE, ROLLBACK, and DELETE.

7.3.1 Adding Table Rows

SQL requires the use of the INSERT command to enter data into a table. The INSERT command’s basic syntax looks
like this:

INSERT INTO tablename VALUES (value1, value2, ... , valuen)

Because the PRODUCT table uses its V_CODE to reference the VENDOR table’s V_CODE, an integrity violation will
occur if those VENDOR table V_CODE values don’t yet exist. Therefore, you need to enter the VENDOR rows before
the PRODUCT rows. Given the VENDOR table structure defined earlier and the sample VENDOR data shown in
Figure 7.2, you would enter the first two data rows as follows:

INSERT INTO VENDOR
VALUES (21225,'Bryson, Inc.','Smithson','615','223-3234','TN','Y');

INSERT INTO VENDOR
VALUES (21226,'Superloo, Inc.','Flushing','904','215-8995','FL','N');

and so on, until all of the VENDOR table records have been entered.

(To see the contents of the VENDOR table, use the SELECT * FROM VENDOR; command.)

The PRODUCT table rows would be entered in the same fashion, using the PRODUCT data shown in Figure 7.2. For
example, the first two data rows would be entered as follows, pressing the Enter key at the end of each line:

INSERT INTO PRODUCT
VALUES ('11QER/31','Power painter, 15 psi., 3-nozzle','03-Nov-09',8,5,109.99,0.00,25595);

INSERT INTO PRODUCT
VALUES ('13-Q2/P2','7.25-in. pwr. saw blade','13-Dec-09',32,15,14.99, 0.05, 21344);

(To see the contents of the PRODUCT table, use the SELECT * FROM PRODUCT; command.)

In the preceding data entry lines, observe that:

� The row contents are entered between parentheses. Note that the first character after VALUES is a parenthesis
and that the last character in the command sequence is also a parenthesis.

� Character (string) and date values must be entered between apostrophes (').

� Numerical entries are not enclosed in apostrophes.

� Attribute entries are separated by commas.

� A value is required for each column in the table.

This version of the INSERT commands adds one table row at a time.

Note

Date entry is a function of the date format expected by the DBMS. For example, March 25, 2010 might be
shown as 25-Mar-2010 in Access and Oracle, or it might be displayed in other presentation formats in another
RDBMS.MS Access requires the use of # delimiters when performing any computations or comparisons based
on date attributes, as in P_INDATE >= #25-Mar-10#.

237I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Inserting Rows with Null Attributes
Thus far, you have entered rows in which all of the attribute values are specified. But what do you do if a product does
not have a vendor or if you don’t yet know the vendor code? In those cases, you would want to leave the vendor code
null. To enter a null, use the following syntax:

INSERT INTO PRODUCT
VALUES ('BRT-345','Titanium drill bit','18-Oct-09', 75, 10, 4.50, 0.06, NULL);

Incidentally, note that the NULL entry is accepted only because the V_CODE attribute is optional—the NOT NULL
declaration was not used in the CREATE TABLE statement for this attribute.

Inserting Rows with Optional Attributes
There might be occasions when more than one attribute is optional. Rather than declaring each attribute as NULL in
the INSERT command, you can indicate just the attributes that have required values. You do that by listing the attribute
names inside parentheses after the table name. For the purpose of this example, assume that the only required
attributes for the PRODUCT table are P_CODE and P_DESCRIPT:

INSERT INTO PRODUCT(P_CODE, P_DESCRIPT) VALUES ('BRT-345','Titanium drill bit');

7.3.2 Saving Table Changes

Any changes made to the table contents are not saved on disk until you close the database, close the program you are
using, or use the COMMIT command. If the database is open and a power outage or some other interruption occurs
before you issue the COMMIT command, your changes will be lost and only the original table contents will be retained.
The syntax for the COMMIT command is:

COMMIT [WORK]

The COMMIT command permanently saves all changes—such as rows added, attributes modified, and rows
deleted—made to any table in the database. Therefore, if you intend to make your changes to the PRODUCT table
permanent, it is a good idea to save those changes by using:

COMMIT;

However, the COMMIT command’s purpose is not just to save changes. In fact, the ultimate purpose of the COMMIT
and ROLLBACK commands (see Section 7.3.5) is to ensure database update integrity in transaction management.
(You will see how such issues are addressed in Chapter 10, Transaction Management and Concurrency Control.)

7.3.3 Listing Table Rows

The SELECT command is used to list the contents of a table. The syntax of the SELECT command is as follows:

SELECT columnlist FROM tablename

Note

NOTE TO MS ACCESS USERS
MS Access doesn't support the COMMIT command because it automatically saves changes after the execution
of each SQL command.

238 C H A P T E R 7

The columnlist represents one or more attributes, separated by commas. You could use the * (asterisk) as a wildcard
character to list all attributes. A wildcard character is a symbol that can be used as a general substitute for other
characters or commands. For example, to list all attributes and all rows of the PRODUCT table, use:

SELECT * FROM PRODUCT;

Figure 7.3 shows the output generated by that command. (Figure 7.3 shows all of the rows in the PRODUCT table
that serve as the basis for subsequent discussions. If you entered only the PRODUCT table’s first two records, as shown
in the preceding section, the output of the preceding SELECT command would show only the rows you entered. Don’t
worry about the difference between your SELECT output and the output shown in Figure 7.3. When you complete the
work in this section, you will have created and populated your VENDOR and PRODUCT tables with the correct rows
for use in future sections.)

FIGURE
7.3

The contents of the PRODUCT table

Note

Your listing may not be in the order shown in Figure 7.3. The listings shown in the figure are the result of
system-controlled primary-key-based index operations. You will learn later how to control the output so that it
conforms to the order you have specified.

Note

NOTE TO ORACLE USERS
Some SQL implementations (such as Oracle's) cut the attribute labels to fit the width of the column. However,
Oracle lets you set the width of the display column to show the complete attribute name. You can also change
the display format, regardless of how the data are stored in the table. For example, if you want to display dollar
symbols and commas in the P_PRICE output, you can declare:

COLUMN P_PRICE FORMAT $99,999.99

to change the output 12347.67 to $12,347.67.

In the same manner, to display only the first 12 characters of the P_DESCRIPT attribute, use:

COLUMN P_DESCRIPT FORMAT A12 TRUNCATE

239I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Although SQL commands can be grouped together on a single line, complex command sequences are best shown on
separate lines, with space between the SQL command and the command’s components. Using that formatting
convention makes it much easier to see the components of the SQL statements, making it easy to trace the SQL logic,
and if necessary, to make corrections. The number of spaces used in the indention is up to you. For example, note
the following format for a more complex statement:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_QOH, P_MIN, P_PRICE, P_DISCOUNT, V_CODE
FROM PRODUCT;

When you run a SELECT command on a table, the RDBMS returns a set of one or more rows that have the same
characteristics as a relational table. In addition, the SELECT command lists all rows from the table you specified in the
FROM clause. This is a very important characteristic of SQL commands. By default, most SQL data manipulation
commands operate over an entire table (or relation). That is why SQL commands are said to be set-oriented
commands. A SQL set-oriented command works over a set of rows. The set may include one or more columns and
zero or more rows from one or more tables.

7.3.4 Updating Table Rows

Use the UPDATE command to modify data in a table. The syntax for this command is:

UPDATE tablename
SET columnname = expression [, columnname = expression]
[WHERE conditionlist];

For example, if you want to change P_INDATE from December 13, 2009, to January 18, 2010, in the second row of
the PRODUCT table (see Figure 7.3), use the primary key (13-Q2/P2) to locate the correct (second) row. Therefore, type:

UPDATE PRODUCT
SET P_INDATE = '18-JAN-2010'
WHERE P_CODE = '13-Q2/P2';

If more than one attribute is to be updated in the row, separate the corrections with commas:

UPDATE PRODUCT
SET P_INDATE = '18-JAN-2010', P_PRICE = 17.99, P_MIN = 10
WHERE P_CODE = '13-Q2/P2';

What would have happened if the previous UPDATE command had not included the WHERE condition? The
P_INDATE, P_PRICE, and P_MIN values would have been changed in all rows of the PRODUCT table. Remember,
the UPDATE command is a set-oriented operator. Therefore, if you don’t specify a WHERE condition, the UPDATE
command will apply the changes to all rows in the specified table.

Confirm the correction(s) by using this SELECT command to check the PRODUCT table’s listing:

SELECT * FROM PRODUCT;

7.3.5 Restoring Table Contents

If you have not yet used the COMMIT command to store the changes permanently in the database, you can restore
the database to its previous condition with the ROLLBACK command. ROLLBACK undoes any changes since the
last COMMIT command and brings the data back to the values that existed before the changes were made. To restore
the data to their “prechange” condition, type:

ROLLBACK;

240 C H A P T E R 7

and then press the Enter key. Use the SELECT statement again to see that the ROLLBACK did, in fact, restore the
data to their original values.

COMMIT and ROLLBACK work only with data manipulation commands that are used to add, modify, or delete table
rows. For example, assume that you perform these actions:

1. CREATE a table called SALES.

2. INSERT 10 rows in the SALES table.

3. UPDATE two rows in the SALES table.

4. Execute the ROLLBACK command.

Will the SALES table be removed by the ROLLBACK command? No, the ROLLBACK command will undo only the
results of the INSERT and UPDATE commands. All data definition commands (CREATE TABLE) are automatically
committed to the data dictionary and cannot be rolled back. The COMMIT and ROLLBACK commands are examined
in greater detail in Chapter 10.

Some RDBMSs, such as Oracle, automatically COMMIT data changes when issuing data definition commands. For
example, if you had used the CREATE INDEX command after updating the two rows in the previous example, all
previous changes would have been committed automatically; doing a ROLLBACK afterward wouldn’t have undone
anything. Check your RDBMS manual to understand these subtle differences.

7.3.6 Deleting Table Rows

It is easy to delete a table row using the DELETE statement; the syntax is:

DELETE FROM tablename
[WHERE conditionlist];

For example, if you want to delete from the PRODUCT table the product that you added earlier whose code (P_CODE)
is 'BRT-345', use:

DELETE FROM PRODUCT
WHERE P_CODE = 'BRT-345';

In that example, the primary key value lets SQL find the exact record to be deleted. However, deletions are not limited
to a primary key match; any attribute may be used. For example, in your PRODUCT table, you will see that there are
several products for which the P_MIN attribute is equal to 5. Use the following command to delete all rows from the
PRODUCT table for which the P_MIN is equal to 5:

DELETE FROM PRODUCT
WHERE P_MIN = 5;

Check the PRODUCT table’s contents again to verify that all products with P_MIN equal to 5 have been deleted.

Finally, remember that DELETE is a set-oriented command. And keep in mind that the WHERE condition is optional.
Therefore, if you do not specify a WHERE condition, all rows from the specified table will be deleted!

Note

NOTE TO MS ACCESS USERS
MS Access does not support the ROLLBACK command.

241I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

7.3.7 Inserting Table Rows with a Select Subquery

You learned in Section 7.3.1 how to use the INSERT statement to add rows to a table. In that section, you added rows
one at a time. In this section, you will learn how to add multiple rows to a table, using another table as the source of
the data. The syntax for the INSERT statement is:

INSERT INTO tablename SELECT columnlist FROM tablename;

In that case, the INSERT statement uses a SELECT subquery. A subquery, also known as a nested query or an
inner query, is a query that is embedded (or nested) inside another query. The inner query is always executed first by
the RDBMS. Given the previous SQL statement, the INSERT portion represents the outer query, and the SELECT
portion represents the subquery. You can nest queries (place queries inside queries) many levels deep; in every case,
the output of the inner query is used as the input for the outer (higher-level) query. In Chapter 8 you will learn more
about the various types of subqueries.

The values returned by the SELECT subquery should match the attributes and data types of the table in the INSERT
statement. If the table into which you are inserting rows has one date attribute, one number attribute, and one
character attribute, the SELECT subquery should return one or more rows in which the first column has date values,
the second column has number values, and the third column has character values.

7.4 SELECT QUERIES

In this section, you will learn how to fine-tune the SELECT command by adding restrictions to the search criteria. SELECT,
coupled with appropriate search conditions, is an incredibly powerful tool that enables you to transform data into
information. For example, in the following sections, you will learn how to create queries that can be used to answer
questions such as these: “What products were supplied by a particular vendor?” “Which products are priced below $10?”
“How many products supplied by a given vendor were sold between January 5, 2010 and March 20, 2010?”

7.4.1 Selecting Rows with Conditional Restrictions

You can select partial table contents by placing restrictions on the rows to be included in the output. This is done by
using the WHERE clause to add conditional restrictions to the SELECT statement. The following syntax enables you
to specify which rows to select:

SELECT columnlist
FROM tablelist
[WHERE conditionlist];

The SELECT statement retrieves all rows that match the specified condition(s)—also known as the conditional
criteria—you specified in the WHERE clause. The conditionlist in the WHERE clause of the SELECT statement is
represented by one or more conditional expressions, separated by logical operators. The WHERE clause is optional.

O n l i n e C o n t e n t

Before you execute the commands in the following sections, you MUST do the following:

• If you are using Oracle, run the sqlintrodbinit.sql script file in the Premium Website to create all tables
and load the data in the database.

• If you are using Access, copy the original Ch07_SaleCo.mbd file from the Premium Website.

242 C H A P T E R 7

If no rows match the specified criteria in the WHERE clause, you see a blank screen or a message that tells you that
no rows were retrieved. For example, the query:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
FROM PRODUCT
WHERE V_CODE = 21344;

returns the description, date, and price of products with a vendor code of 21344, as shown in Figure 7.4.

MS Access users can use the Access QBE (query by example)
query generator. Although the Access QBE generates its
own “native” version of SQL, you can also elect to type
standard SQL in the Access SQL window, as shown at the
bottom of Figure 7.5. Figure 7.5 shows the Access QBE
screen, the SQL window’s QBE-generated SQL, and the
listing of the modified SQL.

Numerous conditional restrictions can be placed on the selected table contents. For example, the comparison
operators shown in Table 7.6 can be used to restrict output.

FIGURE
7.4

Selected PRODUCT table
attributes for VENDOR
code 21344

FIGURE
7.5

The Microsoft Access QBE and its SQL

Microsoft Access-generated SQL User-entered SQL

Query options

243I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

TABLE
7.6

Comparison Operators

SYMBOL MEANING
= Equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
<> or != Not equal to

The following example uses the “not equal to” operator:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
FROM PRODUCT
WHERE V_CODE <> 21344;

The output, shown in Figure 7.6, lists all of the rows for which the vendor code is not 21344.

Note that, in Figure 7.6, rows with nulls in the V_CODE column (see Figure 7.3) are not included in the SELECT
command’s output.

The command sequence:

SELECT P_DESCRIPT, P_QOH, P_MIN, P_PRICE
FROM PRODUCT
WHERE P_PRICE <= 10;

yields the output shown in Figure 7.7.

Using Comparison Operators on Character
Attributes
Because computers identify all characters by their (numeric)
American Standard Code for Information Interchange
(ASCII) codes, comparison operators may even be used to
place restrictions on character-based attributes. Therefore,
the command:

SELECT P_CODE, P_DESCRIPT, P_QOH, P_MIN,
P_PRICE

FROM PRODUCT
WHERE P_CODE < '1558-QW1';

would be correct and would yield a list of all rows in which the
P_CODE is alphabetically less than 1558-QW1. (Because the

Note

NOTE TO MS ACCESS USERS
TheMS Access QBE interface automatically designates the data source by using the table name as a prefix. You
will discover later that the table name prefix is used to avoid ambiguity when the same column name appears
in multiple tables. For example, both the VENDOR and the PRODUCT tables contain the V_CODE attribute.
Therefore, if both tables are used (as they would be in a join), the source of the V_CODE attribute must be
specified.

FIGURE
7.6

Selected PRODUCT table
attributes for VENDOR codes
other than 21344

FIGURE
7.7

Selected PRODUCT table
attributes with a P_PRICE
restriction

244 C H A P T E R 7

ASCII code value for the letter B is greater than the value of the letter A, it follows that A is less than B.) Therefore,
the output will be generated as shown in Figure 7.8.

String (character) comparisons are made from left to right.
This left-to-right comparison is especially useful when
attributes such as names are to be compared. For example,
the string “Ardmore” would be judged greater than the
string “Aarenson” but less than the string “Brown”; such
results may be used to generate alphabetical listings like
those found in a phone directory. If the characters 0−9 are
stored as strings, the same left-to-right string comparisons
can lead to apparent anomalies. For example, the ASCII
code for the character “5” is, as expected, greater than the

ASCII code for the character “4.” Yet the same “5” will also be judged greater than the string “44” because the first
character in the string “44” is less than the string “5.” For that reason, you may get some unexpected results from
comparisons when dates or other numbers are stored in character format. This also applies to date comparisons. For
example, the left-to-right ASCII character comparison would force the conclusion that the date “01/01/2010”
occurred before “12/31/2009.” Because the leftmost character “0” in “01/01/2010” is less than the leftmost
character “1” in “12/31/2009,” “01/01/2010” is less than “12/31/2009.” Naturally, if date strings are stored in
a yyyy/mm/dd format, the comparisons will yield appropriate results, but this is a nonstandard date presentation.
That’s why all current RDBMSs support “date” data types; you should use them. In addition, using “date” data types
gives you the benefit of date arithmetic.

Using Comparison Operators on Dates
Date procedures are often more software-specific than other SQL procedures. For example, the query to list all of the
rows in which the inventory stock dates occur on or after January 20, 2010 will look like this:

SELECT P_DESCRIPT, P_QOH, P_MIN, P_PRICE, P_INDATE
FROM PRODUCT
WHERE P_INDATE >= '20-Jan-2010';

(Remember that MS Access users must use the # delimiters for dates. For example, you would use #20-Jan-10# in the
above WHERE clause.) The date-restricted output is shown in Figure 7.9.

Using Computed Columns and Column
Aliases
Suppose that you want to determine the total value of each
of the products currently held in inventory. Logically, that
determination requires the multiplication of each product’s
quantity on hand by its current price. You can accomplish
this task with the following command:

SELECT P_DESCRIPT, P_QOH, P_PRICE, P_QOH *
P_PRICE

FROM PRODUCT;

FIGURE
7.8

Selected PRODUCT table
attributes: the ASCII code
effect

FIGURE
7.9

Selected PRODUCT table
attributes: date restriction

245I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Entering that SQL command in Access generates the output
shown in Figure 7.10.

SQL accepts any valid expressions (or formulas) in the
computed columns. Such formulas can contain any valid
mathematical operators and functions that are applied to
attributes in any of the tables specified in the FROM clause
of the SELECT statement. Note also that Access automati-
cally adds an Expr label to all computed columns. (The first
computed column would be labeled Expr1; the second,
Expr2; and so on.) Oracle uses the actual formula text as the
label for the computed column.

To make the output more readable, the SQL standard
permits the use of aliases for any column in a SELECT
statement. An alias is an alternative name given to a
column or table in any SQL statement.

For example, you can rewrite the previous SQL statement as:

SELECT P_DESCRIPT, P_QOH, P_PRICE, P_QOH * P_PRICE AS TOTVALUE
FROM PRODUCT;

The output of that command is shown in Figure 7.11.

You could also use a computed column, an alias, and date
arithmetic in a single query. For example, assume that you
want to get a list of out-of-warranty products that have been
stored more than 90 days. In that case, the P_INDATE is at
least 90 days less than the current (system) date. The MS
Access version of this query is:

SELECT P_CODE, P_INDATE, DATE() - 90 AS
CUTDATE

FROM PRODUCT
WHERE P_INDATE <= DATE() - 90;

The Oracle version of the same query is shown here:

SELECT P_CODE, P_INDATE, SYSDATE - 90 AS
CUTDATE

FROM PRODUCT
WHERE P_INDATE <= SYSDATE - 90;

Note that DATE() and SYSDATE are special functions that return the current date in MS Access and Oracle,
respectively. You can use the DATE() and SYSDATE functions anywhere a date literal is expected, such as in the value
list of an INSERT statement, in an UPDATE statement when changing the value of a date attribute, or in a SELECT
statement as shown here. Of course, the previous query output would change based on the current date.

FIGURE
7.10

SELECT statement with a
computed column

FIGURE
7.11

SELECT statement with a
computed column and an alias

246 C H A P T E R 7

Suppose that a manager wants a list of all products, the dates they were received, and the warranty expiration date
(90 days from when the product was received). To generate that list, type:

SELECT P_CODE, P_INDATE, P_INDATE + 90 AS EXPDATE
FROM PRODUCT;

Note that you can use all arithmetic operators with date attributes as well as with numeric attributes.

7.4.2 Arithmetic Operators: The Rule of Precedence

As you saw in the previous example, you can use arithmetic operators with table attributes in a column list or in a
conditional expression. In fact, SQL commands are often used in conjunction with the arithmetic operators shown in
Table 7.7.

TABLE
7.7

The Arithmetic Operators

ARITHMETIC OPERATOR DESCRIPTION
+ Add
- Subtract
* Multiply
/ Divide
^ Raise to the power of (some applications use ** instead of ^)

Do not confuse the multiplication symbol (*) with the wildcard symbol used by some SQL implementations, such as MS
Access; the latter is used only in string comparisons, while the former is used in conjunction with mathematical
procedures.

As you perform mathematical operations on attributes, remember the rules of precedence. As the name suggests, the
rules of precedence are the rules that establish the order in which computations are completed. For example, note
the order of the following computational sequence:

1. Perform operations within parentheses.

2. Perform power operations.

3. Perform multiplications and divisions.

4. Perform additions and subtractions.

The application of the rules of precedence will tell you that 8 + 2 * 5 = 8 + 10 = 18, but (8 + 2) * 5 = 10 * 5 = 50.
Similarly, 4 + 5^2 * 3 = 4 + 25 * 3 = 79, but (4 + 5)^2 * 3 = 81 * 3 = 243, while the operation expressed by
(4 + 5^2) * 3 yields the answer (4 + 25) * 3 = 29 * 3 = 87.

7.4.3 Logical Operators: AND, OR, and NOT

In the real world, a search of data normally involves multiple conditions. For example, when you are buying a new
house, you look for a certain area, a certain number of bedrooms, bathrooms, stories, and so on. In the same way,
SQL allows you to include multiple conditions in a query through the use of logical operators. The logical operators
are AND, OR, and NOT. For example, if you want a list of the table contents for either the V_CODE = 21344 or the
V_CODE = 24288, you can use the OR operator, as in the following command sequence:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
FROM PRODUCT
WHERE V_CODE = 21344 OR V_CODE = 24288;

247I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

That command generates the six rows shown in Figure 7.12 that match the logical restriction.

The logical AND has the same SQL syntax requirement.
The following command generates a list of all rows for which
P_PRICE is less than $50 and for which P_INDATE is a date
occurring after January 15, 2010:

SELECT P_DESCRIPT, P_INDATE, P_PRICE,
V_CODE

FROM PRODUCT
WHERE P_PRICE < 50
AND P_INDATE > '15-Jan-2010';

This command will produce the output shown in Figure 7.13.

You can combine the logical OR with the logical AND
to place further restrictions on the output. For
example, suppose that you want a table listing for the
following conditions:

� The P_INDATE is after January 15, 2010, and the
P_PRICE is less than $50.

� Or the V_CODE is 24288.

The required listing can be produced by using:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
FROM PRODUCT
WHERE (P_PRICE < 50 AND P_INDATE > '15-Jan-2010')
OR V_CODE = 24288;

Note the use of parentheses to combine logical restrictions. Where you place the parentheses depends on how you
want the logical restrictions to be executed. Conditions listed within parentheses are always executed first. The
preceding query yields the output shown in Figure 7.14.

Note that the three rows with the V_CODE = 24288 are
included regardless of the P_INDATE and P_PRICE entries
for those rows.

The use of the logical operators OR and AND can become
quite complex when numerous restrictions are placed on the
query. In fact, a specialty field in mathematics known as
Boolean algebra is dedicated to the use of logical
operators.

The logical operator NOT is used to negate the result of a
conditional expression. That is, in SQL, all conditional
expressions evaluate to true or false. If an expression is true,

FIGURE
7.12

Selected PRODUCT table
attributes: the logical OR

FIGURE
7.13

Selected PRODUCT table
attributes: the logical AND

FIGURE
7.14

Selected PRODUCT table
attributes: the logical AND
and OR

248 C H A P T E R 7

the row is selected; if an expression is false, the row is not selected. The NOT logical operator is typically used to find
the rows that do not match a certain condition. For example, if you want to see a listing of all rows for which the
vendor code is not 21344, use the command sequence:

SELECT *
FROM PRODUCT
WHERE NOT (V_CODE = 21344);

Note that the condition is enclosed in parentheses; that practice is optional, but it is highly recommended for clarity.
The logical NOT can be combined with AND and OR.

7.4.4 Special Operators

ANSI-standard SQL allows the use of special operators in conjunction with the WHERE clause. These special operators
include:

BETWEEN: Used to check whether an attribute value is within a range

IS NULL: Used to check whether an attribute value is null

LIKE: Used to check whether an attribute value matches a given string pattern

IN: Used to check whether an attribute value matches any value within a value list

EXISTS: Used to check whether a subquery returns any rows

The BETWEEN Special Operator
If you use software that implements a standard SQL, the operator BETWEEN may be used to check whether an
attribute value is within a range of values. For example, if you want to see a listing for all products whose prices are
between $50 and $100, use the following command sequence:

SELECT *
FROM PRODUCT
WHERE P_PRICE BETWEEN 50.00 AND 100.00;

Note

If your SQL version does not support the logical NOT, you can generate the required output by using the
condition:

WHERE V_CODE <> 21344

If your version of SQL does not support <>, use:

WHERE V_CODE != 21344

Note

NOTE TO ORACLE USERS
When using the BETWEEN special operator, always specify the lower range value first. If you list the higher range
value first, Oracle will return an empty result set.

249I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

If your DBMS does not support BETWEEN, you can use:

SELECT *
FROM PRODUCT
WHERE P_PRICE > 50.00 AND P_PRICE < 100.00;

The IS NULL Special Operator
Standard SQL allows the use of IS NULL to check for a null attribute value. For example, suppose that you want to
list all products that do not have a vendor assigned (V_CODE is null). Such a null entry could be found by using the
command sequence:

SELECT P_CODE, P_DESCRIPT, V_CODE
FROM PRODUCT
WHERE V_CODE IS NULL;

Similarly, if you want to check a null date entry, the command sequence is:

SELECT P_CODE, P_DESCRIPT, P_INDATE
FROM PRODUCT
WHERE P_INDATE IS NULL;

Note that SQL uses a special operator to test for nulls. Why? Couldn’t you just enter a condition such as �V_CODE
= NULL�? No. Technically, NULL is not a “value” the way the number 0 (zero) or the blank space is, but instead a
NULL is a special property of an attribute that represents precisely the absence of any value.

The LIKE Special Operator
The LIKE special operator is used in conjunction with wildcards to find patterns within string attributes. Standard SQL
allows you to use the percent sign (%) and underscore (_) wildcard characters to make matches when the entire string
is not known:

� % means any and all following or preceding characters are eligible. For example,

'J%' includes Johnson, Jones, Jernigan, July, and J-231Q.

'Jo%' includes Johnson and Jones.

'%n' includes Johnson and Jernigan.

� _ means any one character may be substituted for the underscore. For example,

'_23-456-6789' includes 123-456-6789, 223-456-6789, and 323-456-6789.

'_23-_56-678_' includes 123-156-6781, 123-256-6782, and 823-956-6788.

'_o_es' includes Jones, Cones, Cokes, totes, and roles.

For example, the following query would find all VENDOR rows for contacts whose last names begin with Smith.

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE V_CONTACT LIKE 'Smith%';

If you check the original VENDOR data in Figure 7.2 again, you’ll see that this SQL query yields three records: two
Smiths and one Smithson.

Note

Some RDBMSs, such as Microsoft Access, use the wildcard characters * and ? instead of % and _.

250 C H A P T E R 7

Keep in mind that most SQL implementations yield case-sensitive searches. For example, Oracle will not yield a result
that includes Jones if you use the wildcard search delimiter 'jo%' in a search for last names. The reason is that Jones
begins with a capital J, and your wildcard search starts with a lowercase j. On the other hand, MS Access searches are
not case sensitive.

For example, suppose that you typed the following query in Oracle:

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE V_CONTACT LIKE 'SMITH%';

No rows will be returned because character-based queries may be case sensitive. That is, an uppercase character has
a different ASCII code than a lowercase character, causing SMITH, Smith, and smith to be evaluated as different
(unequal) entries. Because the table contains no vendor whose last name begins with (uppercase) SMITH, the
(uppercase) 'SMITH%' used in the query cannot be matched. Matches can be made only when the query entry is written
exactly like the table entry.

Some RDBMSs, such as Microsoft Access, automatically make the necessary conversions to eliminate case sensitivity.
Others, such as Oracle, provide a special UPPER function to convert both table and query character entries to
uppercase. (The conversion is done in the computer’s memory only; the conversion has no effect on how the value
is actually stored in the table.) So if you want to avoid a no-match result based on case sensitivity, and if your RDBMS
allows the use of the UPPER function, you can generate the same results by using the query:

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE UPPER(V_CONTACT) LIKE 'SMITH%';

The preceding query produces a list that includes all rows containing a last name that begins with Smith, regardless
of uppercase or lowercase letter combinations such as Smith, smith, and SMITH.

The logical operators may be used in conjunction with the special operators. For instance, the query:

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE V_CONTACT NOT LIKE 'Smith%';

will yield an output of all vendors whose names do not start with Smith.

Suppose that you do not know whether a person’s name is spelled Johnson or Johnsen. The wildcard character _ lets
you find a match for either spelling. The proper search would be instituted by the query:

SELECT *
FROM VENDOR
WHERE V_CONTACT LIKE 'Johns_n';

Thus, the wildcards allow you to make matches when only approximate spellings are known. Wildcard characters may
be used in combinations. For example, the wildcard search based on the string '_l%' can yield the strings Al, Alton,
Elgin, Blakeston, blank, bloated, and eligible.

251I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

The IN Special Operator
Many queries that would require the use of the logical OR can be more easily handled with the help of the special
operator IN. For example, the query:

SELECT *
FROM PRODUCT
WHERE V_CODE = 21344
OR V_CODE = 24288;

can be handled more efficiently with:

SELECT *
FROM PRODUCT
WHERE V_CODE IN (21344, 24288);

Note that the IN operator uses a value list. All of the values in the list must be of the same data type. Each of the values
in the value list is compared to the attribute—in this case, V_CODE. If the V_CODE value matches any of the values
in the list, the row is selected. In this example, the rows selected will be only those in which the V_CODE is either
21344 or 24288.

If the attribute used is of a character data type, the list values must be enclosed in single quotation marks. For instance,
if the V_CODE had been defined as CHAR(5) when the table was created, the preceding query would have read:

SELECT *
FROM PRODUCT
WHERE V_CODE IN ('21344', '24288');

The IN operator is especially valuable when it is used in conjunction with subqueries. For example, suppose that you
want to list the V_CODE and V_NAME of only those vendors who provide products. In that case, you could use a
subquery within the IN operator to automatically generate the value list. The query would be:

SELECT V_CODE, V_NAME
FROM VENDOR
WHERE V_CODE IN (SELECT V_CODE FROM PRODUCT);

The preceding query will be executed in two steps:

1. The inner query or subquery will generate a list of V_CODE values from the PRODUCT tables. Those
V_CODE values represent the vendors who supply products.

2. The IN operator will compare the values generated by the subquery to the V_CODE values in the VENDOR
table and will select only the rows with matching values—that is, the vendors who provide products.

The IN special operator will receive additional attention in Chapter 8, where you will learn more about subqueries.

The EXISTS Special Operator
The EXISTS special operator can be used whenever there is a requirement to execute a command based on the result
of another query. That is, if a subquery returns any rows, run the main query; otherwise, don’t. For example, the
following query will list all vendors, but only if there are products to order:

SELECT *
FROM VENDOR
WHERE EXISTS (SELECT * FROM PRODUCT WHERE P_QOH <= P_MIN);

252 C H A P T E R 7

The EXISTS special operator is used in the following example to list all vendors, but only if there are products with
the quantity on hand, less than double the minimum quantity:

SELECT *
FROM VENDOR
WHERE EXISTS (SELECT * FROM PRODUCT WHERE P_QOH < P_MIN * 2);

The EXISTS special operator will receive additional attention in Chapter 8, where you will learn more about
subqueries.

7.5 ADDITIONAL DATA DEFINITION COMMANDS

In this section, you will learn how to change (alter) table structures by changing attribute characteristics and by adding
columns. Then you will learn how to do advanced data updates to the new columns. Finally, you will learn how to copy
tables or parts of tables and how to delete tables.

All changes in the table structure are made by using the ALTER TABLE command, followed by a keyword that
produces the specific change you want to make. Three options are available: ADD, MODIFY, and DROP. You use
ADD to add a column, MODIFY to change column characteristics, and DROP to delete a column from a table. Most
RDBMSs do not allow you to delete a column (unless the column does not contain any values) because such an action
might delete crucial data that are used by other tables. The basic syntax to add or modify columns is:

ALTER TABLE tablename
{ADD | MODIFY} (columnname datatype [{ADD | MODIFY} columnname datatype]) ;

The ALTER TABLE command can also be used to add table constraints. In those cases, the syntax would be:

ALTER TABLE tablename
ADD constraint [ADD constraint] ;

where constraint refers to a constraint definition similar to those you learned in Section 7.2.6.

You could also use the ALTER TABLE command to remove a column or table constraint. The syntax would be as follows:

ALTER TABLE tablename
DROP{PRIMARY KEY | COLUMN columnname | CONSTRAINT constraintname };

Notice that when removing a constraint, you need to specify the name given to the constraint. That is one reason why
you should always name your constraints in your CREATE TABLE or ALTER TABLE statement.

7.5.1 Changing a Column’s Data Type

Using the ALTER syntax, the (integer) V_CODE in the PRODUCT table can be changed to a character V_CODE by using:

ALTER TABLE PRODUCT
MODIFY (V_CODE CHAR(5));

Some RDBMSs, such as Oracle, do not let you change data types unless the column to be changed is empty. For
example, if you want to change the V_CODE field from the current number definition to a character definition, the
above command will yield an error message, because the V_CODE column already contains data. The error message
is easily explained. Remember that the V_CODE in PRODUCT references the V_CODE in VENDOR. If you change
the V_CODE data type, the data types don’t match, and there is a referential integrity violation, which triggers the
error message. If the V_CODE column does not contain data, the preceding command sequence will produce the

253I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

expected table structure alteration (if the foreign key reference was not specified during the creation of the
PRODUCT table).

7.5.2 Changing a Column’s Data Characteristics

If the column to be changed already contains data, you can make changes in the column’s characteristics if those
changes do not alter the data type. For example, if you want to increase the width of the P_PRICE column to nine
digits, use the command:

ALTER TABLE PRODUCT
MODIFY (P_PRICE DECIMAL(9,2));

If you now list the table contents, you can see that the column width of P_PRICE has increased by one digit.

7.5.3 Adding a Column

You can alter an existing table by adding one or more columns. In the following example, you add the column named
P_SALECODE to the PRODUCT table. (This column will be used later to determine whether goods that have been
in inventory for a certain length of time should be placed on special sale.)

Suppose that you expect the P_SALECODE entries to be 1, 2, or 3. Because there will be no arithmetic performed
with the P_SALECODE, the P_SALECODE will be classified as a single-character attribute. Note the inclusion of all
required information in the following ALTER command:

ALTER TABLE PRODUCT
ADD (P_SALECODE CHAR(1));

When adding a column, be careful not to include the NOT NULL clause for the new column. Doing so will cause an
error message; if you add a new column to a table that already has rows, the existing rows will default to a value of
null for the new column. Therefore, it is not possible to add the NOT NULL clause for this new column. (You can, of
course, add the NOT NULL clause to the table structure after all of the data for the new column have been entered
and the column no longer contains nulls.)

Note

Some DBMSs impose limitations on when it's possible to change attribute characteristics. For example, Oracle
lets you increase (but not decrease) the size of a column. The reason for this restriction is that an attribute
modification will affect the integrity of the data in the database. In fact, some attribute changes can be done only
when there are no data in any rows for the affected attribute.

O n l i n e C o n t e n t

If you are using the MS Access databases provided in the Premium Website, you can track each of the updates
in the following sections. For example, look at the copies of the PRODUCT table in the Ch07_SaleCo database,
one named Product_2 and one named PRODUCT_3. Each of the two copies includes the new P_SALECODE
column. If you want to see the cumulative effect of all UPDATE commands, you can continue using the
PRODUCT table with the P_SALECODE modification and all of the changes you will make in the following
sections. (You might even want to use both options, first to examine the individual effects of the update queries
and then to examine the cumulative effects.)

254 C H A P T E R 7

7.5.4 Dropping a Column

Occasionally, you might want to modify a table by deleting a column. Suppose that you want to delete the V_ORDER
attribute from the VENDOR table. To accomplish that, you would use the following command:

ALTER TABLE VENDOR
DROP COLUMN V_ORDER;

Again, some RDBMSs impose restrictions on attribute deletion. For example, you may not drop attributes that are
involved in foreign key relationships, nor may you delete an attribute of a table that contains only that one attribute.

7.5.5 Advanced Data Updates

To make data entries in an existing row’s columns, SQL allows the UPDATE command. The UPDATE command
updates only data in existing rows. For example, to enter the P_SALECODE value '2' in the fourth row, use the
UPDATE command together with the primary key P_CODE '1546-QQ2'. Enter the value by using the command
sequence:

UPDATE PRODUCT
SET P_SALECODE = '2'
WHERE P_CODE = '1546-QQ2';

Subsequent data can be entered the same way, defining each entry location by its primary key (P_CODE) and its
column location (P_SALECODE). For example, if you want to enter the P_SALECODE value '1' for the P_CODE
values '2232/QWE' and '2232/QTY', you use:

UPDATE PRODUCT
SET P_SALECODE = '1'
WHERE P_CODE IN ('2232/QWE', '2232/QTY');

If your RDBMS does not support IN, use the following command:

UPDATE PRODUCT
SET P_SALECODE = '1'
WHERE P_CODE = '2232/QWE' OR P_CODE = '2232/QTY';

The results of your efforts can be checked by using:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_PRICE, P_SALECODE
FROM PRODUCT;

Although the UPDATE sequences just shown allow you to enter values into specified table cells, the process is very
cumbersome. Fortunately, if a relationship can be established between the entries and the existing columns, the
relationship can be used to assign values to their appropriate slots. For example, suppose that you want to place sales
codes based on the P_INDATE into the table, using the following schedule:

P_INDATE P_SALECODE
before December 25, 2009 2
between January 16, 2010, and February 10, 2010 1

Using the PRODUCT table, the following two command sequences make the appropriate assignments:

UPDATE PRODUCT
SET P_SALECODE = '2'
WHERE P_INDATE < '25-Dec-2009';

255I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

UPDATE PRODUCT
SET P_SALECODE = '1'
WHERE P_INDATE >= '16-Jan-2010' AND P_INDATE <='10-Feb-2010';

To check the results of those two command sequences, use:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_PRICE, P_SALECODE
FROM PRODUCT;

If you have made all of the updates shown in this section using Oracle, your PRODUCT table should look like Figure
7.15. Make sure that you issue a COMMIT statement to save these changes.

The arithmetic operators are particularly useful in data updates. For example, if the quantity on hand in your
PRODUCT table has dropped below the minimum desirable value, you’ll order more of the product. Suppose, for
example, you have ordered 20 units of product 2232/QWE. When the 20 units arrive, you’ll want to add them to
inventory, using:

UPDATE PRODUCT
SET P_QOH = P_QOH + 20
WHERE P_CODE = '2232/QWE';

If you want to add 10 percent to the price for all products that have current prices below $50, you can use:

UPDATE PRODUCT
SET P_PRICE = P_PRICE * 1.10
WHERE P_PRICE < 50.00;

If you are using Oracle, issue a ROLLBACK command to undo the changes made by the last two UPDATE statements.

FIGURE
7.15

The cumulative effect of the multiple updates in the PRODUCT table (Oracle)

256 C H A P T E R 7

7.5.6 Copying Parts of Tables

As you will discover in later chapters on database design, sometimes it is necessary to break up a table structure into
several component parts (or smaller tables). Fortunately, SQL allows you to copy the contents of selected table columns
so that the data need not be reentered manually into the newly created table(s). For example, if you want to copy
P_CODE, P_DESCRIPT, P_PRICE, and V_CODE from the PRODUCT table to a new table named PART, you create
the PART table structure first, as follows:

CREATE TABLE PART(
PART_CODE CHAR(8) NOT NULL UNIQUE,
PART_DESCRIPT CHAR(35),
PART_PRICE DECIMAL(8,2),
V_CODE INTEGER,
PRIMARY KEY (PART_CODE));

Note that the PART column names need not be identical to those of the original table and that the new table need not
have the same number of columns as the original table. In this case, the first column in the PART table is PART_CODE,
rather than the original P_CODE found in the PRODUCT table. And the PART table contains only four columns rather
than the seven columns found in the PRODUCT table. However, column characteristics must match; you cannot copy
a character-based attribute into a numeric structure and vice versa.

Next, you need to add the rows to the new PART table, using the PRODUCT table rows. To do that, you use the
INSERT command you learned in Section 7.3.7. The syntax is:

INSERT INTO target_tablename[(target_columnlist)]
SELECT source_columnlist
FROM source_tablename;

Note that the target column list is required if the source column list doesn’t match all of the attribute names and
characteristics of the target table (including the order of the columns). Otherwise, you do not need to specify the target
column list. In this example, you must specify the target column list in the INSERT command below because the
column names of the target table are different:

INSERT INTO PART (PART_CODE, PART_DESCRIPT, PART_PRICE, V_CODE)
SELECT P_CODE, P_DESCRIPT, P_PRICE, V_CODE FROM PRODUCT;

The contents of the PART table can now be examined by using the query:

SELECT * FROM PART;

to generate the new PART table’s contents, shown in Figure 7.16.

Note

If you fail to roll back the changes of the preceding UPDATE queries, the output of the subsequent queries will
not match the results shown in the figures. Therefore:

• If you are using Oracle, use the ROLLBACK command to restore the database to its previous state.

• If you are using Access, copy the original Ch07_SaleCo.mdb file from the PremiumWebsite for this book.

257I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

SQL also provides another way to rapidly create a new table
based on selected columns and rows of an existing table. In
this case, the new table will copy the attribute names, data
characteristics, and rows of the original table. The Oracle
version of the command is:

CREATE TABLE PART AS
SELECT P_CODE AS PART_CODE, P_DESCRIPT

AS PART_DESCRIPT,
P_PRICE AS PART_PRICE, V_CODE

FROM PRODUCT;

If the PART table already exists, Oracle will not let you
overwrite the existing table. To run this command, you must
first delete the existing PART table. (See Section 7.5.8.)

The MS Access version of this command is:

SELECT P_CODE AS PART_CODE, P_DESCRIPT AS PART_DESCRIPT,
P_PRICE AS PART_PRICE, V_CODE INTO PART

FROM PRODUCT;

If the PART table already exists, MS Access will ask if you want to delete the existing table and continue with the
creation of the new PART table.

The SQL command just shown creates a new PART table with PART_CODE, PART_DESCRIPT, PART_PRICE, and
V_CODE columns. In addition, all of the data rows (for the selected columns) will be copied automatically. However,
note that no entity integrity (primary key) or referential integrity (foreign key) rules are automatically applied to
the new table. In the next section, you will learn how to define the PK to enforce entity integrity and the FK to enforce
referential integrity.

7.5.7 Adding Primary and Foreign Key Designations

When you create a new table based on another table, the new table does not include integrity rules from the old table.
In particular, there is no primary key. To define the primary key for the new PART table, use the following command:

ALTER TABLE PART
ADD PRIMARY KEY (PART_CODE);

Aside from the fact that the integrity rules are not automatically transferred to a new table that derives its data from
one or more other tables, several other scenarios could leave you without entity and referential integrity. For example,
you might have forgotten to define the primary and foreign keys when you created the original tables. Or if you
imported tables from a different database, you might have discovered that the importing procedure did not transfer the
integrity rules. In any case, you can reestablish the integrity rules by using the ALTER command. For example, if the
PART table’s foreign key has not yet been designated, it can be designated by:

ALTER TABLE PART
ADD FOREIGN KEY (V_CODE) REFERENCES VENDOR;

Alternatively, if neither the PART table’s primary key nor its foreign key has been designated, you can incorporate both
changes at once, using:

ALTER TABLE PART
ADD PRIMARY KEY (PART_CODE)
ADD FOREIGN KEY (V_CODE) REFERENCES VENDOR;

FIGURE
7.16

PART table attributes copied
from the PRODUCT table

258 C H A P T E R 7

Even composite primary keys and multiple foreign keys can be designated in a single SQL command. For example,
if you want to enforce the integrity rules for the LINE table shown in Figure 7.1, you can use:

ALTER TABLE LINE
ADD PRIMARY KEY (INV_NUMBER, LINE_NUMBER)
ADD FOREIGN KEY (INV_NUMBER) REFERENCES INVOICE
ADD FOREIGN KEY (PROD_CODE) REFERENCES PRODUCT;

7.5.8 Deleting a Table from the Database

A table can be deleted from the database using the DROP TABLE command. For example, you can delete the PART
table you just created with:

DROP TABLE PART;

You can drop a table only if that table is not the “one” side of any relationship. If you try to drop a table otherwise,
the RDBMS will generate an error message indicating that a foreign key integrity violation has occurred.

7.6 ADDITIONAL SELECT QUERY KEYWORDS

One of the most important advantages of SQL is its ability to produce complex free-form queries. The logical operators
that were introduced earlier to update table contents work just as well in the query environment. In addition, SQL
provides useful functions that count, find minimum and maximum values, calculate averages, and so on. Better yet,
SQL allows the user to limit queries to only those entries that have no duplicates or entries whose duplicates can be
grouped.

7.6.1 Ordering a Listing

The ORDER BY clause is especially useful when the listing order is important to you. The syntax is:

SELECT columnlist
FROM tablelist
[WHERE conditionlist]
[ORDER BY columnlist [ASC | DESC]] ;

Although you have the option of declaring the order type—ascending or descending—the default order is ascending.
For example, if you want the contents of the PRODUCT table listed by P_PRICE in ascending order, use:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_PRICE
FROM PRODUCT
ORDER BY P_PRICE;

The output is shown in Figure 7.17. Note that ORDER BY yields an ascending price listing.

Comparing the listing in Figure 7.17 to the actual table contents shown earlier in Figure 7.2, you will see that in
Figure 7.17, the lowest-priced product is listed first, followed by the next lowest-priced product, and so on. However,
although ORDER BY produces a sorted output, the actual table contents are unaffected by the ORDER BY command.

To produce the list in descending order, you would enter:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_PRICE
FROM PRODUCT
ORDER BY P_PRICE DESC;

259I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Ordered listings are used frequently. For example, suppose
that you want to create a phone directory. It would be helpful
if you could produce an ordered sequence (last name, first
name, initial) in three stages:

1. ORDER BY last name.

2. Within the last names, ORDER BY first name.

3. Within the first and last names, ORDER BY middle
initial.

Such a multilevel ordered sequence is known as a
cascading order sequence, and it can be created easily by
listing several attributes, separated by commas, after the
ORDER BY clause.

The cascading order sequence is the basis for any telephone
directory. To illustrate a cascading order sequence, use the

following SQL command on the EMPLOYEE table:

SELECT EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_AREACODE, EMP_PHONE
FROM EMPLOYEE
ORDER BY EMP_LNAME, EMP_FNAME, EMP_INITIAL;

That command yields the results shown in Figure 7.18.

The ORDER BY clause is useful in many applications, especially because the DESC qualifier can be invoked. For
example, listing the most recent items first is a standard procedure. Typically, invoice due dates are listed in descending
order. Or if you want to examine budgets, it’s probably useful to list the largest budget line items first.

FIGURE
7.17

Selected PRODUCT table
attributes: ordered by
(ascending) P_PRICE

FIGURE
7.18

Telephone list query results

260 C H A P T E R 7

You can use the ORDER BY clause in conjunction with other SQL commands, too. For example, note the use of
restrictions on date and price in the following command sequence:

SELECT P_DESCRIPT, V_CODE, P_INDATE, P_PRICE
FROM PRODUCT
WHERE P_INDATE < '21-Jan-2010'
AND P_PRICE <= 50.00
ORDER BY V_CODE, P_PRICE DESC;

The output is shown in Figure 7.19. Note that within each V_CODE, the P_PRICE values are in descending order.

7.6.2 Listing Unique Values

How many different vendors are currently represented in
the PRODUCT table? A simple listing (SELECT) is not very
useful if the table contains several thousand rows and you
have to sift through the vendor codes manually. Fortunately,
SQL’s DISTINCT clause produces a list of only those values
that are different from one another. For example, the
command:

SELECT DISTINCT V_CODE
FROM PRODUCT;

yields only the different (distinct) vendor codes (V_CODE) that are encountered in the PRODUCT table, as shown in
Figure 7.20. Note that the first output row shows the null. (By default, Access places the null V_CODE at the top of
the list, while Oracle places it at the bottom. The placement of nulls does not affect the list contents. In Oracle, you
could use ORDER BY V_CODE NULLS FIRST to place nulls at the top of the list.)

7.6.3 Aggregate Functions

SQL can perform various mathematical summaries for you,
such as counting the number of rows that contain a specified
condition, finding the minimum or maximum values for
some specified attribute, summing the values in a specified
column, and averaging the values in a specified column.
Those aggregate functions are shown in Table 7.8.

FIGURE
7.19

A query based on multiple
restrictions

Note

If the ordering column has nulls, they are listed either first or last, depending on the RDBMS.

The ORDER BY clause must always be listed last in the SELECT command sequence.

FIGURE
7.20

A listing of distinct (different)
V_CODE values in the
PRODUCT table

261I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

TABLE
7.8

Some Basic SQL Aggregate Functions

FUNCTION OUTPUT
COUNT The number of rows containing non-null values
MIN The minimum attribute value encountered in a given column
MAX The maximum attribute value encountered in a given column
SUM The sum of all values for a given column
AVG The arithmetic mean (average) for a specified column

To illustrate another standard SQL command format, most of the remaining input and output sequences are presented
using the Oracle RDBMS.

COUNT
The COUNT function is used to tally the number of non-null values of an attribute. COUNT can be used in conjunction
with the DISTINCT clause. For example, suppose that you want to find out how many different vendors are in the
PRODUCT table. The answer, generated by the first SQL code set shown in Figure 7.21, is 6. The answer indicates
that six different VENDOR codes are found in the PRODUCT table. (Note that the nulls are not counted as V_CODE
values.)

The aggregate functions can be combined with the SQL commands explored earlier. For example, the second SQL
command set in Figure 7.21 supplies the answer to the question, “How many vendors referenced in the PRODUCT
table have supplied products with prices that are less than or equal to $10?” The answer is three, indicating that three
vendors referenced in the PRODUCT table have supplied products that meet the price specification.

The COUNT aggregate function uses one parameter within parentheses, generally a column name such as
COUNT(V_CODE) or COUNT(P_CODE). The parameter may also be an expression such as COUNT(DISTINCT
V_CODE) or COUNT(P_PRICE+10). Using that syntax, COUNT always returns the number of non-null values in the

FIGURE
7.21

COUNT function output examples

262 C H A P T E R 7

given column. (Whether the column values are computed or show stored table row values is immaterial.) In contrast,
the syntax COUNT(*) returns the number of total rows returned by the query, including the rows that contain nulls. In
the example in Figure 7.21, SELECT COUNT(P_CODE) FROM PRODUCT and SELECT COUNT(*) FROM
PRODUCT will yield the same answer because there are no null values in the P_CODE primary key column.

Note that the third SQL command set in Figure 7.21 uses the COUNT(*) command to answer the question, “How many
rows in the PRODUCT table have a P_PRICE value less than or equal to $10?” The answer, five, indicates that five
products have a listed price that meets the price specification. The COUNT(*) aggregate function is used to count rows in
a query result set. In contrast, the COUNT(column) aggregate function counts the number of non-null values in a given
column. For example, in Figure 7.20, the COUNT(*) function would return a value of 7 to indicate seven rows returned
by the query. The COUNT(V_CODE) function would return a value of 6 to indicate the six non-null vendor code values.

MAX and MIN
The MAX and MIN functions help you find answers to problems such as the:

� Highest (maximum) price in the PRODUCT table.

� Lowest (minimum) price in the PRODUCT table.

The highest price, $256.99, is supplied by the first SQL command set in Figure 7.22. The second SQL command set
shown in Figure 7.22 yields the minimum price of $4.99.

The third SQL command set in Figure 7.22 demonstrates that the numeric functions can be used in conjunction with
more complex queries. However, you must remember that the numeric functions yield only one value based on all
of the values found in the table: a single maximum value, a single minimum value, a single count, or a single average
value. It is easy to overlook this warning. For example, examine the question, “Which product has the highest price?”

Although that query seems simple enough, the SQL command sequence:

SELECT P_CODE, P_DESCRIPT, P_PRICE
FROM PRODUCT
WHERE P_PRICE = MAX(P_PRICE);

does not yield the expected results. This is because the use of MAX(P_PRICE) to the right side of a comparison
operator is incorrect, thus producing an error message. The aggregate function MAX(columnname) can be used only

Note

NOTE TO MS ACCESS USERS
MS Access does not support the use of COUNT with the DISTINCT clause. If you want to use such queries in
MS Access, you must create subqueries with DISTINCT and NOT NULL clauses. For example, the equivalent
MS Access queries for the first two queries shown in Figure 7.21 are:

SELECT COUNT(*)
FROM (SELECT DISTINCT V_CODE FROM PRODUCT WHERE V_CODE IS NOT NULL)

and

SELECT COUNT(*)
FROM (SELECT DISTINCT(V_CODE)

FROM (SELECT V_CODE, P_PRICE FROM PRODUCT
WHERE V_CODE IS NOT NULL AND P_PRICE<10))

Those two queries can be found in the PremiumWebsite in the Ch07_SaleCo (Access) database.MS Access
does add a trailer at the end of the query after you have executed it, but you can delete that trailer the next time
you use the query.

263I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

in the column list of a SELECT statement. Also, in a comparison that uses an equality symbol, you can use only a single
value to the right of the equals sign.

To answer the question, therefore, you must compute the maximum price first, then compare it to each price returned
by the query. To do that, you need a nested query. In this case, the nested query is composed of two parts:

� The inner query, which is executed first.

� The outer query, which is executed last. (Remember that the outer query is always the first SQL command you
encounter—in this case, SELECT.)

Using the following command sequence as an example, note that the inner query first finds the maximum price value,
which is stored in memory. Because the outer query now has a value to which to compare each P_PRICE value, the
query executes properly.

SELECT P_CODE, P_DESCRIPT, P_PRICE
FROM PRODUCT
WHERE P_PRICE = (SELECT MAX(P_PRICE) FROM PRODUCT);

The execution of that nested query yields the correct answer, shown below the third (nested) SQL command set in
Figure 7.22.

The MAX and MIN aggregate functions can also be used with date columns. For example, to find out the product that
has the oldest date, you would use MIN(P_INDATE). In the same manner, to find out the most recent product, you
would use MAX(P_INDATE).

FIGURE
7.22

MAX and MIN output examples

264 C H A P T E R 7

SUM
The SUM function computes the total sum for any specified attribute, using whatever condition(s) you have imposed.
For example, if you want to compute the total amount owed by your customers, you could use the following command:

SELECT SUM(CUS_BALANCE) AS TOTBALANCE
FROM CUSTOMER;

You could also compute the sum total of an expression. For example, if you want to find the total value of all items
carried in inventory, you could use:

SELECT SUM(P_QOH * P_PRICE) AS TOTVALUE
FROM PRODUCT;

because the total value is the sum of the product of the quantity on hand and the price for all items. (See Figure 7.23.)

AVG

The AVG function format is similar to those of MIN and MAX and is subject to the same operating restrictions. The
first SQL command set shown in Figure 7.24 shows how a simple average P_PRICE value can be generated to yield
the computed average price of 56.42125. The second SQL command set in Figure 7.24 produces five output lines
that describe products whose prices exceed the average product price. Note that the second query uses nested SQL
commands and the ORDER BY clause examined earlier.

Note

You can use expressions anywhere a column name is expected. Suppose that you want to know what product
has the highest inventory value. To find the answer, you can write the following query:

SELECT *
FROM PRODUCT
WHERE P_QOH*P_PRICE = (SELECT MAX(P_QOH*P_PRICE) FROM PRODUCT);

FIGURE
7.23

The total value of all items in the PRODUCT table

265I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

7.6.4 Grouping Data

Frequency distributions can be created quickly and easily using the GROUP BY clause within the SELECT statement.
The syntax is:

SELECT columnlist
FROM tablelist
[WHERE conditionlist]
[GROUP BY columnlist]
[HAVING conditionlist]
[ORDER BY columnlist [ASC | DESC]] ;

The GROUP BY clause is generally used when you have attribute columns combined with aggregate functions in the
SELECT statement. For example, to determine the minimum price for each sales code, use the first SQL command
set shown in Figure 7.25.

The second SQL command set in Figure 7.25 generates the average price within each sales code. Note that the
P_SALECODE nulls are included within the grouping.

The GROUP BY clause is valid only when used in conjunction with one of the SQL aggregate functions, such as
COUNT, MIN, MAX, AVG, and SUM. For example, as shown in the first command set in Figure 7.26, if you try to
group the output by using:

SELECT V_CODE, P_CODE, P_DESCRIPT, P_PRICE
FROM PRODUCT
GROUP BY V_CODE;

you generate a “not a GROUP BY expression” error. However, if you write the preceding SQL command sequence
in conjunction with some aggregate function, the GROUP BY clause works properly. The second SQL command
sequence in Figure 7.26 properly answers the question, “How many products are supplied by each vendor?” because
it uses a COUNT aggregate function.

FIGURE
7.24

AVG function output examples

266 C H A P T E R 7

Note that the last output line in Figure 7.26 shows a null for the V_CODE, indicating that two products were not
supplied by a vendor. Perhaps those products were produced in-house, or they might have been bought via a
nonvendor channel, or the person making the data entry might have merely forgotten to enter a vendor code.
(Remember that nulls can be the result of many things.)

FIGURE
7.25

GROUP BY clause output examples

FIGURE
7.26

Incorrect and correct use of the GROUP BY clause

267I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

The GROUP BY Feature's HAVING Clause
A particularly useful extension of the GROUP BY feature is the HAVING clause. The HAVING clause operates very
much like the WHERE clause in the SELECT statement. However, the WHERE clause applies to columns and
expressions for individual rows, while the HAVING clause is applied to the output of a GROUP BY operation. For
example, suppose that you want to generate a listing of the number of products in the inventory supplied by each
vendor. However, this time you want to limit the listing to products whose prices average below $10. The first part of
that requirement is satisfied with the help of the GROUP BY clause, as illustrated in the first SQL command set in
Figure 7.27. Note that the HAVING clause is used in conjunction with the GROUP BY clause in the second SQL
command set in Figure 7.27 to generate the desired result.

If you use the WHERE clause instead of the HAVING clause—the second SQL command set in Figure 7.27 will
produce an error message.

Note

When using the GROUP BY clause with a SELECT statement:

• The SELECTs columnlist must include a combination of column names and aggregate functions.

• The GROUP BY clauses columnlist must include all nonaggregate function columns specified in the
SELECTs columnlist. If required, you could also group by any aggregate function columns that appear in the
SELECTs columnlist.

• The GROUP BY clause columnlist can include any columns from the tables in the FROM clause of the
SELECT statement, even if they do not appear in the SELECTs columnlist.

FIGURE
7.27

An application of the HAVING clause

268 C H A P T E R 7

You can also combine multiple clauses and aggregate functions. For example, consider the following SQL statement:

SELECT V_CODE, SUM(P_QOH * P_PRICE) AS TOTCOST
FROM PRODUCT
GROUP BY V_CODE
HAVING (SUM(P_QOH * P_PRICE) > 500)
ORDER BY SUM(P_QOH * P_PRICE) DESC;

This statement will do the following:

� Aggregate the total cost of products grouped by V_CODE.

� Select only the rows having totals that exceed $500.

� List the results in descending order by the total cost.

Note the syntax used in the HAVING and ORDER BY clauses; in both cases, you must specify the column expression
(formula) used in the SELECT statement’s column list, rather than the column alias (TOTCOST). Some RDBMSs allow
you to replace the column expression with the column alias, while others do not.

7.7 VIRTUAL TABLES: CREATING A VIEW

As you learned earlier, the output of a relational operator such as SELECT is another relation (or table). Suppose that
at the end of every day, you would like to get a list of all products to reorder, that is, products with a quantity on hand
that is less than or equal to the minimum quantity. Instead of typing the same query at the end of every day, wouldn’t
it be better to permanently save that query in the database? That’s the function of a relational view. A view is a virtual
table based on a SELECT query. The query can contain columns, computed columns, aliases, and aggregate functions
from one or more tables. The tables on which the view is based are called base tables.

You can create a view by using the CREATE VIEW command:

CREATE VIEW viewname AS SELECT query

The CREATE VIEW statement is a data definition command that stores the subquery specification—the SELECT
statement used to generate the virtual table—in the data dictionary.

The first SQL command set in Figure 7.28 shows the syntax used to create a view named PRICEGT50. This view
contains only the designated three attributes (P_DESCRIPT, P_QOH, and P_PRICE) and only rows in which the price
is over $50. The second SQL command sequence in Figure 7.28 shows the rows that make up the view.

A relational view has several special characteristics:

� You can use the name of a view anywhere a table name is expected in a SQL statement.

� Views are dynamically updated. That is, the view is re-created on demand each time it is invoked. Therefore,
if new products are added (or deleted) to meet the criterion P_PRICE > 50.00, those new products will
automatically appear (or disappear) in the PRICEGT50 view the next time the view is invoked.

� Views provide a level of security in the database because the view can restrict users to only specified columns
and specified rows in a table. For example, if you have a company with hundreds of employees in several
departments, you could give the secretary of each department a view of only certain attributes and for the
employees that belong only to that secretary’s department.

269I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

� Views may also be used as the basis for reports. For example, if you need a report that shows a summary of
total product cost and quantity-on-hand statistics grouped by vendor, you could create a PROD_STATS
view as:

CREATE VIEW PROD_STATS AS
SELECT V_CODE, SUM(P_QOH*P_PRICE) AS TOTCOST,

MAX(P_QOH) AS MAXQTY, MIN(P_QOH) AS MINQTY,
AVG(P_QOH) AS AVGQTY

FROM PRODUCT
GROUP BY V_CODE;

In Chapter 8, you will learn more about views and, in particular, about updating data in base tables through views.

7.8 JOINING DATABASE TABLES

The ability to combine (join) tables on common attributes is perhaps the most important distinction between a relational
database and other databases. A join is performed when data are retrieved from more than one table at a time. (If
necessary, review the join definitions and examples in Chapter 3, The Relational Database Model.)

To join tables, you simply list the tables in the FROM clause of the SELECT statement. The DBMS will create the
Cartesian product of every table in the FROM clause. (Review Chapter 3 to revisit these terms, if necessary.) However,
to get the correct result—that is, a natural join—you must select only the rows in which the common attribute values
match. To do this, use the WHERE clause to indicate the common attributes used to link the tables (this WHERE clause
is sometimes referred to as the join condition).

FIGURE
7.28

Creating a virtual table with the CREATE VIEW command

Note

NOTE TO MS ACCESS USERS
The CREATE VIEW command is not directly supported in MS Access. To create a view in MS Access, you just
need to create a SQL query and then save it.

270 C H A P T E R 7

The join condition is generally composed of an equality comparison between the foreign key and the primary key of
related tables. For example, suppose that you want to join the two tables VENDOR and PRODUCT. Because V_CODE
is the foreign key in the PRODUCT table and the primary key in the VENDOR table, the link is established on
V_CODE. (See Table 7.9.)

TABLE
7.9

Creating Links Through Foreign Keys

TABLE ATTRIBUTES TO BE SHOWN LINKING ATTRIBUTE
PRODUCT P_DESCRIPT, P_PRICE V_CODE
VENDOR V_COMPANY, V_PHONE V_CODE

When the same attribute name appears in more than one of the joined tables, the source table of the attributes listed
in the SELECT command sequence must be defined. To join the PRODUCT and VENDOR tables, you would use the
following, which produces the output shown in Figure 7.29:

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

Your output might be presented in a different order because the SQL command produces a listing in which the order
of the columns is not relevant. In fact, you are likely to get a different order of the same listing the next time you
execute the command. However, you can generate a more predictable list by using an ORDER BY clause:

SELECT PRODUCT.P_DESCRIPT, PRODUCT.P_PRICE, VENDOR.V_NAME, VENDOR.V_CONTACT,
VENDOR.V_AREACODE, VENDOR.V_PHONE

FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE
ORDER BY PRODUCT.P_PRICE;

In that case, your listing will always be arranged from the lowest price to the highest price.

FIGURE
7.29

The results of a join

271I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

The preceding SQL command sequence joins a row in the PRODUCT table with a row in the VENDOR table in which
the V_CODE values of these rows are the same, as indicated in the WHERE clause’s condition. Because any vendor
can deliver any number of ordered products, the PRODUCT table might contain multiple V_CODE entries for each
V_CODE entry in the VENDOR table. In other words, each V_CODE in VENDOR can be matched with many
V_CODE rows in PRODUCT.

If you do not specify the WHERE clause, the result will be the Cartesian product of PRODUCT and VENDOR. Because
the PRODUCT table contains 16 rows and the VENDOR table contains 11 rows, the Cartesian product will produce
a listing of (16 × 11) = 176 rows. (Each row in PRODUCT will be joined to each row in the VENDOR table.)

All of the SQL commands can be used on the joined tables. For example, the following command sequence is quite
acceptable in SQL and produces the output shown in Figure 7.30:

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE
AND P_INDATE > '15-Jan-2010';

When joining three or more tables, you need to specify a join condition for each pair of tables. The number of join
conditions will always be N-1, where N represents the number of tables listed in the FROM clause. For example, if you
have three tables, you must have two join conditions; if you have five tables, you must have four join conditions; and
so on.

Note

Table names were used as prefixes in the preceding SQL command sequence. For example, PRODUCT.P_
PRICE was used rather than P_PRICE.Most current-generation RDBMSs do not require table names to be used
as prefixes unless the same attribute name occurs in several of the tables being joined. In that case, V_CODE is
used as a foreign key in PRODUCT and as a primary key in VENDOR; therefore, you must use the table names
as prefixes in the WHERE clause. In other words, you can write the previous query as:

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT, VENDOR WHERE PRODUCT.V_CODE = VENDOR.V_CODE

ORDER BY P_PRICE;

Naturally, if an attribute name occurs in several places, its origin (table) must be specified. If you fail to
provide such a specification, SQL will generate an error message to indicate that you have been ambiguous
about the attribute’s origin.

FIGURE
7.30

An ordered and limited listing after a join

272 C H A P T E R 7

Remember, the join condition will match the foreign key of a table to the primary key of the related table. For example,
using Figure 7.1, if you want to list the customer last name, invoice number, invoice date, and product descriptions for
all invoices for customer 10014, you must type the following:

SELECT CUS_LNAME, INVOICE.INV_NUMBER, INV_DATE, P_DESCRIPT
FROM CUSTOMER, INVOICE, LINE, PRODUCT
WHERE CUSTOMER.CUS_CODE = INVOICE.CUS_CODE
AND INVOICE.INV_NUMBER = LINE.INV_NUMBER
AND LINE.P_CODE = PRODUCT.P_CODE
AND CUSTOMER.CUS_CODE = 10014
ORDER BY INV_NUMBER;

Finally, be careful not to create circular join conditions. For example, if Table A is related to Table B, Table B is related
to Table C, and Table C is also related to Table A, create only two join conditions: join A with B and B with C. Do
not join C with A!

7.8.1 Joining Tables with an Alias

An alias may be used to identify the source table from which the data are taken. The aliases P and V are used to label
the PRODUCT and VENDOR tables in the next command sequence. Any legal table name may be used as an alias.
(Also notice that there are no table name prefixes because the attribute listing contains no duplicate names in the
SELECT statement.)

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT P, VENDOR V
WHERE P.V_CODE = V.V_CODE
ORDER BY P_PRICE;

7.8.2 Recursive Joins

An alias is especially useful when a table must be joined to itself in a recursive query. For example, suppose that you
are working with the EMP table shown in Figure 7.31.

FIGURE
7.31

The contents of the EMP table

273I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Using the data in the EMP table, you can generate a list of all employees with their managers’ names by joining the
EMP table to itself. In that case, you would also use aliases to differentiate the table from itself. The SQL command
sequence would look like this:

SELECT E.EMP_MGR, M.EMP_LNAME, E.EMP_NUM, E.EMP_LNAME
FROM EMP E, EMP M
WHERE E.EMP_MGR=M.EMP_NUM
ORDER BY E.EMP_MGR;

The output of the preceding command sequence is shown in Figure 7.32.

7.8.3 Outer Joins

Figure 7.29 showed the results of joining the PRODUCT
and VENDOR tables. If you examine the output, note that
14 product rows are listed. Compare the output to the
PRODUCT table in Figure 7.2, and note that two products
are missing. Why? The reason is that there are two products
with nulls in the V_CODE attribute. Because there is no
matching null “value” in the VENDOR table’s V_CODE
attribute, the products do not show up in the final output
based on the join. Also, note that in the VENDOR table in
Figure 7.2, several vendors have no matching V_CODE in
the PRODUCT table. To include those rows in the final join
output, you must use an outer join.

There are two types of outer joins: left and right. (See Chapter 3.) Given the contents of the PRODUCT and VENDOR
tables, the following left outer join will show all VENDOR rows and all matching PRODUCT rows:

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR LEFT JOIN PRODUCT

ON VENDOR.V_CODE = PRODUCT.V_CODE;

Figure 7.33 shows the output generated by the left outer join command in MS Access. Oracle yields the same result
but shows the output in a different order.

The right outer join will join both tables and show all product rows with all matching vendor rows. The SQL command
for the right outer join is:

SELECT PRODUCT.P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR RIGHT JOIN PRODUCT

ON VENDOR.V_CODE = PRODUCT.V_CODE;

FIGURE
7.32

Using an alias to join a table
to itself

Note

In MS Access, add AS to the previous SQL command sequence, for example:

SELECT E.EMP_MGR,M.EMP_LNAME,E.EMP_NUM,E.EMP_LNAME
FROM EMP AS E, EMP AS M
WHERE E.EMP_MGR = M.EMP_NUM
ORDER BY E.EMP_MGR;

274 C H A P T E R 7

Figure 7.34 shows the output generated by the right outer join command sequence in MS Access. Again, Oracle yields
the same result but shows the output in a different order.

In Chapter 8, you will learn more about joins and how to use the latest ANSI SQL standard syntax.

FIGURE
7.33

The left outer
join results

FIGURE
7.34

The right outer
join results

O n l i n e C o n t e n t

For a complete walk-through example of converting an ER model into a database structure and using SQL
commands to create tables, see Appendix D, Converting the ER Model into a Database Structure, in the
Premium Website for this book.

275I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

S u m m a r y

◗ The SQL commands can be divided into two overall categories: data definition language (DDL) commands and data
manipulation language (DML) commands.

◗ The ANSI standard data types are supported by all RDBMS vendors in different ways. The basic data types are
NUMBER, INTEGER, CHAR, VARCHAR, and DATE.

◗ The basic data definition commands allow you to create tables, indexes, and views. Many SQL constraints can be
used with columns. The commands are CREATE TABLE, CREATE INDEX, CREATE VIEW, ALTER TABLE,
DROP TABLE, DROP VIEW, and DROP INDEX.

◗ DML commands allow you to add, modify, and delete rows from tables. The basic DML commands are SELECT,
INSERT, UPDATE, DELETE, COMMIT, and ROLLBACK.

◗ The INSERT command is used to add new rows to tables. The UPDATE command is used to modify data values
in existing rows of a table. The DELETE command is used to delete rows from tables. The COMMIT and
ROLLBACK commands are used to permanently save or roll back changes made to the rows. Once you COMMIT
the changes, you cannot undo them with a ROLLBACK command.

◗ The SELECT statement is the main data retrieval command in SQL. A SELECT statement has the following syntax:

SELECT columnlist
FROM tablelist
[WHERE conditionlist]
[GROUP BY columnlist]
[HAVING conditionlist]
[ORDER BY columnlist [ASC | DESC]] ;

◗ The column list represents one or more column names separated by commas. The column list may also include
computed columns, aliases, and aggregate functions. A computed column is represented by an expression or
formula (for example, P_PRICE * P_QOH). The FROM clause contains a list of table names or view names.

◗ The WHERE clause can be used with the SELECT, UPDATE, and DELETE statements to restrict the rows affected
by the DDL command. The condition list represents one or more conditional expressions separated by logical
operators (AND, OR, and NOT). The conditional expression can contain any comparison operators (=, >, <, >=,
<=, and <>) as well as special operators (BETWEEN, IS NULL, LIKE, IN, and EXISTS).

◗ Aggregate functions (COUNT, MIN, MAX, and AVG) are special functions that perform arithmetic computations
over a set of rows. The aggregate functions are usually used in conjunction with the GROUP BY clause to group
the output of aggregate computations by one or more attributes. The HAVING clause is used to restrict the output
of the GROUP BY clause by selecting only the aggregate rows that match a given condition.

◗ The ORDER BY clause is used to sort the output of a SELECT statement. The ORDER BY clause can sort by one
or more columns and can use either ascending or descending order.

◗ You can join the output of multiple tables with the SELECT statement. The join operation is performed every time
you specify two or more tables in the FROM clause and use a join condition in the WHERE clause to match the
foreign key of one table to the primary key of the related table. If you do not specify a join condition, the DBMS
will automatically perform a Cartesian product of the tables you specify in the FROM clause.

◗ The natural join uses the join condition to match only rows with equal values in the specified columns. You could also
do a right outer join and left outer join to select the rows that have no matching values in the other related table.

276 C H A P T E R 7

K e y T e r m s

alias, 246

ALTER TABLE, 253

AND, 248

authentication, 225

AVG, 265

base tables, 269

BETWEEN, 249

Boolean algebra, 248

cascading order sequence, 260

COMMIT, 238

COUNT, 262

CREATE INDEX, 235

CREATE TABLE, 229

CREATE VIEW, 269

DELETE, 241

DISTINCT, 261

DROP INDEX, 236

DROP TABLE, 259

EXISTS, 249

GROUP BY, 266

HAVING, 268

IN, 249

inner query, 242

INSERT, 237

IS NULL, 249

LIKE, 249

MAX, 263

MIN, 263

nested query, 242

NOT, 248

OR, 247

ORDER BY, 259

recursive query, 273

reserved words, 231

ROLLBACK, 240

rules of precedence, 247

schema, 225

SELECT, 238

subquery, 242

SUM, 265

UPDATE, 240

view, 269

wildcard character, 239

R e v i e w Q u e s t i o n s

1. In a SELECT query, what is the difference between a WHERE clause and a HAVING clause?

2. Explain why the following command would create an error and what changes could be made to fix the error.

SELECT V_CODE, SUM(P_QOH) FROM PRODUCT;

3. What type of integrity is enforced when a primary key is declared?

4. Explain why it might be more appropriate to declare an attribute that contains only digits as a character data type
instead of a numeric data type.

5. What is the difference between a column constraint and a table constraint?

6. What are “referential constraint actions”?

7. Rewrite the following WHERE clause without the use of the IN special operator.

WHERE V_STATE IN ('TN', 'FL', 'GA')

8. Explain the difference between an ORDER BY clause and a GROUP BY clause.

9. Explain why the two following commands produce different results:

SELECT DISTINCT COUNT (V_CODE) FROM PRODUCT;

SELECT COUNT (DISTINCT V_CODE) FROM PRODUCT;

10. What is the difference between the COUNT aggregate function and the SUM aggregate function?

11. Explain why it would be preferable to use a DATE data type to store date data instead of a character data type.

12. What is the difference between an inner join and an outer join?

O n l i n e C o n t e n t

Answers to selected ReviewQuestions and Problems for this chapter are contained in the PremiumWebsite for
this book.

277I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

P r o b l e m s

The Ch07_ConstructCo database stores data for a consulting company that tracks all charges to projects. The
charges are based on the hours each employee works on each project. The structure and contents of the
Ch07_ConstructCo database are shown in Figure P7.1.

O n l i n e C o n t e n t

Problems 1−25 are based on the Ch07_ConstructCo database located in the PremiumWebsite. This database
is stored inMicrosoft Access format. If you use another DBMS such as Oracle, SQL Server,MySQL, or DB2, use
its import utilities to import the Access database contents. The Premium Website provides Oracle and SQL
script files.

FIGURE
P7.1

The Ch07_ConstructCo database

Relational diagram Table name: EMPLOYEE

Table name: JOB

Table name: PROJECT

Table name: ASSIGNMENT

 Database name: Ch07_ConstructCo

278 C H A P T E R 7

Note that the ASSIGNMENT table in Figure P7.1 stores the JOB_CHG_HOUR values as an attribute (ASSIGN_
CHG_HR) to maintain historical accuracy of the data. The JOB_CHG_HOUR values are likely to change over time.
In fact, a JOB_CHG_HOUR change will be reflected in the ASSIGNMENT table. And, naturally, the employee primary
job assignment might change, so the ASSIGN_JOB is also stored. Because those attributes are required to maintain
the historical accuracy of the data, they are not redundant.

Given the structure and contents of the Ch07_ConstructCo database shown in Figure P7.1, use SQL commands to
answer Problems 1–25.

1. Write the SQL code that will create the table structure for a table named EMP_1. This table is a subset of the
EMPLOYEE table. The basic EMP_1 table structure is summarized in the following table. (Note that the
JOB_CODE is the FK to JOB.)

2. Having created the table structure in Problem 1, write the SQL code to enter the first two rows for the table
shown in Figure P7.2.

3. Assuming that the data shown in the EMP_1 table have been entered, write the SQL code that will list all
attributes for a job code of 502.

4. Write the SQL code that will save the changes made to the EMP_1 table.

5. Write the SQL code to change the job code to 501 for the person whose employee number (EMP_NUM) is 107.
After you have completed the task, examine the results, and then reset the job code to its original value.

6. Write the SQL code to delete the row for the person named William Smithfield, who was hired on June 22,
2004, and whose job code classification is 500. (Hint: Use logical operators to include all of the information
given in this problem.)

7. Write the SQL code that will restore the data to its original status; that is, the table should contain the data that
existed before you made the changes in Problems 5 and 6.

ATTRIBUTE (FIELD)
NAME

DATA
DECLARATION

EMP_NUM CHAR(3)
EMP_LNAME VARCHAR(15)
EMP_FNAME VARCHAR(15)
EMP_INITIAL CHAR(1)
EMP_HIREDATE DATE
JOB_CODE CHAR(3)

FIGURE
P7.2

The contents of the EMP_1 table

279I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

8. Write the SQL code to create a copy of EMP_1, naming the copy EMP_2. Then write the SQL code that will
add the attributes EMP_PCT and PROJ_NUM to its structure. The EMP_PCT is the bonus percentage to be paid
to each employee. The new attribute characteristics are:

EMP_PCTNUMBER(4,2)

PROJ_NUMCHAR(3)

(Note: If your SQL implementation allows it, you may use DECIMAL(4,2) rather than NUMBER(4,2).)

9. Write the SQL code to change the EMP_PCT value to 3.85 for the person whose employee number (EMP_NUM)
is 103. Next, write the SQL command sequences to change the EMP_PCT values as shown in Figure P7.9.

10. Using a single command sequence, write the SQL code that will change the project number (PROJ_NUM) to 18
for all employees whose job classification (JOB_CODE) is 500.

11. Using a single command sequence, write the SQL code that will change the project number (PROJ_NUM) to 25
for all employees whose job classification (JOB_CODE) is 502 or higher. When you finish Problems 10 and 11,
the EMP_2 table will contain the data shown in Figure P7.11. (You may assume that the table has been saved
again at this point.)

12. Write the SQL code that will change the PROJ_NUM to 14 for those employees who were hired before January
1, 1994 and whose job code is at least 501. (You may assume that the table will be restored to its condition
preceding this question.)

FIGURE
P7.9

The EMP_2 table after the modifications

FIGURE
P7.11

The EMP_2 table contents after the modifications

280 C H A P T E R 7

13. Write the two SQL command sequences required to:

a. Create a temporary table named TEMP_1 whose structure is composed of the EMP_2 attributes EMP_NUM
and EMP_PCT.

b. Copy the matching EMP_2 values into the TEMP_1 table.

14. Write the SQL command that will delete the newly created TEMP_1 table from the database.

15. Write the SQL code required to list all employees whose last names start with Smith. In other words, the rows
for both Smith and Smithfield should be included in the listing. Assume case sensitivity.

16. Using the EMPLOYEE, JOB, and PROJECT tables in the Ch07_ConstructCo database (see Figure P7.1), write
the SQL code that will produce the results shown in Figure P7.16.

17. Write the SQL code that will produce a virtual table named REP_1. The virtual table should contain the same
information that was shown in Problem 16.

18. Write the SQL code to find the average bonus percentage in the EMP_2 table you created in Problem 8.

19. Write the SQL code that will produce a listing for the data in the EMP_2 table in ascending order by the bonus
percentage.

20. Write the SQL code that will list only the distinct project numbers found in the EMP_2 table.

21. Write the SQL code to calculate the ASSIGN_CHARGE values in the ASSIGNMENT table in the Ch07_
ConstructCo database. (See Figure P7.1.) Note that ASSIGN_CHARGE is a derived attribute that is calculated
by multiplying ASSIGN_CHG_HR by ASSIGN_HOURS.

22. Using the data in the ASSIGNMENT table, write the SQL code that will yield the total number of hours worked
for each employee and the total charges stemming from those hours worked. The results of running that query
are shown in Figure P7.22.

23. Write a query to produce the total number of hours and charges for each of the projects represented in the
ASSIGNMENT table. The output is shown in Figure P7.23.

FIGURE
P7.16

The query results for Question 16

FIGURE
P7.22

Total hours and charges by employee

281I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

24. Write the SQL code to generate the total hours worked
and the total charges made by all employees. The
results are shown in Figure P7.24. (Hint: This is a
nested query. If you use Microsoft Access, you can
generate the result by using the query output shown in
Figure P7.22 as the basis for the query that will
produce the output shown in Figure P7.24.)

25. Write the SQL code to generate the total hours worked
and the total charges made to all projects. The results
should be the same as those shown in Figure P7.24.
(Hint: This is a nested query. If you use Microsoft
Access, you can generate the result by using the query
output shown in Figure P7.23 as the basis for this
query.)

The structure and contents of the Ch07_SaleCo
database are shown in Figure P7.26. Use this database
to answer the following problems. Save each query as
QXX, where XX is the problem number.

26. Write a query to count the number of invoices.

27. Write a query to count the number of customers with a customer balance over $500.

28. Generate a listing of all purchases made by the customers, using the output shown in Figure P7.28 as your guide.
(Hint: Use the ORDER BY clause to order the resulting rows shown in Figure P7.28.)

FIGURE
P7.23

Total hour and charges by
project

FIGURE
P7.24

Total hours and charges, all
employees

O n l i n e C o n t e n t

Problems 26−43 are based on the Ch07_SaleCo database located in the Premium Website. This database is
stored in Microsoft Access format. If you use another DBMS such as Oracle, SQL Server, MySQL, or DB2, use
its import utilities to import the Access database contents. The Premium Website provides Oracle and SQL
script files.

282 C H A P T E R 7

FIGURE
P7.26

The Ch07_SaleCo database

Relational diagram

Table name: VENDOR
Table name: CUSTOMER

Table name: PRODUCTTable name: INVOICE Table name: LINE

FIGURE
P7.28

List of customer purchases

283I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

29. Using the output shown in Figure P7.29 as your guide, generate a list of customer purchases, including the
subtotals for each of the invoice line numbers. (Hint: Modify the query format used to produce the list of customer
purchases in Problem 28, delete the INV_DATE column, and add the derived (computed) attribute LINE_UNITS
* LINE_PRICE to calculate the subtotals.)

30. Modify the query used in Problem 29 to produce the summary shown in Figure P7.30.

31. Modify the query in Problem 30 to include the number of individual
product purchases made by each customer. (In other words, if the
customer’s invoice is based on three products, one per LINE_
NUMBER, you count three product purchases. Note that in the original
invoice data, customer 10011 generated three invoices, which con-
tained a total of six lines, each representing a product purchase.) Your
output values must match those shown in Figure P7.31.

32. Use a query to compute the average purchase amount per product
made by each customer. (Hint: Use the results of Problem 31 as the

basis for this query.) Your output values must match
those shown in Figure P7.32. Note that the average
purchase amount is equal to the total purchases divided
by the number of purchases.

33. Create a query to produce the total purchase per
invoice, generating the results shown in Figure P7.33.
The invoice total is the sum of the product purchases in
the LINE that corresponds to the INVOICE.

FIGURE
P7.29

Summary of customer purchases with subtotals

FIGURE
P7.30

Customer purchase
summary

FIGURE
P7.31

Customer total purchase
amounts and number of
purchases

284 C H A P T E R 7

34. Use a query to show the invoices and invoice totals as shown in Figure P7.34. (Hint: Group by the CUS_CODE.)

35. Write a query to produce the number of invoices and the total purchase amounts by customer, using the output
shown in Figure P7.35 as your guide. (Compare this summary to the results shown in Problem 34.)

36. Using the query results in Problem 35 as your basis, write a query to generate the total number of invoices, the
invoice total for all of the invoices, the smallest invoice amount, the largest invoice amount, and the average of
all of the invoices. (Hint: Check the figure output in Problem 35.) Your output must match Figure P7.36.

FIGURE
P7.32

Average purchase amount by customer

FIGURE
P7.33

Invoice totals FIGURE
P7.34

Invoice totals by
customer

FIGURE
P7.35

Number of invoices and total
purchase amounts by customer

FIGURE
P7.36

Number of invoices, invoice
totals, minimum, maximum,
and average sales

285I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

37. List the balance characteristics of the customers who have made purchases during the current invoice cycle—that
is, for the customers who appear in the INVOICE table. The results of this query are shown in Figure P7.37.

38. Using the results of the query created in Problem 37, provide a summary of the customer balance characteristics
as shown in Figure P7.38.

39. Create a query to find the customer balance characteristics for all customers, including the total of the outstanding
balances. The results of this query are shown in Figure P7.39.

40. Find the listing of customers who did not make purchases during the invoicing period. Your output must match
the output shown in Figure P7.40.

41. Find the customer balance summary for all customers who have not made purchases during the current invoicing
period. The results are shown in Figure P7.41.

42. Create a query to produce the summary of the value of products currently in inventory. Note that the value of
each product is produced by the multiplication of the units currently in inventory and the unit price. Use the
ORDER BY clause to match the order shown in Figure P7.42.

43. Using the results of the query created in Problem 42, find the total value of the product inventory. The results
are shown in Figure P7.43.

FIGURE
P7.37

Balances for
customers who
made purchases

FIGURE
P7.38

Balance summary of customers
who made purchases

FIGURE
P7.39

Balance summary for all
customers

FIGURE
P7.40

Balances of
customers who did
not make purchases

FIGURE
P7.41

Summary of customer balances for customers who did not
make purchases

286 C H A P T E R 7

C a s e s

TinyVideo is a small movie rental company with a single store. TinyVideo needs a database system to track the rental
of movies to its members. TinyVideo can own several copies (VIDEO) of each movie (MOVIE). For example, the store
may have 10 copies of the movie “Twist in the Wind.” “Twist in the Wind” would be one MOVIE, and each copy would
be a VIDEO. A rental transaction (RENTAL) involves one or more videos being rented to a member (MEMBERSHIP).
A video can be rented many times over its lifetime; therefore, there is a M:N relationship between RENTAL
and VIDEO. DETAILRENTAL is the bridge table to resolve this relationship. The complete ERD is provided in
Figure P7.44.

44. Write the SQL code to create the table structures for the entities shown in Figure P7.44. The structures should
contain the attributes specified in the ERD. Use data types that are appropriate for the data that will need to be
stored in each attribute. Enforce primary key and foreign key constraints as indicated by the ERD.

FIGURE
P7.42

Value of products currently in inventory

FIGURE
P7.43

Total value of all
products in
inventory

287I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

45. The following tables provide a very small portion of the data that will be kept in the database. This data needs
to be inserted into the database for testing purposes. Write the INSERT commands necessary to place the
following data in the tables that were created in Problem 1.

FIGURE
P7.44

The Ch07_MovieCo ERD

MEMBERSHIP
MEM_
NUM

MEM_
FNAME

MEM_
LNAME

MEM_STREET MEM_CITY
MEM_
STATE

MEM_ZIP
MEM_
BALANCE

102 Tami Dawson 2632 Takli Circle Norene TN 37136 11
103 Curt Knight 4025 Cornell Court Flatgap KY 41219 6
104 Jamal Melendez 788 East 145th Avenue Quebeck TN 38579 0
105 Iva Mcclain 6045 Musket Ball Circle Summit KY 42783 15
106 Miranda Parks 4469 Maxwell Place Germantown TN 38183 0
107 Rosario Elliott 7578 Danner Avenue Columbia TN 38402 5
108 Mattie Guy 4390 Evergreen Street Lily KY 40740 0
109 Clint Ochoa 1711 Elm Street Greeneville TN 37745 10
110 Lewis Rosales 4524 Southwind Circle Counce TN 38326 0
111 Stacy Mann 2789 East Cook Avenue Murfreesboro TN 37132 8
112 Luis Trujillo 7267 Melvin Avenue Heiskell TN 37754 3
113 Minnie Gonzales 6430 Vasili Drive Williston TN 38076 0

288 C H A P T E R 7

RENTAL
RENT_NUM RENT_DATE MEM_NUM
1001 01-MAR-09 103
1002 01-MAR-09 105
1003 02-MAR-09 102
1004 02-MAR-09 110
1005 02-MAR-09 111
1006 02-MAR-09 107
1007 02-MAR-09 104
1008 03-MAR-09 105
1009 03-MAR-09 111

DETAILRENTAL
RENT_
NUM

VID_NUM DETAIL_FEE
DETAIL_
DUEDATE

DETAIL_
RETURNDATE

DETAIL_
DAILYLATEFEE

1001 34342 2 04-MAR-09 02-MAR-09 1
1001 61353 2 04-MAR-09 03-MAR-09 1
1002 59237 3.5 04-MAR-09 04-MAR-09 3
1003 54325 3.5 04-MAR-09 09-MAR-09 3
1003 61369 2 06-MAR-09 09-MAR-09 1
1003 61388 0 06-MAR-09 09-MAR-09 1
1004 44392 3.5 05-MAR-09 07-MAR-09 3
1004 34367 3.5 05-MAR-09 07-MAR-09 3
1004 34341 2 07-MAR-09 07-MAR-09 1
1005 34342 2 07-MAR-09 05-MAR-09 1
1005 44397 3.5 05-MAR-09 05-MAR-09 3
1006 34366 3.5 05-MAR-09 04-MAR-09 3
1006 61367 2 07-MAR-09 1
1007 34368 3.5 05-MAR-09 3
1008 34369 3.5 05-MAR-09 05-MAR-09 3
1009 54324 3.5 05-MAR-09 3
1001 34366 3.5 04-MAR-09 02-MAR-09 3

289I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

For Questions 46–77, use the tables that were created in Problem 44 and the data that was loaded into those
tables in Problem 45.

46. Write the SQL command to save the rows inserted in Problem 45.

47. Write the SQL command to change the movie year for movie number 1245 to 2006.

48. Write the SQL command to change the price code for all Action movies to price code 3.

49. Write a single SQL command to increase all price rental fee values by $0.50.

50. Write the SQL command to save the changes made to the PRICE and MOVIE tables in Problems 45–49.

VIDEO
VID_NUM VID_INDATE MOVIE_NUM
54321 18-JUN-08 1234
54324 18-JUN-08 1234
54325 18-JUN-08 1234
34341 22-JAN-07 1235
34342 22-JAN-07 1235
34366 02-MAR-09 1236
34367 02-MAR-09 1236
34368 02-MAR-09 1236
34369 02-MAR-09 1236
44392 21-OCT-08 1237
44397 21-OCT-08 1237
59237 14-FEB-09 1237
61388 25-JAN-07 1239
61353 28-JAN-06 1245
61354 28-JAN-06 1245
61367 30-JUL-08 1246
61369 30-JUL-08 1246

MOVIE

MOVIE_NUM MOVIE_NAME MOVIE_YEAR
MOVIE_
COST

MOVIE_GENRE PRICE_CODE

1234
The Cesar Family
Christmas

2007 39.95 FAMILY 2

1235
Smokey Mountain
Wildlife

2004 59.95 ACTION 1

1236 Richard Goodhope 2008 59.95 DRAMA 2
1237 Beatnik Fever 2007 29.95 COMEDY 2
1238 Constant Companion 2008 89.95 DRAMA 2
1239 Where Hope Dies 1998 25.49 DRAMA 3
1245 Time to Burn 2005 45.49 ACTION 1
1246 What He Doesn't Know 2006 58.29 COMEDY 1

PRICE
PRICE_CODE PRICE_DESCRIPTION PRICE_RENTFEE PRICE_DAILYLATEFEE
1 Standard 2 1
2 New Release 3.5 3
3 Discount 1.5 1
4 Weekly Special 1 .5

290 C H A P T E R 7

51. Write a query to display the movie title, movie year, and movie genre for all movies. (The results are shown in
Figure P7.51.)

52. Write a query to display the movie year, movie title, and movie cost sorted by movie year in descending order.
(The results are shown in Figure P7.52.)

53. Write a query to display the movie title, movie year, and movie genre for all movies sorted by movie genre in
ascending order, then sorted by movie year in descending order within genre. (The results are shown in Figure
P7.53.)

54. Write a query to display the movie number, movie title, and price code for all movies with a title that starts with
the letter “R.” (The results are shown in Figure P7.54.)

55. Write a query to display the movie title, movie year, and movie cost for all movies that contain the word “hope”
anywhere in the title. Sort the results in ascending order by title. (The results are shown in figure P7.55.)

56. Write a query to display the movie title, movie year, and movie genre for all action movies. (The results are shown
in Figure P7.56.)

57. Write a query to display the movie number, movie title, and movie cost for all movies with a cost greater than $40.
(The results are shown in Figure P7.57.)

FIGURE
P7.51

All movies FIGURE
P7.52

Movies by year

FIGURE
P7.53

Movies with
multicolumn sort

FIGURE
P7.54

Movies starting
with R

FIGURE
P7.55

Movies with
“Hope” in the title

FIGURE
P7.56

Action movies

291I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

58. Write a query to display the movie number, movie title, movie cost, and movie genre for all movies that are either
action or comedy movies and that have a cost that is less than $50. Sort the results in ascending order by genre.
(The results are shown in Figure P7.58.)

59. Write a query to display the movie number, and movie description for all movies where the movie description is
a combination of the movie title, movie year, and movie genre with the movie year enclosed in parentheses. (The
results are shown in Figure P7.59.)

60. Write a query to display the movie genre and the number of movies in each genre. (The results are shown in
Figure P7.60.)

61. Write a query to display the average cost of all of the movies. (The results are shown in Figure P7.61.)

62. Write a query to display the movie genre and average cost of movies in each genre. (The results are shown in
Figure P7.62.)

63. Write a query to display the movie title, movie genre, price description, and price rental fee for all movies with
a price code. (The results are shown in Figure P7.63.)

64. Write a query to display the movie genre and average price rental fee for movies in each genre that have a price.
(The results are shown in Figure P7.64.)

FIGURE
P7.57

Movies costing
less than $40

FIGURE
P7.58

Action or comedy
movies less than $50

FIGURE
P7.59

Movies with concatenated
descriptions

FIGURE
P7.60

Number of movies in genre

FIGURE
P7.61

Average movie cost FIGURE
P7.62

Average cost by genre

292 C H A P T E R 7

65. Write a query to display the movie title, movie year, and the movie cost divided by the price rental fee for each
movie that has a price to determine the number of rentals it will take to break even on the purchase of the movie.
(The results are shown in Figure P7.65.)

66. Write a query to display the movie title and movie year for all movies that have a price code. (The results are
shown in Figure P7.66.)

67. Write a query to display the movie title, movie year, and movie cost for all movies that have a cost between
$44.99 and $49.99. (The results are shown in Figure P7.67.)

68. Write a query to display the movie title, movie year, price description, and price rental fee for all movies that are
in the genres family, comedy, or drama. (The results are shown in Figure P7.68.)

FIGURE
P7.63

Rental fees for movies FIGURE
P7.64

Average rental fee by genre

FIGURE
P7.65

Breakeven rentals FIGURE
P7.66

Movies with a price

FIGURE
P7.67

Movies costs within a rangeFIGURE
P7.67

Movies costs within a range

FIGURE
P7.68

Movies within specific genres

293I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

69. Write a query to display the movie number, movie title, and movie year for all movies that do not have a video.
(The results are shown in Figure P7.69.)

70. Write a query to display the membership number, first name, last name, and balance of the memberships that
have a rental. (The results are shown in Figure P7.70.)

71. Write a query to display the minimum balance, maximum balance, and average balance for memberships that
have a rental. (The results are shown in Figure P7.71.)

72. Write a query to display the membership name (concatenate the first name and last name with a space between
them into a single column), membership address (concatenate the street, city, state, and zip codes into a single
column with spaces. (The results are shown in Figure P7.72.)

73. Write a query to display the rental number, rental date, video number, movie title, due date, and return date for
all videos that were returned after the due date. Sort the results by rental number and movie title. (The results are
shown in Figure P7.73.)

FIGURE
P7.69

Movies without videos FIGURE
P7.70

Balances of memberships
with rentals

FIGURE
P7.71

Minimum, maximum, and
average balances

FIGURE
P7.72

Concatenated
membership data

294 C H A P T E R 7

74. Write a query to display the rental number, rental date, video number, movie title, due date, return date, detail
fee, and number of days past the due date that the video was returned for each video that was returned after the
due date. Sort the results by rental number and movie title. (The results are shown in Figure P7.74.)

75. Write a query to display the rental number, rental date, movie title, and detail fee for each movie that was returned
on or before the due date. (The results are shown in Figure P7.75.)

FIGURE
P7.73

Late video returns

FIGURE
P7.74

Number of days late

FIGURE
P7.75

Actual rental fees charged

295I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

76. Write a query to display the membership number, last name, first name, and total rental fees earned from that
membership. (The results are shown in Figure P7.76.) The total rental fee is the sum of all of the detail fees
(without the late fees) from all movies that the membership has rented.

77. Write a query to display the movie number, movie genre, average movie cost of movies in that genre, movie cost
of that individual movie, and the percentage difference between the average movie cost and the individual movie
cost. (The results are shown in Figure P7.77.) (Note: The percentage difference is calculated as the cost of the
individual movie minus the average cost of movies in that genre, divided by the average cost of movies in that
genre multiplied by 100. For example, if the average cost of movies in the “family” genre is $25, if a given family
movie cost $26, then the calculation would be ((26 – 25) / 25 * 100), which would work out to be 4.00%. This
indicates that this movie costs 4% more than the average family movie.)

FIGURE
P7.76

Total rental fees paid by membership

FIGURE
P7.77

Movie differences from genre average

296 C H A P T E R 7

Preview

Advanced SQL

In this chapter, you will learn:

� About the relational set operators UNION, UNION ALL, INTERSECT, and MINUS

� How to use the advanced SQL JOIN operator syntax

� About the different types of subqueries and correlated queries

� How to use SQL functions to manipulate dates, strings, and other data

� How to create and use updatable views

� How to create and use triggers and stored procedures

� How to create embedded SQL

In Chapter 7, Introduction to Structured Query Language (SQL), you learned the basic SQL

data definition and data manipulation commands used to create and manipulate relational

data. In this chapter, you build on what you learned in Chapter 7 and learn how to use more

advanced SQL features.

In this chapter, you will learn about the SQL relational set operators (UNION, INTERSECT,

and MINUS) and how those operators are used to merge the results of multiple queries.

Joins are at the heart of SQL, so you must learn how to use the SQL JOIN statement to

extract information from multiple tables. In the previous chapter, you learned how cascading

queries inside other queries can be useful in certain circumstances. In this chapter, you will

also learn about the different styles of subqueries that can be implemented in a SELECT

statement. Finally, you will learn more of SQL’s many functions to extract information from

data, including manipulation of dates and strings and computations based on stored or even

derived data.

In the real world, business procedures require the execution of clearly defined actions when

a specific event occurs, such as the addition of a new invoice or a student’s enrollment in

a class. Such procedures can be applied within the DBMS through the use of triggers and

stored procedures. In addition, SQL facilitates the application of business procedures when

it is embedded in a programming language such as Visual Basic .NET, C#, or COBOL.

8

E
I

G
H

T

8.1 RELATIONAL SET OPERATORS

In Chapter 3, The Relational Database Model, you learned about the eight general relational operators. In this section,
you will learn how to use three SQL commands (UNION, INTERSECT, and MINUS) to implement the union,
intersection, and difference relational operators.

In previous chapters, you learned that SQL data manipulation commands are set-oriented; that is, they operate over
entire sets of rows and columns (tables) at once. Using sets, you can combine two or more sets to create new sets (or
relations). That’s precisely what the UNION, INTERSECT, and MINUS statements do. In relational database terms, you
can use the words “sets,” “relations,” and “tables” interchangeably because they all provide a conceptual view of the
data set as it is presented to the relational database user.

UNION, INTERSECT, and MINUS work properly only if relations are union-compatible, which means that the
number of attributes must be the same and their corresponding data types must be alike. In practice, some RDBMS
vendors require the data types to be “compatible” but not necessarily “exactly the same.” For example, compatible data
types are VARCHAR (35) and CHAR (15). In that case, both attributes store character (string) values; the only
difference is the string size. Another example of compatible data types is NUMBER and SMALLINT. Both data types
are used to store numeric values.

O n l i n e C o n t e n t

Although most of the examples used in this chapter are shown in Oracle, you could also useMS SQL Server. The
Premium Website for this book provides you with the ADVSQLDBINIT.SQL script file (Oracle and MS SQL
versions) to create the tables and load the data used in this chapter. There you will also find additional SQL script
files to demonstrate each of the commands shown in this chapter.

Note

The SQL standard defines the operations that all DBMSs must perform on data, but it leaves the implementation
details to the DBMS vendors. Therefore, some advanced SQL features might not work on all DBMS
implementations. Also, some DBMS vendors might implement additional features not found in the SQL standard.

UNION, INTERSECT, and MINUS are the names of the SQL statements implemented in Oracle. The SQL
standard uses the keyword EXCEPT to refer to the difference (MINUS) relational operator. Other RDBMS vendors
might use a different command name or might not implement a given command at all. To learn more about the
ANSI/ISO SQL standards, check the ANSI Web site (www.ansi.org) to find out how to obtain the latest standard
documents in electronic form. As of this writing, the most recent fully approved standard is SQL-2003. The
SQL-2003 standard made revisions and additions to the previous standard; most notable is support for XML data.
The SQL-2006 standard extended support for XML and multimedia data. The SQL-2008 standard added INSTEAD
OF triggers and the TRUNCATE statement.

Note

Some DBMS products might require union-compatible tables to have identical data types.

298 C H A P T E R 8

8.1.1 UNION

Suppose SaleCo has bought another company. SaleCo’s management wants to make sure that the acquired company’s
customer list is properly merged with SaleCo’s customer list. Because it is quite possible that some customers have
purchased goods from both companies, the two lists might contain common customers. SaleCo’s management wants to
make sure that customer records are not duplicated when the two customer lists are merged. The UNION query is a perfect
tool for generating a combined listing of customers—one that excludes duplicate records.

The UNION statement combines rows from two or more queries without including duplicate rows. The syntax of the
UNION statement is:

query UNION query

In other words, the UNION statement combines the output of two SELECT queries. (Remember that the SELECT
statements must be union-compatible. That is, they must return the same number of attributes and similar data types.)

To demonstrate the use of the UNION statement in SQL, let’s use the CUSTOMER and CUSTOMER_2 tables in the
Ch08_SaleCo database. To show the combined CUSTOMER and CUSTOMER_2 records without the duplicates, the
UNION query is written as follows:

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER
UNION
SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER_2;

Figure 8.1 shows the contents of the CUSTOMER and CUSTOMER_2 tables and the result of the UNION query.
Although MS Access is used to show the results here, similar results can be obtained with Oracle.

Note the following in Figure 8.1:

� The CUSTOMER table contains 10 rows, while the CUSTOMER_2 table contains 7 rows.

� Customers Dunne and Olowski are included in the CUSTOMER table as well as in the CUSTOMER_2 table.

� The UNION query yields 15 records because the duplicate records of customers Dunne and Olowski are not
included. In short, the UNION query yields a unique set of records.

The UNION statement can be used to unite more than just two queries. For example, assume that you have four
union-compatible queries named T1, T2, T3, and T4. With the UNION statement, you can combine the output of all
four queries into a single result set. The SQL statement will be similar to this:

SELECT column-list FROM T1
UNION
SELECT column-list FROM T2
UNION
SELECT column-list FROM T3
UNION
SELECT column-list FROM T4;

O n l i n e C o n t e n t

The Premium Website for this book provides SQL script files (Oracle and MS SQL Server) to demonstrate the
UNION, INTERSECT, andMINUS commands. It also provides the Ch08_SaleCo MS Access database containing
supported set operator alternative queries.

299A D V A N C E D S Q L

8.1.2 UNION ALL

If SaleCo’s management wants to know how many customers are on both the CUSTOMER and CUSTOMER_2 lists,
a UNION ALL query can be used to produce a relation that retains the duplicate rows. Therefore, the following query
will keep all rows from both queries (including the duplicate rows) and return 17 rows.

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER
UNION ALL
SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER_2;

Running the preceding UNION ALL query produces the result shown in Figure 8.2.

Like the UNION statement, the UNION ALL statement can be used to unite more than just two queries.

8.1.3 INTERSECT

If SaleCo’s management wants to know which customer records are duplicated in the CUSTOMER and
CUSTOMER_2 tables, the INTERSECT statement can be used to combine rows from two queries, returning only the
rows that appear in both sets. The syntax for the INTERSECT statement is:

query INTERSECT query

Table name: CUSTOMER

Table name: CUSTOMER_2

Database name: CH08_SaleCo

Query name: qryUNION-of-CUSTOMER-and-CUSTOMER_2

FIGURE
8.1

UNION query results

Note

The SQL-2003 standard calls for the elimination of duplicate rows when the UNION SQL statement is used.
However, some DBMS vendors might not adhere to that standard. Check your DBMS manual to see if the
UNION statement is supported and if so, how it is supported.

300 C H A P T E R 8

To generate the list of duplicate customer records, you can use:

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER
INTERSECT
SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER_2;

The INTERSECT statement can be used to generate additional useful customer information. For example, the
following query returns the customer codes for all customers who are located in area code 615 and who have made
purchases. (If a customer has made a purchase, there must be an invoice record for that customer.)

SELECT CUS_CODE FROM CUSTOMER WHERE CUS_AREACODE = '615'
INTERSECT
SELECT DISTINCT CUS_CODE FROM INVOICE;

Figure 8.3 shows both sets of SQL statements and their output.

8.1.4 MINUS

The MINUS statement in SQL combines rows from two queries and returns only the rows that appear in the first set
but not in the second. The syntax for the MINUS statement is:

query MINUS query

For example, if the SaleCo managers want to know what customers in the CUSTOMER table are not found in the
CUSTOMER_2 table, they can use:

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER
MINUS
SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER_2;

Table name: CUSTOMER

Database name: CH08_SaleCo

Query name: qryUNION-ALL-of-CUSTOMER-and-CUSTOMER_2

Table name: CUSTOMER_2

FIGURE
8.2

UNION ALL query results

301A D V A N C E D S Q L

If the managers want to know what customers in the CUSTOMER_2 table are not found in the CUSTOMER table,
they merely switch the table designations:

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER_2
MINUS
SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER;

You can extract much useful information by combining MINUS with various clauses such as WHERE. For example, the
following query returns the customer codes for all customers located in area code 615 minus the ones who have made
purchases, leaving the customers in area code 615 who have not made purchases.

SELECT CUS_CODE FROM CUSTOMER WHERE CUS_AREACODE = '615'
MINUS
SELECT DISTINCT CUS_CODE FROM INVOICE;

Figure 8.4 shows the preceding three SQL statements and their output.

FIGURE
8.3

INTERSECT query results

Note

MS Access does not support the INTERSECT query, nor does it support other complex queries you will explore
in this chapter. At least in some cases, Access might be able to give you the desired results if you use an
alternative query format or procedure. For example, although Access does not support SQL triggers and stored
procedures, you can use Visual Basic code to perform similar actions. However, the objective here is to show
you how some important standard SQL features may be used.

302 C H A P T E R 8

8.1.5 Syntax Alternatives

If your DBMS doesn’t support the INTERSECT or MINUS statements, you can use the IN and NOT IN subqueries to
obtain similar results. For example, the following query will produce the same results as the INTERSECT query shown
in Section 8.1.3:

SELECT CUS_CODE FROM CUSTOMER
WHERE CUS_AREACODE = '615' AND

CUS_CODE IN (SELECT DISTINCT CUS_CODE FROM INVOICE);

FIGURE
8.4

MINUS query results

Note

Some DBMS products do not support the INTERSECT orMINUS statements, while others might implement the
difference relational operator in SQL as EXCEPT. Consult your DBMSmanual to see if the statements illustrated
here are supported by your DBMS.

303A D V A N C E D S Q L

Figure 8.5 shows the use of the INTERSECT alternative.

Using the same alternative to the MINUS statement, you can generate the output for the third MINUS query shown
in Section 8.1.4 by using:

SELECT CUS_CODE FROM CUSTOMER
WHERE CUS_AREACODE = '615' AND

CUS_CODE NOT IN (SELECT DISTINCT CUS_CODE FROM INVOICE);

The results of that query are shown in Figure 8.6. Note that the query output includes only the customers in area code
615 who have not made any purchases and, therefore, have not generated invoices.

Table name: CUSTOMER

Database name: CH08_SaleCo

Table name: INVOICE

Query name: qry-INTERSECT-Alternative

FIGURE
8.5

INTERSECT alternative

Note

MS Access will generate an input request for the CUS_AREACODE if you use apostrophes around the area code.
(If you supply the 615 area code, the query will execute properly.) You can eliminate that problem by using standard
double quotation marks, writing the WHERE clause in the second line of the preceding SQL statement as:

WHERE CUS_AREACODE = “615” AND

MS Access will also accept single quotation marks.

304 C H A P T E R 8

8.2 SQL JOIN OPERATORS

The relational join operation merges rows from two tables and returns the rows with one of the following conditions:

� Have common values in common columns (natural join).

� Meet a given join condition (equality or inequality).

� Have common values in common columns or have no matching values (outer join).

In Chapter 7, you learned how to use the SELECT statement in conjunction with the WHERE clause to join two or
more tables. For example, you can join the PRODUCT and VENDOR tables through their common V_CODE by
writing:

SELECT P_CODE, P_DESCRIPT, P_PRICE, V_NAME
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

The preceding SQL join syntax is sometimes referred to as an “old-style” join. Note that the FROM clause contains
the tables being joined and that the WHERE clause contains the condition(s) used to join the tables.

Note the following points about the preceding query:

� The FROM clause indicates which tables are to be joined. If three or more tables are included, the join
operation takes place two tables at a time, from left to right. For example, if you are joining tables T1, T2, and
T3, the first join is table T1 with T2; the results of that join are then joined to table T3.

� The join condition in the WHERE clause tells the SELECT statement which rows will be returned. In this case,
the SELECT statement returns all rows for which the V_CODE values in the PRODUCT and VENDOR tables
are equal.

� The number of join conditions is always equal to the number of tables being joined minus one. For example,
if you join three tables (T1, T2, and T3), you will have two join conditions (j1 and j2). All join conditions are
connected through an AND logical operator. The first join condition (j1) defines the join criteria for T1 and T2.
The second join condition (j2) defines the join criteria for the output of the first join and T3.

Table name: CUSTOMER

Database name: CH08_SaleCo

Table name: INVOICE

Query name: qry-MINUS-Alternative

FIGURE
8.6

MINUS alternative

305A D V A N C E D S Q L

� Generally, the join condition will be an equality comparison of the primary key in one table and the related
foreign key in the second table.

Join operations can be classified as inner joins and outer joins. The inner join is the traditional join in which only rows
that meet a given criteria are selected. The join criteria can be an equality condition (also called a natural join or an
equijoin) or an inequality condition (also called a theta join). An outer join returns not only the matching rows but also
the rows with unmatched attribute values for one table or both tables to be joined. The SQL standard also introduces
a special type of join, called a cross join, that returns the same result as the Cartesian product of two sets or tables.

In this section, you will learn various ways to express join operations that meet the ANSI SQL standard. These are
outlined in Table 8.1. It is useful to remember that not all DBMS vendors provide the same level of SQL support and
that some do not support the join styles shown in this section. Oracle 11g is used to demonstrate the use of the
following queries. Refer to your DBMS manual if you are using a different DBMS.

TABLE
8.1

SQL Join Expression Styles

JOIN
CLASSIFICATION

JOIN
TYPE

SQL SYNTAX EXAMPLE DESCRIPTION

CROSS CROSS
JOIN

SELECT *
FROM T1, T2

Returns the Cartesian product of T1 and
T2 (old style).

SELECT *
FROM T1 CROSS JOIN T2

Returns the Cartesian product of T1
and T2.

INNER Old-Style
JOIN

SELECT *
FROM T1, T2
WHERE T1.C1=T2.C1

Returns only the rows that meet the join
condition in the WHERE clause (old
style). Only rows with matching values
are selected.

NATURAL
JOIN

SELECT *
FROM T1 NATURAL JOIN T2

Returns only the rows with matching
values in the matching columns. The
matching columns must have the same
names and similar data types.

JOIN
USING

SELECT *
FROM T1 JOIN T2 USING (C1)

Returns only the rows with matching
values in the columns indicated in the
USING clause.

JOIN
ON

SELECT *
FROM T1 JOIN T2

ON T1.C1=T2.C1

Returns only the rows that meet the join
condition indicated in the ON clause.

OUTER LEFT
JOIN

SELECT *
FROM T1 LEFT OUTER JOIN T2

ON T1.C1=T2.C1

Returns rows with matching values and
includes all rows from the left table (T1)
with unmatched values.

RIGHT
JOIN

SELECT *
FROM T1 RIGHT OUTER JOIN T2

ON T1.C1=T2.C1

Returns rows with matching values and
includes all rows from the right table
(T2) with unmatched values.

FULL
JOIN

SELECT *
FROM T1 FULL OUTER JOIN T2

ON T1.C1=T2.C1

Returns rows with matching values and
includes all rows from both tables (T1
and T2) with unmatched values.

8.2.1 Cross Join

A cross join performs a relational product (also known as the Cartesian product) of two tables. The cross join
syntax is:

SELECT column-list FROM table1 CROSS JOIN table2

For example,

SELECT * FROM INVOICE CROSS JOIN LINE;

306 C H A P T E R 8

performs a cross join of the INVOICE and LINE tables. That CROSS JOIN query generates 144 rows. (There were
8 invoice rows and 18 line rows, yielding 8 × 18 = 144 rows.)

You can also perform a cross join that yields only specified attributes. For example, you can specify:

SELECT INVOICE.INV_NUMBER, CUS_CODE, INV_DATE, P_CODE
FROM INVOICE CROSS JOIN LINE;

The results generated through that SQL statement can also be generated by using the following syntax:

SELECT INVOICE.INV_NUMBER, CUS_CODE, INV_DATE, P_CODE
FROM INVOICE, LINE;

8.2.2 Natural Join

Recall from Chapter 3 that a natural join returns all rows with matching values in the matching columns and eliminates
duplicate columns. That style of query is used when the tables share one or more common attributes with common
names. The natural join syntax is:

SELECT column-list FROM table1 NATURAL JOIN table2

The natural join will perform the following tasks:

� Determine the common attribute(s) by looking for attributes with identical names and compatible data types.

� Select only the rows with common values in the common attribute(s).

� If there are no common attributes, return the relational product of the two tables.

The following example performs a natural join of the CUSTOMER and INVOICE tables and returns only selected
attributes:

SELECT CUS_CODE, CUS_LNAME, INV_NUMBER, INV_DATE
FROM CUSTOMER NATURAL JOIN INVOICE;

The SQL code and its results are shown at the top of Figure 8.7.

You are not limited to two tables when performing a natural join. For example, you can perform a natural join of the
INVOICE, LINE, and PRODUCT tables and project only selected attributes by writing:

SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE
FROM INVOICE NATURAL JOIN LINE NATURAL JOIN PRODUCT;

The SQL code and its results are shown at the bottom of Figure 8.7.

One important difference between the natural join and the “old-style” join syntax is that the natural join does not
require the use of a table qualifier for the common attributes. In the first natural join example, you projected
CUS_CODE. However, the projection did not require any table qualifier, even though the CUS_CODE attribute
appeared in both CUSTOMER and INVOICE tables. The same can be said of the INV_NUMBER attribute in the
second natural join example.

8.2.3 Join USING Clause

A second way to express a join is through the USING keyword. That query returns only the rows with matching values
in the column indicated in the USING clause—and that column must exist in both tables. The syntax is:

SELECT column-list FROM table1 JOIN table2 USING (common-column)

307A D V A N C E D S Q L

To see the JOIN USING query in action, let’s perform a join of the INVOICE and LINE tables by writing:

SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE
FROM INVOICE JOIN LINE USING (INV_NUMBER) JOIN PRODUCT USING (P_CODE);

The SQL statement produces the results shown in Figure 8.8.

As was the case with the NATURAL JOIN command, the JOIN USING operand does not require table qualifiers. As
a matter of fact, Oracle will return an error if you specify the table name in the USING clause.

8.2.4 JOIN ON Clause

The previous two join styles used common attribute names in the joining tables. Another way to express a join when
the tables have no common attribute names is to use the JOIN ON operand. That query will return only the rows that
meet the indicated join condition. The join condition will typically include an equality comparison expression of two

FIGURE
8.7

NATURAL JOIN results

308 C H A P T E R 8

columns. (The columns may or may not share the same name but, obviously, must have comparable data types.) The
syntax is:

SELECT column-list FROM table1 JOIN table2 ON join-condition

The following example performs a join of the INVOICE and LINE tables, using the ON clause. The result is shown in
Figure 8.9.

SELECT INVOICE.INV_NUMBER, PRODUCT.P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE
FROM INVOICE JOIN LINE ON INVOICE.INV_NUMBER = LINE.INV_NUMBER

JOIN PRODUCT ON LINE.P_CODE = PRODUCT.P_CODE;

Note that unlike the NATURAL JOIN and the JOIN USING operands, the JOIN ON clause requires a table qualifier for
the common attributes. If you do not specify the table qualifier, you will get a “column ambiguously defined” error message.

Keep in mind that the JOIN ON syntax lets you perform a join even when the tables do not share a common
attribute name. For example, to generate a list of all employees with the managers’ names, you can use the following
(recursive) query:

SELECT E.EMP_MGR, M.EMP_LNAME, E.EMP_NUM, E.EMP_LNAME
FROM EMP E JOIN EMP M ON E.EMP_MGR = M.EMP_NUM
ORDER BY E.EMP_MGR;

8.2.5 Outer Joins

An outer join returns not only the rows matching the join condition (that is, rows with matching values in the common
columns) but also the rows with unmatched values. The ANSI standard defines three types of outer joins: left, right,
and full. The left and right designations reflect the order in which the tables are processed by the DBMS. Remember
that join operations take place two tables at a time. The first table named in the FROM clause will be the left side, and

FIGURE
8.8

JOIN USING results

309A D V A N C E D S Q L

the second table named will be the right side. If three or more tables are being joined, the result of joining the first two
tables becomes the left side, and the third table becomes the right side.

The left outer join returns not only the rows matching the join condition (that is, rows with matching values in the
common column) but also the rows in the left side table with unmatched values in the right side table. The syntax is:

SELECT column-list
FROM table1 LEFT [OUTER] JOIN table2 ON join-condition

For example, the following query lists the product code, vendor code, and vendor name for all products and includes
those vendors with no matching products:

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR LEFT JOIN PRODUCT ON VENDOR.V_CODE = PRODUCT.V_CODE;

The preceding SQL code and its results are shown in Figure 8.10.

The right outer join returns not only the rows matching the join condition (that is, rows with matching values in the
common column) but also the rows in the right side table with unmatched values in the left side table. The syntax is:

SELECT column-list
FROM table1 RIGHT [OUTER] JOIN table2 ON join-condition

For example, the following query lists the product code, vendor code, and vendor name for all products and also
includes those products that do not have a matching vendor code:

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR RIGHT JOIN PRODUCT ON VENDOR.V_CODE = PRODUCT.V_CODE;

The SQL code and its output are shown in Figure 8.11.

FIGURE
8.9

JOIN ON results

310 C H A P T E R 8

FIGURE
8.10

LEFT JOIN results

FIGURE
8.11

RIGHT JOIN results

311A D V A N C E D S Q L

The full outer join returns not only the rows matching the join condition (that is, rows with matching values in the
common column) but also all of the rows with unmatched values in either side table. The syntax is:

SELECT column-list
FROM table1 FULL [OUTER] JOIN table2 ON join-condition

For example, the following query lists the product code, vendor code, and vendor name for all products and includes
all product rows (products without matching vendors) as well as all vendor rows (vendors without matching products):

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR FULL JOIN PRODUCT ON VENDOR.V_CODE = PRODUCT.V_CODE;

The SQL code and its results are shown in Figure 8.12.

8.3 SUBQUERIES AND CORRELATED QUERIES

The use of joins in a relational database allows you to get information from two or more tables. For example, the
following query allows you to get the customer’s data with their respective invoices by joining the CUSTOMER and
INVOICE tables.

SELECT INV_NUMBER, INVOICE.CUS_CODE, CUS_LNAME, CUS_FNAME
FROM CUSTOMER, INVOICE
WHERE CUSTOMER.CUS_CODE = INVOICE.CUS_CODE;

In the previous query, the data from both tables (CUSTOMER and INVOICE) are processed at once, matching rows
with shared CUS_CODE values.

FIGURE
8.12

FULL JOIN results

312 C H A P T E R 8

However, it is often necessary to process data based on other processed data. Suppose, for example, that you want
to generate a list of vendors who provide products. (Recall that not all vendors in the VENDOR table have provided
products—some of them are only potential vendors.) In Chapter 7, you learned that you could generate such a list by
writing the following query:

SELECT V_CODE, V_NAME FROM VENDOR
WHERE V_CODE NOT IN (SELECT V_CODE FROM PRODUCT);

Similarly, to generate a list of all products with a price greater than or equal to the average product price, you can write
the following query:

SELECT P_CODE, P_PRICE FROM PRODUCT
WHERE P_PRICE >= (SELECT AVG(P_PRICE) FROM PRODUCT);

In both of those cases, you needed to get information that was not previously known:

� What vendors provide products?

� What is the average price of all products?

In both cases, you used a subquery to generate the required information that could then be used as input for the
originating query.

You learned how to use subqueries in Chapter 7; let’s review their basic characteristics:

� A subquery is a query (SELECT statement) inside a query.

� A subquery is normally expressed inside parentheses.

� The first query in the SQL statement is known as the outer query.

� The query inside the SQL statement is known as the inner query.

� The inner query is executed first.

� The output of an inner query is used as the input for the outer query.

� The entire SQL statement is sometimes referred to as a nested query.

In this section, you learn more about the practical use of subqueries. You already know that a subquery is based on the
use of the SELECT statement to return one or more values to another query. But subqueries have a wide range of uses.
For example, you can use a subquery within a SQL data manipulation language (DML) statement (such as INSERT,
UPDATE, or DELETE) where a value or a list of values (such as multiple vendor codes or a table) is expected.
Table 8.2 uses simple examples to summarize the use of SELECT subqueries in DML statements.

TABLE
8.2

SELECT Subquery Examples

SELECT SUBQUERY EXAMPLES EXPLANATION
INSERT INTO PRODUCT

SELECT * FROM P;
Inserts all rows from Table P into the PRODUCT table.
Both tables must have the same attributes. The sub-
query returns all rows from Table P.

UPDATE PRODUCT
SET P_PRICE = (SELECT AVG(P_PRICE)

FROM PRODUCT)
WHERE V_CODE IN (SELECT V_CODE

FROM VENDOR
WHERE V_AREACODE = '615')

Updates the product price to the average product price,
but only for the products that are provided by vendors
who have an area code equal to 615. The first subquery
returns the average price; the second subquery returns
the list of vendors with an area code equal to 615.

DELETE FROM PRODUCT
WHERE V_CODE IN (SELECT V_CODE

FROM VENDOR
WHERE V_AREACODE = '615')

Deletes the PRODUCT table rows that are provided by
vendors with area code equal to 615. The subquery
returns the list of vendors codes with an area code
equal to 615.

313A D V A N C E D S Q L

Using the examples shown in Table 8.2, note that the subquery is always at the right side of a comparison or assigning
expression. Also, a subquery can return one value or multiple values. To be precise, the subquery can return:

� One single value (one column and one row). This subquery is used anywhere a single value is expected, as
in the right side of a comparison expression (such as in the preceding UPDATE example when you assign the
average price to the product’s price). Obviously, when you assign a value to an attribute, that value is a single
value, not a list of values. Therefore, the subquery must return only one value (one column, one row). If the
query returns multiple values, the DBMS will generate an error.

� A list of values (one column and multiple rows). This type of subquery is used anywhere a list of values is
expected, such as when using the IN clause (that is, when comparing the vendor code to a list of vendors).
Again, in this case, there is only one column of data with multiple value instances. This type of subquery is used
frequently in combination with the IN operator in a WHERE conditional expression.

� A virtual table (multicolumn, multirow set of values). This type of subquery can be used anywhere a table
is expected, such as when using the FROM clause. You will see this type of query later in this chapter.

It’s important to note that a subquery can return no values at all; it is a NULL. In such cases, the output of the outer
query might result in an error or a null empty set, depending where the subquery is used (in a comparison, an
expression, or a table set).

In the following sections, you will learn how to write subqueries within the SELECT statement to retrieve data from
the database.

8.3.1 WHERE Subqueries

The most common type of subquery uses an inner SELECT subquery on the right side of a WHERE comparison
expression. For example, to find all products with a price greater than or equal to the average product price, you write
the following query:

SELECT P_CODE, P_PRICE FROM PRODUCT
WHERE P_PRICE >= (SELECT AVG(P_PRICE) FROM PRODUCT);

The output of the preceding query is shown in Figure 8.13. Note that this type of query, when used in a >, <, =, >=,
or <= conditional expression, requires a subquery that returns only one single value (one column, one row). The value
generated by the subquery must be of a “comparable” data type; if the attribute to the left of the comparison symbol
is a character type, the subquery must return a character string. Also, if the query returns more than a single value,
the DBMS will generate an error.

Subqueries can also be used in combination with joins. For example, the following query lists all of the customers who
ordered the product “Claw hammer”:

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUS_FNAME
FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE)

WHERE P_CODE = (SELECT P_CODE FROM PRODUCT WHERE P_DESCRIPT = ‘Claw hammer’);

314 C H A P T E R 8

The result of that query is also shown in Figure 8.13.

In the preceding example, the inner query finds the P_CODE for the product “Claw hammer.” The P_CODE is then
used to restrict the selected rows to only those where the P_CODE in the LINE table matches the P_CODE for “Claw
hammer.” Note that the previous query could have been written this way:

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUS_FNAME
FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE)

WHERE P_DESCRIPT = ‘Claw hammer’;

But what happens if the original query encounters the “Claw hammer” string in more than one product description? You
get an error message. To compare one value to a list of values, you must use an IN operand, as shown in the next section.

8.3.2 IN Subqueries

What would you do if you wanted to find all customers who purchased a “hammer” or any kind of saw or saw blade?
Note that the product table has two different types of hammers: “Claw hammer” and “Sledge hammer.” Also note that
there are multiple occurrences of products that contain “saw” in their product descriptions. There are saw blades,
jigsaws, and so on. In such cases, you need to compare the P_CODE not to one product code (single value) but to a
list of product code values. When you want to compare a single attribute to a list of values, you use the IN operator.
When the P_CODE values are not known beforehand, but they can be derived using a query, you must use an IN
subquery. The following example lists all customers who have purchased hammers, saws, or saw blades.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUS_FNAME
FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE)

WHERE P_CODE IN (SELECT P_CODE FROM PRODUCT
WHERE P_DESCRIPT LIKE '%hammer%'
OR P_DESCRIPT LIKE '%saw%');

FIGURE
8.13

WHERE subquery example

315A D V A N C E D S Q L

The result of that query is shown in Figure 8.14.

8.3.3 HAVING Subqueries

Just as you can use subqueries with the WHERE clause, you can use a subquery with a HAVING clause. Remember
that the HAVING clause is used to restrict the output of a GROUP BY query by applying a conditional criteria to the
grouped rows. For example, to list all products with the total quantity sold greater than the average quantity sold, you
would write the following query:

SELECT P_CODE, SUM(LINE_UNITS)
FROM LINE
GROUP BY P_CODE
HAVING SUM(LINE_UNITS) > (SELECT AVG(LINE_UNITS) FROM LINE);

The result of that query is shown in Figure 8.15.

FIGURE
8.14

IN subquery example

FIGURE
8.15

HAVING subquery example

316 C H A P T E R 8

8.3.4 Multirow Subquery Operators: ANY and ALL

So far, you have learned that you must use an IN subquery when you need to compare a value to a list of values. But
the IN subquery uses an equality operator; that is, it selects only those rows that match (are equal to) at least one of
the values in the list. What happens if you need to do an inequality comparison (> or <) of one value to a list of values?

For example, suppose that you want to know which products have a product cost that is greater than all individual
product costs for products provided by vendors from Florida.

SELECT P_CODE, P_QOH * P_PRICE
FROM PRODUCT
WHERE P_QOH * P_PRICE > ALL (SELECT P_QOH * P_PRICE

FROM PRODUCT
WHERE V_CODE IN (SELECT V_CODE

FROM VENDOR
WHERE V_STATE = ‘FL’));

The result of that query is shown in Figure 8.16.

It’s important to note the following points about the query and its output in Figure 8.16:

� The query is a typical example of a nested query.

� The query has one outer SELECT statement with a SELECT subquery (call it sqA) containing a second SELECT
subquery (call it sqB).

� The last SELECT subquery (sqB) is executed first and returns a list of all vendors from Florida.

� The first SELECT subquery (sqA) uses the output of the SELECT subquery (sqB). The sqA subquery returns the
list of product costs for all products provided by vendors from Florida.

� The use of the ALL operator allows you to compare a single value (P_QOH * P_PRICE) with a list of values
returned by the first subquery (sqA) using a comparison operator other than equals.

� For a row to appear in the result set, it has to meet the criterion P_QOH * P_PRICE > ALL, of the individual
values returned by the subquery sqA. The values returned by sqA are a list of product costs. In fact, “greater
than ALL” is equivalent to “greater than the highest product cost of the list.” In the same way, a condition of
“less than ALL” is equivalent to “less than the lowest product cost of the list.”

Another powerful operator is the ANY multirow operator (the near cousin of the ALL multirow operator). The ANY
operator allows you to compare a single value to a list of values, selecting only the rows for which the inventory cost
is greater than any value of the list or less than any value of the list. You could use the equal to ANY operator, which
would be the equivalent of the IN operator.

FIGURE
8.16

Multirow subquery operator example

317A D V A N C E D S Q L

8.3.5 FROM Subqueries

So far you have seen how the SELECT statement uses subqueries within WHERE, HAVING, and IN statements and
how the ANY and ALL operators are used for multirow subqueries. In all of those cases, the subquery was part of a
conditional expression and it always appeared at the right side of the expression. In this section, you will learn how
to use subqueries in the FROM clause.

As you already know, the FROM clause specifies the table(s) from which the data will be drawn. Because the output
of a SELECT statement is another table (or more precisely a “virtual” table), you could use a SELECT subquery in the
FROM clause. For example, assume that you want to know all customers who have purchased products 13-Q2/P2
and 23109-HB. All product purchases are stored in the LINE table. It is easy to find out who purchased any given
product by searching the P_CODE attribute in the LINE table. But in this case, you want to know all customers who
purchased both products, not just one. You could write the following query:

SELECT DISTINCT CUSTOMER.CUS_CODE, CUSTOMER.CUS_LNAME
FROM CUSTOMER,

(SELECT INVOICE.CUS_CODE FROM INVOICE NATURAL JOIN LINE
WHERE P_CODE = '13-Q2/P2') CP1,
(SELECT INVOICE.CUS_CODE FROM INVOICE NATURAL JOIN LINE
WHERE P_CODE = '23109-HB') CP2

WHERE CUSTOMER.CUS_CODE = CP1.CUS_CODE AND CP1.CUS_CODE = CP2.CUS_CODE;

The result of that query is shown in Figure 8.17.

Note in Figure 8.17 that the first subquery returns all customers who purchased product 13-Q2/P2, while the second
subquery returns all customers who purchased product 23109-HB. So in this FROM subquery, you are joining the
CUSTOMER table with two virtual tables. The join condition selects only the rows with matching CUS_CODE values
in each table (base or virtual).

In the previous chapter, you learned that a view is also a virtual table; therefore, you can use a view name anywhere a table
is expected. So in this example, you could create two views: one listing all customers who purchased product 13-Q2/P2
and another listing all customers who purchased product 23109-HB. Doing so, you would write the query as:

CREATE VIEW CP1 AS
SELECT INVOICE.CUS_CODE FROM INVOICE NATURAL JOIN LINE
WHERE P_CODE = '13-Q2/P2';

FIGURE
8.17

FROM subquery example

318 C H A P T E R 8

CREATE VIEW CP2 AS
SELECT INVOICE.CUS_CODE FROM INVOICE NATURAL JOIN LINE
WHERE P_CODE = '23109-HB';

SELECT DISTINCT CUS_CODE, CUS_LNAME
FROM CUSTOMER NATURAL JOIN CP1 NATURAL JOIN CP2;

You might speculate that the preceding query could also be written using the following syntax:

SELECT CUS_CODE, CUS_LNAME
FROM CUSTOMER NATURAL JOIN INVOICE NATURAL JOIN LINE
WHERE P_CODE = '13-Q2/P2' AND P_CODE = '23109-HB';

But if you examine that query carefully, you will note that a P_CODE cannot be equal to two different values at the
same time. Therefore, the query will not return any rows.

8.3.6 Attribute List Subqueries

The SELECT statement uses the attribute list to indicate what columns to project in the resulting set. Those columns
can be attributes of base tables, computed attributes, or the result of an aggregate function. The attribute list can also
include a subquery expression, also known as an inline subquery. A subquery in the attribute list must return one single
value; otherwise, an error code is raised. For example, a simple inline query can be used to list the difference between
each product’s price and the average product price:

SELECT P_CODE, P_PRICE, (SELECT AVG(P_PRICE) FROM PRODUCT) AS AVGPRICE,
P_PRICE – (SELECT AVG(P_PRICE) FROM PRODUCT) AS DIFF

FROM PRODUCT;

Figure 8.18 shows the result of that query.

FIGURE
8.18

Inline subquery example

319A D V A N C E D S Q L

In Figure 8.18, note that the inline query output returns one single value (the average product’s price) and that the
value is the same in every row. Note also that the query used the full expression instead of the column aliases when
computing the difference. In fact, if you try to use the alias in the difference expression, you will get an error message.
The column alias cannot be used in computations in the attribute list when the alias is defined in the same attribute
list. That DBMS requirement is the result of the way the DBMS parses and executes queries.

Another example will help you understand the use of attribute list subqueries and column aliases. For example, suppose
that you want to know the product code, the total sales by product, and the contribution by employee of each product’s
sales. To get the sales by-product, you need to use only the LINE table. To compute the contribution by employee, you
need to know the number of employees (from the EMPLOYEE table). As you study the tables’ structures, you can see
that the LINE and EMPLOYEE tables do not share a common attribute. In fact, you don’t need a common attribute.
You only need to know the total number of employees, not the total employees related to each product. So to answer
the query, you would write the following code:

SELECT P_CODE, SUM(LINE_UNITS * LINE_PRICE) AS SALES,
(SELECT COUNT(*) FROM EMPLOYEE) AS ECOUNT,
SUM(LINE_UNITS * LINE_PRICE)/(SELECT COUNT(*) FROM EMPLOYEE) AS CONTRIB

FROM LINE
GROUP BY P_CODE;

The result of that query is shown in Figure 8.19.

As you can see in Figure 8.19, the number of employees remains the same for each row in the result set. The use of
that type of subquery is limited to certain instances where you need to include data from other tables that are not
directly related to a main table or tables in the query. The value will remain the same for each row, like a constant in
a programming language. (You will learn another use of inline subqueries in Section 8.3.7, Correlated Subqueries.)
Note that you cannot use an alias in the attribute list to write the expression that computes the contribution per
employee.

FIGURE
8.19

Another example of an inline subquery

320 C H A P T E R 8

Another way to write the same query by using column aliases requires the use of a subquery in the FROM clause, as follows:

SELECT P_CODE, SALES, ECOUNT, SALES/ECOUNT AS CONTRIB
FROM (SELECT P_CODE, SUM(LINE_UNITS * LINE_PRICE) AS SALES,

(SELECT COUNT(*) FROM EMPLOYEE) AS ECOUNT
FROM LINE
GROUP BY P_CODE);

In that case, you are actually using two subqueries. The subquery in the FROM clause executes first and returns a virtual
table with three columns: P_CODE, SALES, and ECOUNT. The FROM subquery contains an inline subquery that
returns the number of employees as ECOUNT. Because the outer query receives the output of the inner query, you
can now refer to the columns in the outer subquery by using the column aliases.

8.3.7 Correlated Subqueries

Until now, all subqueries you have learned execute independently. That is, each subquery in a command sequence
executes in a serial fashion, one after another. The inner subquery executes first; its output is used by the outer query,
which then executes until the last outer query executes (the first SQL statement in the code).

In contrast, a correlated subquery is a subquery that executes once for each row in the outer query. That process
is similar to the typical nested loop in a programming language. For example:

FOR X = 1 TO 2

FOR Y = 1 TO 3

PRINT “X = “X, “Y = “Y

END

END

will yield the output:

X = 1 Y = 1

X = 1 Y = 2

X = 1 Y = 3

X = 2 Y = 1

X = 2 Y = 2

X = 2 Y = 3

Note that the outer loop X = 1 TO 2 begins the process by setting X = 1 and then the inner loop Y = 1 TO 3 is completed
for each X outer loop value. The relational DBMS uses the same sequence to produce correlated subquery results:

1. It initiates the outer query.

2. For each row of the outer query result set, it executes the inner query by passing the outer row to the inner query.

That process is the opposite of that of the subqueries as you have already seen. The query is called a correlated subquery
because the inner query is related to the outer query by the fact that the inner query references a column of the outer
subquery.

321A D V A N C E D S Q L

To see the correlated subquery in action, suppose that you want to know all product sales in which the units sold value
is greater than the average units sold value for that product (as opposed to the average for all products). In that case,
the following procedure must be completed:

1. Compute the average-units-sold value for a product.

2. Compare the average computed in Step 1 to the units sold in each sale row and then select only the rows in
which the number of units sold is greater.

The following correlated query completes the preceding two-step process:

SELECT INV_NUMBER, P_CODE, LINE_UNITS
FROM LINE LS
WHERE LS.LINE_UNITS > (SELECT AVG(LINE_UNITS)

FROM LINE LA
WHERE LA.P_CODE = LS.P_CODE);

The first example in Figure 8.20 shows the result of that query.

In the top query and its result in Figure 8.20, note that the LINE table is used more than once, so you must use table
aliases. In that case, the inner query computes the average units sold of the product that matches the P_CODE of the
outer query P_CODE. That is, the inner query runs once, using the first product code found in the (outer) LINE table,
and returns the average sale for that product. When the number of units sold in that (outer) LINE row is greater than
the average computed, the row is added to the output. Then the inner query runs again, this time using the second
product code found in the (outer) LINE table. The process repeats until the inner query has run for all rows in the (outer)
LINE table. In that case, the inner query will be repeated as many times as there are rows in the outer query.

FIGURE
8.20

Correlated subquery examples

322 C H A P T E R 8

To verify the results and to provide an example of how you can combine subqueries, you can add a correlated inline
subquery to the previous query. That correlated inline subquery will show the average units sold column for each
product. (See the second query and its results in Figure 8.20.) As you can see, the new query contains a correlated
inline subquery that computes the average units sold for each product. You not only get an answer, but you can also
verify that the answer is correct.

Correlated subqueries can also be used with the EXISTS special operator. For example, suppose that you want to know
all customers who have placed an order lately. In that case, you could use a correlated subquery like the first one shown
in Figure 8.21:

SELECT CUS_CODE, CUS_LNAME, CUS_FNAME
FROM CUSTOMER
WHERE EXISTS (SELECT CUS_CODE FROM INVOICE

WHERE INVOICE.CUS_CODE = CUSTOMER.CUS_CODE);

The second example of an EXISTS correlated subquery in Figure 8.21 will help you understand how to use correlated
queries. For example, suppose that you want to know what vendors you must contact to start ordering products that
are approaching the minimum quantity-on-hand value. In particular, you want to know the vendor code and name of
vendors for products having a quantity on hand that is less than double the minimum quantity. The query that answers
that question is as follows:

SELECT V_CODE, V_NAME
FROM VENDOR
WHERE EXISTS (SELECT *

FROM PRODUCT
WHERE P_QOH < P_MIN * 2
AND VENDOR.V_CODE = PRODUCT.V_CODE);

FIGURE
8.21

EXISTS correlated subquery examples

323A D V A N C E D S Q L

In the second query in Figure 8.21, note that:

1. The inner correlated subquery runs using the first vendor.

2. If any products match the condition (quantity on hand is less than double the minimum quantity), the vendor
code and name are listed in the output.

3. The correlated subquery runs using the second vendor, and the process repeats itself until all vendors are used.

8.4 SQL FUNCTIONS

The data in databases are the basis of critical business information. Generating information from data often requires
many data manipulations. Sometimes such data manipulation involves the decomposition of data elements. For
example, an employee’s date of birth can be subdivided into a day, a month, and a year. A product manufacturing code
(for example, SE-05-2-09-1234-1-3/12/04-19:26:48) can be designed to record the manufacturing region, plant,
shift, production line, employee number, date, and time. For years, conventional programming languages have had
special functions that enabled programmers to perform data transformations like those data decompositions. If you
know a modern programming language, it’s very likely that the SQL functions in this section will look familiar.

SQL functions are very useful tools. You’ll need to use functions when you want to list all employees ordered by year
of birth or when your marketing department wants you to generate a list of all customers ordered by zip code and the
first three digits of their telephone numbers. In both of those cases, you’ll need to use data elements that are not
present as such in the database; instead, you’ll need a SQL function that can be derived from an existing attribute.
Functions always use a numerical, date, or string value. The value may be part of the command itself (a constant or
literal) or it may be an attribute located in a table. Therefore, a function may appear anywhere in an SQL statement
where a value or an attribute can be used.

There are many types of SQL functions, such as arithmetic, trigonometric, string, date, and time functions. This section
will not explain all of those types of functions in detail, but it will give you a brief overview of the most useful ones.

8.4.1 Date and Time Functions

All SQL-standard DBMSs support date and time functions. All date functions take one parameter (of a date or
character data type) and return a value (character, numeric, or date type). Unfortunately, date/time data types are
implemented differently by different DBMS vendors. The problem occurs because the ANSI SQL standard defines date
data types, but it does not say how those data types are to be stored. Instead, it lets the vendor deal with that issue.

Because date/time functions differ from vendor to vendor, this section will cover basic date/time functions for
MS Access/SQL Server and for Oracle. Table 8.3 shows a list of selected MS Access/SQL Server date/time functions.

Note

Although the main DBMS vendors support the SQL functions covered here, the syntax or degree of support will
probably differ. In fact, DBMS vendors invariably add their own functions to products to lure new customers.
The functions covered in this section represent just a small portion of functions supported by your DBMS. Read
your DBMS SQL reference manual for a complete list of available functions.

324 C H A P T E R 8

TABLE
8.3

Selected MS Access/SQL Server Date/Time Functions

FUNCTION EXAMPLE(S)
YEAR
Returns a four-digit year
Syntax:
YEAR(date_value)

Lists all employees born in 1966:
SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,

YEAR(EMP_DOB) AS YEAR
FROM EMPLOYEE
WHERE YEAR(EMP_DOB) = 1966;

MONTH
Returns a two-digit month code
Syntax:
MONTH(date_value)

Lists all employees born in November:
SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,

MONTH(EMP_DOB) AS MONTH
FROM EMPLOYEE
WHERE MONTH(EMP_DOB) = 11;

DAY
Returns the number of the day
Syntax:
DAY(date_value)

Lists all employees born on the 14th day of the month:
SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,

DAY(EMP_DOB) AS DAY
FROM EMPLOYEE
WHERE DAY(EMP_DOB) = 14;

DATE() − MS Access
GETDATE() − SQL Server
Returns today’s date

Lists how many days are left until Christmas:
SELECT #25-Dec-2010# − DATE();
Note two features:

• There is no FROM clause, which is acceptable in MS Access.
• The Christmas date is enclosed in # signs because you are doing date
arithmetic.

In MS SQL Server:
Use GETDATE() to get the current system date. To compute the difference
between dates, use the DATEDIFF function (see below).

DATEADD − SQL Server
Adds a number of selected time
periods to a date
Syntax:
DATEADD(datepart,
number, date)

Adds a number of dateparts to a given date. Dateparts can be minutes, hours,
days, weeks, months, quarters, or years. For example:
SELECT DATEADD(day,90, P_INDATE) AS DueDate
FROM PRODUCT;
The preceding example adds 90 days to P_INDATE.
In MS Access use:
SELECT P_INDATE+90 AS DueDate
FROM PRODUCT;

DATEDIFF − SQL Server
Subtracts two dates
Syntax:
DATEDIFF(datepart, startdate,
enddate)

Returns the difference between two dates expressed in a selected datepart. For
example:
SELECT DATEDIFF(day, P_INDATE, GETDATE()) AS DaysAgo
FROM PRODUCT;
In MS Access use:
SELECT DATE() - P_INDATE AS DaysAgo
FROM PRODUCT;

Table 8.4 shows the equivalent date/time functions used in Oracle. Note that Oracle uses the same function
(TO_CHAR) to extract the various parts of a date. Also, another function (TO_DATE) is used to convert character
strings to a valid Oracle date format that can be used in date arithmetic.

325A D V A N C E D S Q L

TABLE
8.4

Selected Oracle Date/Time Functions

FUNCTION EXAMPLE(S)
TO_CHAR
Returns a character string or a
formatted string from a date
value
Syntax:
TO_CHAR(date_value, fmt)
fmt = format used; can be:
MONTH: name of month
MON: three-letter month name
MM: two-digit month name
D: number for day of week
DD: number day of month
DAY: name of day of week
YYYY: four-digit year value
YY: two-digit year value

Lists all employees born in 1982:
SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,

TO_CHAR(EMP_DOB, 'YYYY') AS YEAR
FROM EMPLOYEE
WHERE TO_CHAR(EMP_DOB, 'YYYY') = '1982';
Lists all employees born in November:
SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,

TO_CHAR(EMP_DOB, 'MM') AS MONTH
FROM EMPLOYEE
WHERE TO_CHAR(EMP_DOB, 'MM') = '11';
Lists all employees born on the 14th day of the month:
SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,

TO_CHAR(EMP_DOB, 'DD') AS DAY
FROM EMPLOYEE
WHERE TO_CHAR(EMP_DOB, 'DD') = '14';

TO_DATE
Returns a date value using a
character string and a date for-
mat mask; also used to translate
a date between formats
Syntax:
TO_DATE(char_value, fmt)
fmt = format used; can be:
MONTH: name of month
MON: three-letter month name
MM: two-digit month name
D: number for day of week
DD: number day of month
DAY: name of day of week
YYYY: four-digit year value
YY: two-digit year value

Lists the approximate age of the employees on the company’s tenth anniversary
date (11/25/2010):
SELECT EMP_LNAME, EMP_FNAME,

EMP_DOB, '11/25/2010' AS ANIV_DATE,
(TO_DATE('11/25/2000','MM/DD/YYYY') - EMP_DOB)/365 AS YEARS

FROM EMPLOYEE
ORDER BY YEARS;
Note the following:

• '11/25/2010' is a text string, not a date.
• The TO_DATE function translates the text string to a valid Oracle date used
in date arithmetic.

How many days between Thanksgiving and Christmas 2008?
SELECT TO_DATE('2010/12/25','YYYY/MM/DD') −

TO_DATE('NOVEMBER 27, 2010','MONTH DD, YYYY')
FROM DUAL;
Note the following:

• The TO_DATE function translates the text string to a valid Oracle date used
in date arithmetic.

• DUAL is Oracle’s pseudo-table used only for cases where a table is not
really needed.

SYSDATE
Returns today’s date

Lists how many days are left until Christmas:
SELECT TO_DATE('25-Dec-2010','DD-MON-YYYY') SYSDATE
FROM DUAL;
Notice two things:

• DUAL is Oracle’s pseudo-table used only for cases where a table is not
really needed.

• The Christmas date is enclosed in a TO_DATE function to translate the
date to a valid date format.

ADD_MONTHS
Adds a number of months to a
date; useful for adding months
or years to a date
Syntax:
ADD_MONTHS(date_value, n)
n = number of months

Lists all products with their expiration date (two years from the purchase date):
SELECT P_CODE, P_INDATE, ADD_MONTHS(P_INDATE,24)
FROM PRODUCT
ORDER BY ADD_MONTHS(P_INDATE,24);

326 C H A P T E R 8

TABLE
8.4

Selected Oracle Date/Time Functions (continued)

FUNCTION EXAMPLE(S)
LAST_DAY
Returns the date of the last day
of the month given in a date
Syntax:
LAST_DAY(date_value)

Lists all employees who were hired within the last seven days of a month:
SELECT EMP_LNAME, EMP_FNAME, EMP_HIRE_DATE
FROM EMPLOYEE
WHERE EMP_HIRE_DATE >=LAST_DAY(EMP_HIRE_DATE)-7;

8.4.2 Numeric Functions

Numeric functions can be grouped in many different ways, such as algebraic, trigonometric, and logarithmic. In this
section, you will learn two very useful functions. Do not confuse the SQL aggregate functions you saw in the previous
chapter with the numeric functions in this section. The first group operates over a set of values (multiple rows—hence,
the name aggregate functions), while the numeric functions covered here operate over a single row. Numeric
functions take one numeric parameter and return one value. Table 8.5 shows a selected group of numeric functions
available.

TABLE
8.5

Selected Numeric Functions

FUNCTION EXAMPLE(S)
ABS
Returns the absolute value of a number
Syntax:
ABS(numeric_value)

In Oracle use:
SELECT 1.95, -1.93, ABS(1.95), ABS(-1.93)
FROM DUAL;
In MS Access/SQL Server use:
SELECT 1.95, -1.93, ABS(1.95), ABS(-1.93);

ROUND
Rounds a value to a specified precision
(number of digits)
Syntax:
ROUND(numeric_value, p)
p = precision

Lists the product prices rounded to one and zero decimal places:
SELECT P_CODE, P_PRICE,

ROUND(P_PRICE,1) AS PRICE1,
ROUND(P_PRICE,0) AS PRICE0

FROM PRODUCT;

CEIL/CEILING/FLOOR
Returns the smallest integer greater than or
equal to a number or returns the largest
integer equal to or less than a number,
respectively
Syntax:
CEIL(numeric_value) − Oracle
CEILING(numeric_value) − SQL Server
FLOOR(numeric_value)

Lists the product price, smallest integer greater than or equal to the
product price, and the largest integer equal to or less than the
product price.
In Oracle use:
SELECT P_PRICE, CEIL(P_PRICE), FLOOR(P_PRICE)
FROM PRODUCT;
In SQL Server use:
SELECT P_PRICE, CEILING(P_PRICE), FLOOR(P_PRICE)
FROM PRODUCT;
MS Access does not support these functions.

8.4.3 String Functions

String manipulations are among the most-used functions in programming. If you have ever created a report using any
programming language, you know the importance of properly concatenating strings of characters, printing names in
uppercase, or knowing the length of a given attribute. Table 8.6 shows a subset of useful string manipulation functions.

327A D V A N C E D S Q L

TABLE
8.6

Selected String Functions

FUNCTION EXAMPLE(S)
Concatenation
|| − Oracle
+ − MS Access/SQL Server
Concatenates data from two different
character columns and returns a
single column
Syntax:
strg_value || strg_value
strg_value + strg_value

Lists all employee names (concatenated).
In Oracle use:
SELECT EMP_LNAME || ', ' || EMP_FNAME AS NAME
FROM EMPLOYEE;
In MS Access / SQL Server use:
SELECT EMP_LNAME + ', ' + EMP_FNAME AS NAME
FROM EMPLOYEE;

UPPER/LOWER
Returns a string in all capital or all
lowercase letters
Syntax:
UPPER(strg_value)
LOWER(strg_value)

Lists all employee names in all capital letters (concatenated).
In Oracle use:
SELECT UPPER(EMP_LNAME) || ', ' || UPPER(EMP_FNAME) AS NAME
FROM EMPLOYEE;
In SQL Server use:
SELECT UPPER(EMP_LNAME) + ', ' + UPPER(EMP_FNAME) AS NAME
FROM EMPLOYEE;
Lists all employee names in all lowercase letters (concatenated).
In Oracle use:
SELECT LOWER(EMP_LNAME) || ', ' || LOWER(EMP_FNAME) AS NAME
FROM EMPLOYEE;
In SQL Server use:
SELECT LOWER(EMP_LNAME) + ', ' + LOWER(EMP_FNAME) AS NAME
FROM EMPLOYEE;
Not supported by MS Access.

SUBSTRING
Returns a substring or part of a given
string parameter
Syntax:
SUBSTR(strg_value, p, l) − Oracle
SUBSTRING(strg_value,p,l) −
SQL Server
p = start position
l = length of characters

Lists the first three characters of all employee phone numbers.
In Oracle use:
SELECT EMP_PHONE, SUBSTR(EMP_PHONE,1,3) AS PREFIX
FROM EMPLOYEE;
In SQL Server use:
SELECT EMP_PHONE, SUBSTRING(EMP_PHONE,1,3) AS PREFIX
FROM EMPLOYEE;
Not supported by MS Access.

LENGTH
Returns the number of characters in
a string value
Syntax:
LENGTH(strg_value) − Oracle
LEN(strg_value) − SQL Server

Lists all employee last names and the length of their names; ordered
descended by last name length.
In Oracle use:
SELECT EMP_LNAME, LENGTH(EMP_LNAME) AS NAMESIZE
FROM EMPLOYEE;
In MS Access / SQL Server use:
SELECT EMP_LNAME, LEN(EMP_LNAME) AS NAMESIZE
FROM EMPLOYEE;

8.4.4 Conversion Functions

Conversion functions allow you to take a value of a given data type and convert it to the equivalent value in another
data type. In Section 8.4.1, you learned about two of the basic Oracle SQL conversion functions: TO_CHAR and
TO_DATE. Note that the TO_CHAR function takes a date value and returns a character string representing a day, a
month, or a year. In the same way, the TO_DATE function takes a character string representing a date and returns
an actual date in Oracle format. SQL Server uses the CAST and CONVERT functions to convert one data type to
another. A summary of the selected functions is shown in Table 8.7.

328 C H A P T E R 8

TABLE
8.7

Selected Conversion Functions

FUNCTION EXAMPLE(S)
Numeric to Character:
TO_CHAR − Oracle
CAST − SQL Server
CONVERT − SQL Server
Returns a character string from a
numeric value.
Syntax:
Oracle: TO_CHAR(numeric_value,
fmt)
SQL Server:
CAST (numeric AS varchar(length))
CONVERT(varchar(length), numeric)

Lists all product prices, quantity on hand, percent discount, and total
inventory cost using formatted values.
In Oracle use:
SELECT P_CODE,

TO_CHAR(P_PRICE,'999.99') AS PRICE,
TO_CHAR(P_QOH,'9,999.99') AS QUANTITY,
TO_CHAR(P_DISCOUNT,'0.99') AS DISC,
TO_CHAR(P_PRICE*P_QOH,'99,999.99')

AS TOTAL_COST
FROM PRODUCT;
In SQL Server use:
SELECT P_CODE, CAST(P_PRICE AS VARCHAR(8)) AS PRICE,

CONVERT(VARCHAR(4),P_QOH) AS QUANTITY,
CAST(P_DISCOUNT AS VARCHAR(4)) AS DISC,
CAST(P_PRICE*P_QOH AS VARCHAR(10)) AS TOTAL_COST

FROM PRODUCT;
Not supported in MS Access.

Date to Character:
TO_CHAR − Oracle
CAST − SQL Server
CONVERT − SQL Server
Returns a character string or a format-
ted character string from a date value
Syntax:
Oracle: TO_CHAR(date_value, fmt)
SQL Server:
CAST (date AS varchar(length))
CONVERT(varchar(length), date)

Lists all employee dates of birth, using different date formats.
In Oracle use:
SELECT EMP_LNAME, EMP_DOB,

TO_CHAR(EMP_DOB, ’DAY, MONTH DD, YYYY’)
AS ’DATEOFBIRTH’

FROM EMPLOYEE;
SELECT EMP_LNAME, EMP_DOB,

TO_CHAR(EMP_DOB, ’YYYY/MM/DD’)
AS ’DATEOFBIRTH’

FROM EMPLOYEE;
In SQL Server use:
SELECT EMP_LNAME, EMP_DOB,

CONVERT(varchar(11),EMP_DOB) AS “DATE OF BIRTH”
FROM EMPLOYEE;
SELECT EMP_LNAME, EMP_DOB,

CAST(EMP_DOB as varchar(11)) AS “DATE OF BIRTH”
FROM EMPLOYEE;
Not supported in MS Access.

String to Number:
TO_NUMBER
Returns a formatted number from a
character string, using a given format
Syntax:
Oracle:
TO_NUMBER(char_value, fmt)
fmt = format used; can be:
9 = displays a digit
0 = displays a leading zero
, = displays the comma
. = displays the decimal point
$ = displays the dollar sign
B = leading blank
S = leading sign
MI = trailing minus sign

Converts text strings to numeric values when importing data to a table
from another source in text format; for example, the query shown below
uses the TO_NUMBER function to convert text formatted to Oracle
default numeric values using the format masks given.
In Oracle use:
SELECT TO_NUMBER('-123.99', 'S999.99'),

TO_NUMBER('99.78-','B999.99MI')
FROM DUAL;
In SQL Server use:
SELECT CAST('-123.99' AS NUMERIC(8,2)),

CAST('-99.78' AS NUMERIC(8,2))
The SQL Server CAST function does not support the trailing sign on the
character string.
Not supported in MS Access.

329A D V A N C E D S Q L

TABLE
8.7

Selected Conversion Functions (continued)

FUNCTION EXAMPLE(S)
CASE − SQL Server
DECODE − Oracle
Compares an attribute or expression
with a series of values and returns an
associated value or a default value if
no match is found
Syntax:
Oracle:
DECODE(e, x, y, d)
e = attribute or expression
x = value with which to compare e
y = value to return in e = x
d = default value to return if e is not
equal to x
SQL Server:
CASE When condition
THEN value1 ELSE value2 END

The following example returns the sales tax rate for specified states:
• Compares V_STATE to 'CA'; if the values match, it returns .08.
• Compares V_STATE to 'FL'; if the values match, it returns .05.
• Compares V_STATE to 'TN'; if the values match, it returns .085.

If there is no match, it returns 0.00 (the default value).
SELECT V_CODE, V_STATE,

DECODE(V_STATE,'CA',.08,'FL',.05, 'TN',.085, 0.00)
AS TAX

FROM VENDOR;
In SQL Server use:
SELECT V_CODE, V_STATE,

CASE WHEN V_STATE = 'CA' THEN .08
WHEN V_STATE = 'FL' THEN .05
WHEN V_STATE = 'TN' THEN .085

ELSE 0.00 END AS TAX
FROM VENDOR
Not supported in MS Access.

8.5 ORACLE SEQUENCES

If you use MS Access, you might be familiar with the AutoNumber data type, which you can use to define a column
in your table that will be automatically populated with unique numeric values. In fact, if you create a table in MS Access
and forget to define a primary key, MS Access will offer to create a primary key column; if you accept, you will notice
that MS Access creates a column named ID with an AutoNumber data type. After you define a column as an
AutoNumber type, every time you insert a row in the table, MS Access will automatically add a value to that column,
starting with 1 and increasing the value by 1 in every new row you add. Also, you cannot include that column in your
INSERT statements—Access will not let you edit that value at all. MS SQL Server uses the Identity column property
to serve a similar purpose. In MS SQL Server a table can have at most one column defined as an Identity column. This
column behaves similarly to an MS Access column with the AutoNumber data type.

Oracle does not support the AutoNumber data type or the Identity column property. Instead, you can use a “sequence”
to assign values to a column on a table. But an Oracle sequence is very different from the Access AutoNumber data
type and deserves close scrutiny:

� Oracle sequences are an independent object in the database. (Sequences are not a data type.)

� Oracle sequences have a name and can be used anywhere a value is expected.

� Oracle sequences are not tied to a table or a column.

� Oracle sequences generate a numeric value that can be assigned to any column in any table.

� The table attribute to which you assigned a value based on a sequence can be edited and modified.

� An Oracle sequence can be created and deleted anytime.

The basic syntax to create a sequence in Oracle is:

CREATE SEQUENCE name [START WITH n] [INCREMENT BY n] [CACHE | NOCACHE]

where:

� name is the name of the sequence.

� n is an integer value that can be positive or negative.

� START WITH specifies the initial sequence value. (The default value is 1.)

330 C H A P T E R 8

� INCREMENT BY determines the value by which the sequence is incremented. (The default increment value
is 1. The sequence increment can be positive or negative to enable you to create ascending or descending
sequences.)

� The CACHE or NOCACHE clause indicates whether Oracle will preallocate sequence numbers in memory.
(Oracle preallocates 20 values by default.)

For example, you could create a sequence to automatically assign values to the customer code each time a new
customer is added and create another sequence to automatically assign values to the invoice number each time a new
invoice is added. The SQL code to accomplish those tasks is:

CREATE SEQUENCE CUS_CODE_SEQ START WITH 20010 NOCACHE;
CREATE SEQUENCE INV_NUMBER_SEQ START WITH 4010 NOCACHE;

You can check all of the sequences you have created by using the following SQL command, illustrated in Figure 8.22:

SELECT * FROM USER_SEQUENCES;

To use sequences during data entry, you must use two special pseudo-columns: NEXTVAL and CURRVAL. NEXTVAL
retrieves the next available value from a sequence, and CURRVAL retrieves the current value of a sequence. For
example, you can use the following code to enter a new customer:

INSERT INTO CUSTOMER
VALUES (CUS_CODE_SEQ.NEXTVAL, ‘Connery’, ‘Sean’, NULL, ‘615’, ‘898-2008’, 0.00);

The preceding SQL statement adds a new customer to the CUSTOMER table and assigns the value 20010 to the
CUS_CODE attribute. Let’s examine some important sequence characteristics:

� CUS_CODE_SEQ.NEXTVAL retrieves the next available value from the sequence.

� Each time you use NEXTVAL, the sequence is incremented.

� Once a sequence value is used (through NEXTVAL), it cannot be used again. If, for some reason, your SQL
statement rolls back, the sequence value does not roll back. If you issue another SQL statement (with another
NEXTVAL), the next available sequence value will be returned to the user—it will look as though the sequence
skips a number.

� You can issue an INSERT statement without using the sequence.

FIGURE
8.22

Oracle sequence

331A D V A N C E D S Q L

CURRVAL retrieves the current value of a sequence—that is, the last sequence number used, which was generated with
a NEXTVAL. You cannot use CURRVAL unless a NEXTVAL was issued previously in the same session. The main use
for CURRVAL is to enter rows in dependent tables. For example, the INVOICE and LINE tables are related in a
one-to-many relationship through the INV_NUMBER attribute. You can use the INV_NUMBER_SEQ sequence to
automatically generate invoice numbers. Then, using CURRVAL, you can get the latest INV_NUMBER used and assign
it to the related INV_NUMBER foreign key attribute in the LINE table. For example:

INSERT INTO INVOICE VALUES (INV_NUMBER_SEQ.NEXTVAL, 20010, SYSDATE);
INSERT INTO LINE VALUES (INV_NUMBER_SEQ.CURRVAL, 1,'13-Q2/P2', 1, 14.99);
INSERT INTO LINE VALUES (INV_NUMBER_SEQ.CURRVAL, 2,'23109-HB', 1, 9.95);
COMMIT;

The results are shown in Figure 8.23.

In the example shown in Figure 8.23, INV_NUMBER_SEQ.NEXTVAL retrieves the next available sequence number
(4010) and assigns it to the INV_NUMBER column in the INVOICE table. Also note the use of the SYSDATE attribute
to automatically insert the current date in the INV_DATE attribute. Next, the following two INSERT statements add the

FIGURE
8.23

Oracle sequence examples

332 C H A P T E R 8

products being sold to the LINE table. In this case, INV_NUMBER_SEQ.CURRVAL refers to the last-used INV_
NUMBER_SEQ sequence number (4010). In this way, the relationship between INVOICE and LINE is established
automatically. The COMMIT statement at the end of the command sequence makes the changes permanent. Of
course, you can also issue a ROLLBACK statement, in which case the rows you inserted in INVOICE and LINE tables
would be rolled back (but remember that the sequence number would not). Once you use a sequence number (with
NEXTVAL), there is no way to reuse it! This “no-reuse” characteristic is designed to guarantee that the sequence will
always generate unique values.

Remember these points when you think about sequences:

� The use of sequences is optional. You can enter the values manually.

� A sequence is not associated with a table. As in the examples in Figure 8.23, two distinct sequences were
created (one for customer code values and one for invoice number values), but you could have created just one
sequence and used it to generate unique values for both tables.

Finally, you can drop a sequence from a database with a DROP SEQUENCE command. For example, to drop the
sequences created earlier, you would type:

DROP SEQUENCE CUS_CODE_SEQ;
DROP SEQUENCE INV_NUMBER_SEQ;

Dropping a sequence does not delete the values you assigned to table attributes (CUS_CODE and INV_NUMBER); it
deletes only the sequence object from the database. The values you assigned to the table columns (CUS_CODE and
INV_NUMBER) remain in the database.

Because the CUSTOMER and INVOICE tables are used in the following examples, you’ll want to keep the original data
set. Therefore, you can delete the customer, invoice, and line rows you just added by using the following commands:

DELETE FROM INVOICE WHERE INV_NUMBER = 4010;
DELETE FROM CUSTOMER WHERE CUS_CODE = 20010;
COMMIT;

Those commands delete the recently added invoice and all of the invoice line rows associated with the invoice (the LINE
table’s INV_NUMBER foreign key was defined with the ON DELETE CASCADE option) and the recently added
customer. The COMMIT statement saves all changes to permanent storage.

8.6 UPDATABLE VIEWS

In Chapter 7, you learned how to create a view and why and how views are used. You will now take a look at how
views can be made to serve common data management tasks executed by database administrators.

Note

The SQL-2003 standard defined the use of Identity columns and sequence objects. However, some DBMS
vendors might not adhere to the standard. Check your DBMS documentation.

Note

At this point, you’ll need to re-create the CUS_CODE_SEQ and INV_NUMBER_SEQ sequences, as they will be
used again later in the chapter. Enter:

CREATE SEQUENCE CUS_CODE_SEQ START WITH 20010 NOCACHE;

CREATE SEQUENCE INV_NUMBER_SEQ START WITH 4010 NOCACHE;

333A D V A N C E D S Q L

One of the most common operations in production database environments is using batch update routines to update
a master table attribute (field) with transaction data. As the name implies, a batch update routine pools multiple
transactions into a single batch to update a master table field in a single operation. For example, a batch update
routine is commonly used to update a product’s quantity on hand based on summary sales transactions. Such routines
are typically run as overnight batch jobs to update the quantity on hand of products in inventory. The sales transactions
performed, for example, by traveling salespeople were entered during periods when the system was offline.

To demonstrate a batch update routine, let’s begin by defining the master product table (PRODMASTER) and the product
monthly sales totals table (PRODSALES) shown in Figure 8.24. Note the 1:1 relationship between the two tables.

Using the tables in Figure 8.24, let’s update
the PRODMASTER table by subtracting the
PRODSALES table’s product monthly sales
quantity (PS_QTY) from the PRODMASTER
table’s PROD_QOH. To produce the
required update, the update query would be
written like this:

UPDATE PRODMASTER, PRODSALES
SET PRODMASTER.PROD_QOH = PROD_QOH − PS_QTY
WHERE PRODMASTER.PROD_ID = PRODSALES.PROD_ID;

Note that the update statement reflects the following sequence of events:

� Join the PRODMASTER and PRODSALES tables.

� Update the PROD_QOH attribute (using the PS_QTY value in the PRODSALES table) for each row of the
PRODMASTER table with matching PROD_ID values in the PRODSALES table.

To be used in a batch update, the PRODSALES data must be stored in a base table rather than in a view. That query
will work fine in Access, but Oracle will return the error message shown in Figure 8.25.

O n l i n e C o n t e n t

For MS Access users, the PRODMASTER and PRODSALES tables are located in the Ch08_UV database, which
is located in the Premium Website for this book.

O n l i n e C o n t e n t

For Oracle users, all SQL commands you see in this section are located in the Premium Website for this book.
After you locate the script files (uv-01.sql through uv-04.sql), you can copy and paste the command sequences
into your SQL*Plus program.

Table name: PRODMASTER

Database name: CH08_UV

Table name: PRODSALES

FIGURE
8.24

The PRODMASTER and PRODSALES tables

334 C H A P T E R 8

Oracle produced the error message because Oracle expects to find a single table name in the UPDATE statement. In
fact, you cannot join tables in the UPDATE statement in Oracle. To solve that problem, you have to create an
updatable view. As its name suggests, an updatable view is a view that can be used to update attributes in the base
table(s) that is (are) used in the view. You must realize that not all views are updatable. Actually, several restrictions
govern updatable views, and some of them are vendor-specific.

The most common updatable view restrictions are as follows:

� GROUP BY expressions or aggregate functions cannot be used.

� You cannot use set operators such as UNION, INTERSECT, and MINUS.

� Most restrictions are based on the use of JOINs or group operators in views.

To meet the Oracle limitations, an updatable view named PSVUPD has been created, as shown in Figure 8.26.

FIGURE
8.25

The Oracle UPDATE error message

Note

Keep in mind that the examples in this section are generated in Oracle. To see what restrictions are placed on
updatable views by the DBMS you are using, check the appropriate DBMS documentation.

FIGURE
8.26

Creating an updatable view in Oracle

335A D V A N C E D S Q L

One easy way to determine whether a view can be used to update a base table is to examine the view’s output. If the
primary key columns of the base table you want to update still have unique values in the view, the base table is
updatable. For example, if the PROD_ID column of the view returns the A123 or BX34 values more than once, the
PRODMASTER table cannot be updated through the view.

After creating the updatable view shown in Figure 8.26, you can use the UPDATE command to update the view,
thereby updating the PRODMASTER table. Figure 8.27 shows how the UPDATE command is used and what the final
contents of the PRODMASTER table are after the UPDATE has been executed.

Although the batch update procedure just illustrated meets the goal of updating a master table with data from a transaction
table, the preferred real-world solution to the update problem is to use procedural SQL, which you’ll learn about next.

8.7 PROCEDURAL SQL

Thus far, you have learned to use SQL to read, write, and delete data in the database. For example, you learned to
update values in a record, to add records, and to delete records. Unfortunately, SQL does not support the conditional
execution of procedures that are typically supported by a programming language using the general format:

IF <condition>
THEN <perform procedure>

ELSE <perform alternate procedure>
END IF

FIGURE
8.27

PRODMASTER table update, using an updatable view

336 C H A P T E R 8

SQL also fails to support the looping operations in programming languages that permit the execution of repetitive
actions typically encountered in a programming environment. The typical format is:

DO WHILE
<perform procedure>

END DO

Traditionally, if you wanted to perform a conditional (IF-THEN-ELSE) or looping (DO-WHILE) type of operation (that
is, a procedural type of programming), you would use a programming language such as Visual Basic .NET, C#, or
COBOL. That’s why many older (so-called legacy) business applications are based on enormous numbers of COBOL
program lines. Although that approach is still common, it usually involves the duplication of application code in many
programs. Therefore, when procedural changes are required, program modifications must be made in many different
programs. An environment characterized by such redundancies often creates data management problems.

A better approach is to isolate critical code and then have all application programs call the shared code. The advantage
of that modular approach is that the application code is isolated in a single program, thus yielding better maintenance
and logic control. In any case, the rise of distributed databases (see Chapter 12, Distributed Database Management
Systems) and object-oriented databases (see Appendix G in the Premium Website) required that more application code
be stored and executed within the database. To meet that requirement, most RDBMS vendors created numerous
programming language extensions. Those extensions include:

� Flow-control procedural programming structures (IF-THEN-ELSE, DO-WHILE) for logic representation.

� Variable declaration and designation within the procedures.

� Error management.

To remedy the lack of procedural functionality in SQL and to provide some standardization within the many vendor
offerings, the SQL-99 standard defined the use of persistent stored modules. A persistent stored module (PSM) is
a block of code containing standard SQL statements and procedural extensions that is stored and executed at the
DBMS server. The PSM represents business logic that can be encapsulated, stored, and shared among multiple
database users. A PSM lets an administrator assign specific access rights to a stored module to ensure that only
authorized users can use it. Support for persistent stored modules is left to each vendor to implement. In fact, for many
years, some RDBMSs (such as Oracle, SQL Server, and DB2) supported stored procedure modules within the database
before the official standard was promulgated.

MS SQL Server implements persistent stored modules via Transact-SQL and other language extensions, the most
notable of which are the .NET family of programming languages. Oracle implements PSMs through its procedural SQL
language. Procedural SQL (PL/SQL) is a language that makes it possible to use and store procedural code and SQL
statements within the database and to merge SQL and traditional programming constructs, such as variables,
conditional processing (IF-THEN-ELSE), basic loops (FOR and WHILE loops,) and error trapping. The procedural code
is executed as a unit by the DBMS when it is invoked (directly or indirectly) by the end user. End users can use PL/SQL
to create:

� Anonymous PL/SQL blocks.

� Triggers (covered in Section 8.7.1).

� Stored procedures (covered in Section 8.7.2 and Section 8.7.3).

� PL/SQL functions (covered in Section 8.7.4).

Do not confuse PL/SQL functions with SQL’s built-in aggregate functions such as MIN and MAX. SQL built-in
functions can be used only within SQL statements, while PL/SQL functions are mainly invoked within PL/SQL
programs such as triggers and stored procedures. Functions can also be called within SQL statements, provided that
they conform to very specific rules that are dependent on your DBMS environment.

337A D V A N C E D S Q L

Using Oracle SQL*Plus, you can write a PL/SQL code block by enclosing the commands inside BEGIN and END
clauses. For example, the following PL/SQL block inserts a new row in the VENDOR table, as shown in Figure 8.28.

BEGIN
INSERT INTO VENDOR
VALUES (25678,'Microsoft Corp. ', 'Bill Gates','765','546-8484','WA','N');

END;
/

The PL/SQL block shown in Figure 8.28 is known as an anonymous PL/SQL block because it has not been given
a specific name. (Incidentally, note that the block’s last line uses a forward slash (“/”) to indicate the end of the
command-line entry.) That type of PL/SQL block executes as soon as you press the Enter key after typing the forward
slash. Following the PL/SQL block’s execution, you will see the message “PL/SQL procedure successfully completed.”

Note

PL/SQL, triggers, and stored procedures are illustrated within the context of an Oracle DBMS. All examples in
the following sections assume the use of Oracle RDBMS.

FIGURE
8.28

Anonymous PL/SQL block examples

338 C H A P T E R 8

But suppose that you want a more specific message displayed on the SQL*Plus screen after a procedure is completed,
such as “New Vendor Added.” To produce a more specific message, you must do two things:

1. At the SQL > prompt, type SET SERVEROUTPUT ON. This SQL*Plus command enables the client console
(SQL*Plus) to receive messages from the server side (Oracle DBMS). Remember, just like standard SQL, the
PL/SQL code (anonymous blocks, triggers, and procedures) are executed at the server side, not at the client
side. (To stop receiving messages from the server, you would enter SET SERVEROUT OFF.)

2. To send messages from the PL/SQL block to the SQL*Plus console, use the DBMS_OUTPUT.PUT_LINE
function.

The following anonymous PL/SQL block inserts a row in the VENDOR table and displays the message “New Vendor
Added!” (See Figure 8.28.)

BEGIN
INSERT INTO VENDOR
VALUES (25772,'Clue Store', 'Issac Hayes', '456','323-2009', 'VA', 'N');
DBMS_OUTPUT.PUT_LINE('New Vendor Added!');

END;
/

In Oracle, you can use the SQL*Plus command SHOW ERRORS to help you diagnose errors found in PL/SQL blocks.
The SHOW ERRORS command yields additional debugging information whenever you generate an error after
creating or executing a PL/SQL block.

The following example of an anonymous PL/SQL block demonstrates several of the constructs supported by the
procedural language. Remember that the exact syntax of the language is vendor-dependent; in fact, many vendors
enhance their products with proprietary features.

DECLARE
W_P1 NUMBER(3) := 0;
W_P2 NUMBER(3) := 10;
W_NUM NUMBER(2) := 0;
BEGIN
WHILE W_P2 < 300 LOOP

SELECT COUNT(P_CODE) INTO W_NUM FROM PRODUCT
WHERE P_PRICE BETWEEN W_P1 AND W_P2;
DBMS_OUTPUT.PUT_LINE('There are ' || W_NUM || ' Products with price between ' || W_P1

|| ' and ' || W_P2);
W_P1 := W_P2 + 1;
W_P2 := W_P2 + 50;

END LOOP;
END;
/

339A D V A N C E D S Q L

The block’s code and execution are shown in Figure 8.29.

The PL/SQL block shown in Figure 8.29 has the following characteristics:

� The PL/SQL block starts with the DECLARE section in which you declare the variable names, the data types,
and, if desired, an initial value. Supported data types are shown in Table 8.8.

TABLE
8.8

PL/SQL Basic Data Types

DATA TYPE DESCRIPTION
CHAR Character values of a fixed length; for example:

W_ZIP CHAR(5)
VARCHAR2 Variable length character values; for example:

W_FNAME VARCHAR2(15)
NUMBER Numeric values; for example:

W_PRICE NUMBER(6,2)
DATE Date values; for example:

W_EMP_DOB DATE
%TYPE Inherits the data type from a variable that you declared previously or from an attribute of

a database table; for example:
W_PRICE PRODUCT.P_PRICE%TYPE
Assigns W_PRICE the same data type as the P_PRICE column in the PRODUCT table

� A WHILE loop is used. Note the syntax:

WHILE condition LOOP
PL/SQL statements;

END LOOP

� The SELECT statement uses the INTO keyword to assign the output of the query to a PL/SQL variable. You
can use the INTO keyword only inside a PL/SQL block of code. If the SELECT statement returns more than
one value, you will get an error.

FIGURE
8.29

Anonymous PL/SQL block with variables and loops

340 C H A P T E R 8

� Note the use of the string concatenation symbol “||” to display the output.

� Each statement inside the PL/SQL code must end with a semicolon “;”.

The most useful feature of PL/SQL blocks is that they let you create code that can be named, stored, and
executed—either implicitly or explicitly—by the DBMS. That capability is especially desirable when you need to use
triggers and stored procedures, which you will explore next.

8.7.1 Triggers

Automating business procedures and automatically maintaining data integrity and consistency are critical in a modern
business environment. One of the most critical business procedures is proper inventory management. For example,
you want to make sure that current product sales can be supported with sufficient product availability. Therefore, it is
necessary to ensure that a product order be written to a vendor when that product’s inventory drops below its minimum
allowable quantity on hand. Better yet, how about ensuring that the task is completed automatically?

To accomplish automatic product ordering, you first must make sure the product’s quantity on hand reflects an
up-to-date and consistent value. After the appropriate product availability requirements have been set, two key issues
must be addressed:

1. Business logic requires an update of the product quantity on hand each time there is a sale of that product.

2. If the product’s quantity on hand falls below its minimum allowable inventory (quantity-on-hand) level, the
product must be reordered.

To accomplish those two tasks, you could write multiple SQL statements: one to update the product quantity on hand
and another to update the product reorder flag. Next, you would have to run each statement in the correct order each
time there was a new sale. Such a multistage process would be inefficient because a series of SQL statements must
be written and executed each time a product is sold. Even worse, that SQL environment requires that somebody must
remember to perform the SQL tasks.

A trigger is procedural SQL code that is automatically invoked by the RDBMS upon the occurrence of a given data
manipulation event. It is useful to remember that:

� A trigger is invoked before or after a data row is inserted, updated, or deleted.

� A trigger is associated with a database table.

� Each database table may have one or more triggers.

� A trigger is executed as part of the transaction that triggered it.

Triggers are critical to proper database operation and management. For example:

� Triggers can be used to enforce constraints that cannot be enforced at the DBMS design and implementation
levels.

� Triggers add functionality by automating critical actions and providing appropriate warnings and suggestions
for remedial action. In fact, one of the most common uses for triggers is to facilitate the enforcement of
referential integrity.

� Triggers can be used to update table values, insert records in tables, and call other stored procedures.

Note

PL/SQL blocks can contain only standard SQL data manipulation language (DML) commands such as SELECT,
INSERT, UPDATE, and DELETE. The use of data definition language (DDL) commands is not directly supported
in a PL/SQL block.

341A D V A N C E D S Q L

Triggers play a critical role in making the database truly useful; they also add processing power to the RDBMS and to
the database system as a whole. Oracle recommends triggers for:

� Auditing purposes (creating audit logs).

� Automatic generation of derived column values.

� Enforcement of business or security constraints.

� Creation of replica tables for backup purposes.

To see how a trigger is created and used, let’s examine a simple inventory management problem. For example, if a
product’s quantity on hand is updated when the product is sold, the system should automatically check whether the
quantity on hand falls below its minimum allowable quantity. To demonstrate that process, let’s use the PRODUCT
table in Figure 8.30. Note the use of the minimum order quantity (P_MIN_ORDER) and the product reorder flag
(P_REORDER) columns. The P_MIN_ORDER indicates the minimum quantity for restocking an order. The
P_REORDER column is a numeric field that indicates whether the product needs to be reordered (1 = Yes, 0 = No).
The initial P_REORDER values will be set to 0 (No) to serve as the basis for the initial trigger development.

Given the PRODUCT table listing shown in Figure 8.30, let’s create a trigger to evaluate the product’s quantity on
hand, P_QOH. If the quantity on hand is below the minimum quantity shown in P_MIN, the trigger will set the

FIGURE
8.30

The PRODUCT table

O n l i n e C o n t e n t

Oracle users can run the PRODLIST.SQL script file to format the output of the PRODUCT table shown in Figure
8.30. The script file is located in the Premium Website for this book.

342 C H A P T E R 8

P_REORDER column to 1. (Remember that the number 1 in the P_REORDER column represents “Yes.”) The syntax
to create a trigger in Oracle is:

CREATE OR REPLACE TRIGGER trigger_name
[BEFORE / AFTER] [DELETE / INSERT / UPDATE OF column_name] ON table_name
[FOR EACH ROW]
[DECLARE]
[variable_namedata type[:=initial_value]]
BEGIN
PL/SQL instructions;
..........
END;

As you can see, a trigger definition contains the following parts:

� The triggering timing: BEFORE or AFTER. This timing indicates when the trigger’s PL/SQL code executes;
in this case, before or after the triggering statement is completed.

� The triggering event: the statement that causes the trigger to execute (INSERT, UPDATE, or DELETE).

� The triggering level: There are two types of triggers: statement-level triggers and row-level triggers.

- A statement-level trigger is assumed if you omit the FOR EACH ROW keywords. This type of trigger
is executed once, before or after the triggering statement is completed. This is the default case.

- A row-level trigger requires use of the FOR EACH ROW keywords. This type of trigger is executed once
for each row affected by the triggering statement. (In other words, if you update 10 rows, the trigger
executes 10 times.)

� The triggering action: The PL/SQL code enclosed between the BEGIN and END keywords. Each statement
inside the PL/SQL code must end with a semicolon “;”.

In the PRODUCT table’s case, you will create a statement-level trigger that is implicitly executed AFTER an UPDATE
of the P_QOH attribute for an existing row or AFTER an INSERT of a new row in the PRODUCT table. The trigger
action executes an UPDATE statement that compares the P_QOH with the P_MIN column. If the value of P_QOH is
equal to or less than P_MIN, the trigger updates the P_REORDER to 1. To create the trigger, Oracle’s SQL*Plus will
be used. The trigger code is shown in Figure 8.31.

FIGURE
8.31

Creating the TRG_PRODUCT_REORDER trigger

343A D V A N C E D S Q L

To test the TRG_PRODUCT_REORDER trigger, let’s update the quantity on hand of product ‘11QER/31’ to 4. After
the UPDATE completes, the trigger is automatically fired and the UPDATE statement (inside the trigger code) sets the
P_REORDER to 1 for all products that are below the minimum. (See Figure 8.32.)

The trigger shown in Figure 8.32 seems to work fine, but what happens if you reduce the minimum quantity of product
‘2232/QWE’? Figure 8.33 shows that when you update the minimum quantity, the quantity on hand of the product
‘2232/QWE’ falls below the new minimum, but the reorder flag is still 0. Why?

The answer is simple: you updated the P_MIN column, but the trigger is never executed. TRG_PRODUCT_
REORDER executes only after an update of the P_QOH column! To avoid that inconsistency, you must modify the
trigger event to execute after an update of the P_MIN field, too. The updated trigger code is shown in Figure 8.34.

O n l i n e C o n t e n t

The source code for all of the triggers shown in this section can be found in the PremiumWebsite for this book.

FIGURE
8.32

Verifying the TRG_PRODUCT_REORDER trigger execution

FIGURE
8.33

The P_REORDER value mismatch after update of the P_MIN attribute

344 C H A P T E R 8

To test this new trigger version, let’s change the minimum quantity for product ‘23114-AA’ to 10. After that update, the
trigger makes sure that the reorder flag is properly set for all of the products in the PRODUCT table. (See Figure 8.35.)

This second version of the trigger seems to work well, but what happens if you change the P_QOH value for product
‘11QER/31’, as shown in Figure 8.36? Nothing! (Note that the reorder flag is still set to 1.) Why didn’t the trigger
change the reorder flag to 0?

The answer is that the trigger does not consider all possible cases. Let’s examine the second version of the
TRG_PRODUCT_REORDER trigger code (Figure 8.34) in more detail:

� The trigger fires after the triggering statement is completed. Therefore, the DBMS always executes two
statements (INSERT plus UPDATE or UPDATE plus UPDATE). That is, after you do an update of P_MIN or
P_QOH or you insert a new row in the PRODUCT table, the trigger executes another UPDATE statement
automatically.

FIGURE
8.34

Second version of the TRG_PRODUCT_REORDER trigger

FIGURE
8.35

Successful trigger execution after the P_MIN value is updated

345A D V A N C E D S Q L

� The triggering action performs an UPDATE that updates all of the rows in the PRODUCT table, even if the
triggering statement updates just one row! This can affect the performance of the database. Imagine what
will happen if you have a PRODUCT table with 519,128 rows and you insert just one product. The trigger will
update all 519,129 rows (519,128 original rows plus the one you inserted), including the rows that do not need
an update!

� The trigger sets the P_REORDER value only to 1; it does not reset the value to 0, even if such an action is
clearly required when the inventory level is back to a value greater than the minimum value.

In short, the second version of the TRG_PRODUCT_REORDER trigger still does not complete all of the necessary
steps. Now let’s modify the trigger to handle all update scenarios, as shown in Figure 8.37.

The trigger in Figure 8.37 sports several new features:

� The trigger is executed before the actual triggering statement is completed. In Figure 8.37, the triggering
timing is defined in line 2, BEFORE INSERT OR UPDATE. This clearly indicates that the triggering statement
is executed before the INSERT or UPDATE completes, unlike the previous trigger examples.

FIGURE
8.36

The P_REORDER value mismatch after increasing the P_QOH value

FIGURE
8.37

The third version of the TRG_PRODUCT_REORDER trigger

346 C H A P T E R 8

� The trigger is a row-level trigger instead of a statement-level trigger. The FOR EACH ROW keywords make the
trigger a row-level trigger. Therefore, this trigger executes once for each row affected by the triggering statement.

� The trigger action uses the :NEW attribute reference to change the value of the P_REORDER attribute.

The use of the :NEW attribute references deserves a more detailed explanation. To understand its use, you must first
consider a basic computing tenet: all changes are done first in primary memory, then transferred to permanent
memory. In other words, the computer cannot change anything directly in permanent storage (disk). It must first read
the data from permanent storage to primary memory, then it makes the change in primary memory, and finally, it
writes the changed data back to permanent memory (disk).

The DBMS operates in the same way, with one addition. Because ensuring data integrity is critical, the DBMS makes
two copies of every row being changed by a DML (INSERT, UPDATE, or DELETE) statement. (You will learn more
about this in Chapter 10, Transaction Management and Concurrency Control.) The first copy contains the original
(“old”) values of the attributes before the changes. The second copy contains the changed (“new”) values of the
attributes that will be permanently saved to the database (after any changes made by an INSERT, UPDATE, or
DELETE). You can use :OLD to refer to the original values; you can use :NEW to refer to the changed values (the values
that will be stored in the table). You can use :NEW and :OLD attribute references only within the PL/SQL code of a
database trigger action. For example:

� IF :NEW.P_QOH < = :NEW.P_MIN compares the quantity on hand with the minimum quantity of a product.
Remember that this is a row-level trigger. Therefore, this comparison is done for each row that is updated by
the triggering statement.

� Although the trigger is a BEFORE trigger, this does not mean that the triggering statement hasn’t executed yet.
To the contrary, the triggering statement has already taken place; otherwise, the trigger would not have fired
and the :NEW values would not exist. Remember, BEFORE means before the changes are permanently saved
to disk, but after the changes are made in memory.

� The trigger uses the :NEW reference to assign a value to the P_REORDER column before the UPDATE or
INSERT results are permanently stored in the table. The assignment is always done to the :NEW value (never
to the :OLD value), and the assignment always uses the := assignment operator. The :OLD values are
read-only values; you cannot change them. Note that :NEW.P_REORDER := 1; assigns the value 1 to the
P_REORDER column and :NEW.P_REORDER := 0; assigns the value 0 to the P_REORDER column.

� This new trigger version does not use any DML statement!

Before testing the new trigger, note that product ‘11QER/31’ currently has a quantity on hand that is above the
minimum quantity, yet the reorder flag is set to 1. Given that condition, the reorder flag must be 0. After creating the
new trigger, you can execute an UPDATE statement to fire it, as shown in Figure 8.38.

Note the following important features of the code in Figure 8.38:

� The trigger is automatically invoked for each affected row—in this case, all rows of the PRODUCT table. If your
triggering statement would have affected only three rows, not all PRODUCT rows would have the correct
P_REORDER value set. That’s the reason the triggering statement was set up as shown in Figure 8.38.

� The trigger will run only if you insert a new product row or update P_QOH or P_MIN. If you update any other
attribute, the trigger won’t run.

You can also use a trigger to update an attribute in a table other than the one being modified. For example, suppose
that you would like to create a trigger that automatically reduces the quantity on hand of a product with every sale. To
accomplish that task, you must create a trigger for the LINE table that updates a row in the PRODUCT table. The
sample code for that trigger is shown in Figure 8.39.

Note that the TRG_LINE_PROD row-level trigger executes after inserting a new invoice’s LINE and reduces the
quantity on hand of the recently sold product by the number of units sold. This row-level trigger updates a row in a
different table (PRODUCT), using the :NEW values of the recently added LINE row.

347A D V A N C E D S Q L

A third trigger example shows the use of variables within a trigger. In this case, you want to update the customer
balance (CUS_BALANCE) in the CUSTOMER table after inserting every new LINE row. This trigger code is shown
in Figure 8.40.

Let’s carefully examine the trigger in Figure 8.40.

� The trigger is a row-level trigger that executes after each new LINE row is inserted.

� The DECLARE section in the trigger is used to declare any variables used inside the trigger code.

� You can declare a variable by assigning a name, a data type, and (optionally) an initial value, as in the case of
the W_TOT variable.

FIGURE
8.38

Execution of the third trigger version

FIGURE
8.39

TRG_LINE_PROD trigger to update the PRODUCT quantity on hand

348 C H A P T E R 8

� OThe first step in the trigger code is to get the customer code (CUS_CODE) from the related INVOICE table.
Note that the SELECT statement returns only one attribute (CUS_CODE) from the INVOICE table. Also note
that that attribute returns only one value as specified by the use of the WHERE clause to restrict the query
output to a single value.

� Note the use of the INTO clause within the SELECT statement. You use the INTO clause to assign a value from
a SELECT statement to a variable (W_CUS) used within a trigger.

� The second step in the trigger code computes the total of the line by multiplying :NEW.LINE_UNITS times
:NEW.LINE_PRICE and assigning the result to the W_TOT variable.

� The final step updates the customer balance by using an UPDATE statement and the W_TOT and W_CUS
trigger variables.

� Double dashes “--” are used to indicate comments within the PL/SQL block.

Let’s summarize the triggers created in this section.

� The TRG_PROD_REORDER is a row-level trigger that updates P_REORDER in PRODUCT when a new
product is added or when the P_QOH or P_MIN columns are updated.

� The TRG_LINE_PROD is a row-level trigger that automatically reduces the P_QOH in PRODUCT when a new
row is added to the LINE table.

� TRG_LINE_CUS is a row-level trigger that automatically increases the CUS_BALANCE in CUSTOMER when
a new row is added in the LINE table.

FIGURE
8.40

TRG_LINE_CUS trigger to update the customer balance

349A D V A N C E D S Q L

The use of triggers facilitates the automation of multiple data management tasks. Although triggers are independent
objects, they are associated with database tables. When you delete a table, all its trigger objects are deleted with it.
However, if you needed to delete a trigger without deleting the table, you could use the following command:

DROP TRIGGER trigger_name

Trigger Action Based on Conditional DML Predicates
You could also create triggers whose actions depend on the type of DML statement (INSERT, UPDATE, or DELETE)
that fires the trigger. For example, you could create a trigger that executes after an insert, an update, or a delete on
the PRODUCT table. But how do you know which one of the three statements caused the trigger to execute? In those
cases, you could use the following syntax:

IF INSERTING THEN ... END IF;
IF UPDATING THEN ... END IF;
IF DELETING THEN ... END IF;

8.7.2 Stored Procedures

A stored procedure is a named collection of procedural and SQL statements. Just like database triggers, stored
procedures are stored in the database. One of the major advantages of stored procedures is that they can be used to
encapsulate and represent business transactions. For example, you can create a stored procedure to represent a
product sale, a credit update, or the addition of a new customer. By doing that, you can encapsulate SQL statements
within a single stored procedure and execute them as a single transaction. There are two clear advantages to the use
of stored procedures:

� Stored procedures substantially reduce network traffic and increase performance. Because the procedure is
stored at the server, there is no transmission of individual SQL statements over the network. The use of stored
procedures improves system performance because all transactions are executed locally on the RDBMS, so each
SQL statement does not have to travel over the network.

� Stored procedures help reduce code duplication by means of code isolation and code sharing (creating unique
PL/SQL modules that are called by application programs), thereby minimizing the chance of errors and the
cost of application development and maintenance.

To create a stored procedure, you use the following syntax:

CREATE OR REPLACE PROCEDURE procedure_name [(argument [IN/OUT] data-type, �)]
[IS/AS]
[variable_namedata type[:=initial_value]]

BEGIN
PL/SQL or SQL statements;
...

END;

Note the following important points about stored procedures and their syntax:

� argument specifies the parameters that are passed to the stored procedure. A stored procedure could have
zero or more arguments or parameters.

� IN/OUT indicates whether the parameter is for input, output, or both.

� data-type is one of the procedural SQL data types used in the RDBMS. The data types normally match those
used in the RDBMS table-creation statement.

� Variables can be declared between the keywords IS and BEGIN. You must specify the variable name, its data
type, and (optionally) an initial value.

350 C H A P T E R 8

To illustrate stored procedures, assume that you want to create a procedure (PRC_PROD_DISCOUNT) to assign an
additional 5 percent discount for all products when the quantity on hand is more than or equal to twice the minimum
quantity. Figure 8.41 shows how the stored procedure is created.

Note in Figure 8.41 that the PRC_PROD_DISCOUNT stored procedure uses the DBMS_OUTPUT.PUT_LINE
function to display a message when the procedure executes. (This action assumes that you previously ran SET
SERVEROUTPUT ON.)

To execute the stored procedure, you must use the following syntax:

EXEC procedure_name[(parameter_list)];

For example, to see the results of running the PRC_PROD_DISCOUNT stored procedure, you can use the EXEC
PRC_PROD_DISCOUNT command shown in Figure 8.42.

Using Figure 8.42 as your guide, you can see how the product discount attribute for all products with a quantity on
hand more than or equal to twice the minimum quantity was increased by 5 percent. (Compare the first PRODUCT
table listing to the second PRODUCT table listing.)

One of the main advantages of procedures is that you can pass values to them. For example, the previous
PRC_PROD_DISCOUNT procedure worked fine, but what if you want to make the percentage increase an input
variable? In that case, you can pass an argument to represent the rate of increase to the procedure. Figure 8.43 shows
the code for that procedure.

Figure 8.44 shows the execution of the second version of the PRC_PROD_DISCOUNT stored procedure. Note that,
if the procedure requires arguments, those arguments must be enclosed in parentheses and they must be separated by
commas.

Stored procedures are also useful to encapsulate shared code to represent business transactions. For example, you can
create a simple stored procedure to add a new customer. By using a stored procedure, all programs can call the stored
procedure by name each time a new customer is added. Naturally, if new customer attributes are added later, you will

FIGURE
8.41

Creating the PRC_PROD_DISCOUNT stored procedure

O n l i n e C o n t e n t

The source code for all of the stored procedures shown in this section can be found in the PremiumWebsite for
this book.

351A D V A N C E D S Q L

need to modify the stored procedure. However, the programs that use the stored procedure will not need to know the
name of the newly added attribute and will need to add only a new parameter to the procedure call. (Notice the
PRC_CUS_ADD stored procedure shown in Figure 8.45.)

FIGURE
8.42

Results of the PRC_PROD_DISCOUNT stored procedure

FIGURE
8.43

Second version of the PRC_PROD_DISCOUNT stored procedure

352 C H A P T E R 8

As you examine Figure 8.45, note these features:

� The PRC_CUS_ADD procedure uses several parameters, one for each required attribute in the CUSTOMER table.

� The stored procedure uses the CUS_CODE_SEQ sequence to generate a new customer code.

� The required parameters—those specified in the table definition—must be included and can be null only when
the table specifications permit nulls for that parameter. For example, note that the second customer addition
was unsuccessful because the CUS_AREACODE is a required attribute and cannot be null.

� The procedure displays a message in the SQL*Plus console to let the user know that the customer was added.

FIGURE
8.44

Results of the second version of the PRC_PROD_DISCOUNT stored procedure

FIGURE
8.45

The PRC_CUS_ADD stored procedure

353A D V A N C E D S Q L

The next two examples further illustrate the use of sequences within stored procedures. In this case, let’s create two
stored procedures:

1. The PRC_INV_ADD procedure adds a new invoice.

2. The PRC_LINE_ADD procedure adds a new product line row for a given invoice.

Both procedures are shown in Figure 8.46. Note the use of a variable in the PRC_LINE_ADD procedure to get the
product price from the PRODUCT table.

To test the procedures shown in Figure 8.46:

1. Call the PRC_INV_ADD procedure with the new invoice data as arguments.

2. Call the PRC_LINE_ADD procedure and pass the product line arguments.

That process is illustrated in Figure 8.47.

8.7.3 PL/SQL Processing with Cursors

Until now, all of the SQL statements you have used inside a PL/SQL block (trigger or stored procedure) have returned
a single value. If the SQL statement returns more than one value, you will generate an error. If you want to use an SQL
statement that returns more than one value inside your PL/SQL code, you need to use a cursor. A cursor is a special
construct used in procedural SQL to hold the data rows returned by an SQL query. You can think of a cursor as a
reserved area of memory in which the output of the query is stored, like an array holding columns and rows. Cursors
are held in a reserved memory area in the DBMS server, not in the client computer.

There are two types of cursors: implicit and explicit. An implicit cursor is automatically created in procedural SQL
when the SQL statement returns only one value. Up to this point, all of the examples created an implicit cursor. An
explicit cursor is created to hold the output of an SQL statement that may return two or more rows (but could return
0 or only one row). To create an explicit cursor, you use the following syntax inside a PL/SQL DECLARE section:

CURSOR cursor_name IS select-query;

FIGURE
8.46

The PRC_INV_ADD and PRC_LINE_ADD stored procedures

354 C H A P T E R 8

Once you have declared a cursor, you can use specific PL/SQL cursor processing commands (OPEN, FETCH, and
CLOSE) anywhere between the BEGIN and END keywords of the PL/SQL block. Table 8.9 summarizes the main use
of each of those commands.

TABLE
8.9

Cursor Processing Commands

CURSOR
COMMAND

EXPLANATION

OPEN Opening the cursor executes the SQL command and populates the cursor with data, opening the
cursor for processing. The cursor declaration command only reserves a named memory area for
the cursor; it doesn’t populate the cursor with the data. Before you can use a cursor, you need to
open it. For example:
OPEN cursor_name

FETCH Once the cursor is opened, you can use the FETCH command to retrieve data from the cursor and
copy it to the PL/SQL variables for processing. The syntax is:
FETCH cursor_name INTO variable1 [, variable2, ...]
The PL/SQL variables used to hold the data must be declared in the DECLARE section and must
have data types compatible with the columns retrieved by the SQL command. If the cursors SQL
statement returns five columns, there must be five PL/SQL variables to receive the data from the
cursor.
This type of processing resembles the one-record-at-a-time processing used in previous database
models. The first time you fetch a row from the cursor, the first row of data from the cursor is cop-
ied to the PL/SQL variables; the second time you fetch a row from the cursor, the second row of
data is placed in the PL/SQL variables; and so on.

CLOSE The CLOSE command closes the cursor for processing.

FIGURE
8.47

Testing the PRC_INV_ADD and PRC_LINE_ADD procedures

355A D V A N C E D S Q L

Cursor-style processing involves retrieving data from the cursor one row at a time. Once you open a cursor, it becomes
an active data set. That data set contains a “current” row pointer. Therefore, after opening a cursor, the current row
is the first row of the cursor.

When you fetch a row from the cursor, the data from the “current” row in the cursor is copied to the PL/SQL variables.
After the fetch, the “current” row pointer moves to the next row in the set and continues until it reaches the end of
the cursor.

How do you know what number of rows are in the cursor? Or how do you know when you have reached the end of
the cursor data set? You know because cursors have special attributes that convey important information. Table 8.10
summarizes the cursor attributes.

TABLE
8.10

Cursor Attributes

ATTRIBUTE DESCRIPTION
%ROWCOUNT Returns the number of rows fetched so far. If the cursor is not OPEN, it returns an error. If

no FETCH has been done but the cursor is OPEN, it returns 0.
%FOUND Returns TRUE if the last FETCH returned a row and FALSE if not. If the cursor is not

OPEN, it returns an error. If no FETCH has been done, it contains NULL.
%NOTFOUND Returns TRUE if the last FETCH did not return any row and FALSE if it did. If the cursor is

not OPEN, it returns an error. If no FETCH has been done, it contains NULL.
%ISOPEN Returns TRUE if the cursor is open (ready for processing) or FALSE if the cursor is closed.

Remember, before you can use a cursor, you must open it.

To illustrate the use of cursors, let’s use a simple stored procedure example that lists all products that have a quantity
on hand greater than the average quantity on hand for all products. The code is shown in Figure 8.48.

As you examine the stored procedure code shown in Figure 8.48, note the following important characteristics:

� Lines 2 and 3 use the %TYPE data type in the variable definition section. As indicated in Table 8.8, the %TYPE
data type is used to indicate that the given variable inherits the data type from a variable previously declared
or from an attribute of a database table. In this case, you are using the %TYPE to indicate that the W_P_CODE
and W_P_DESCRIPT will have the same data type as the respective columns in the PRODUCT table. This
way, you ensure that the PL/SQL variable will have a compatible data type.

� Line 5 declares the PROD_CURSOR cursor.

� Line 12 opens the PROD_CURSOR cursor and populates it.

� Line 13 uses the LOOP statement to loop through the data in the cursor, fetching one row at a time.

� Line 14 uses the FETCH command to retrieve a row from the cursor and place it in the respective PL/SQL
variables.

� Line 15 uses the EXIT command to evaluate when there are no more rows in the cursor (using the
%NOTFOUND cursor attribute) and to exit the loop.

� Line 19 uses the %ROWCOUNT cursor attribute to obtain the total number of rows processed.

� Line 21 issues the CLOSE PROD_CURSOR command to close the cursor.

The use of cursors, combined with standard SQL, makes relational databases very desirable because programmers can
work in the best of both worlds: set-oriented processing and record-oriented processing. Any experienced programmer
knows to use the tool that best fits the job. Sometimes you will be better off manipulating data in a set-oriented
environment; at other times, it might be better to use a record-oriented environment. Procedural SQL lets you have
your proverbial cake and eat it, too. Procedural SQL provides functionality that enhances the capabilities of the DBMS
while maintaining a high degree of manageability.

356 C H A P T E R 8

8.7.4 PL/SQL Stored Functions

Using programmable or procedural SQL, you can also create your own stored functions. Stored procedures and
functions are very similar. A stored function is basically a named group of procedural and SQL statements that
returns a value (indicated by a RETURN statement in its program code). To create a function, you use the following
syntax:

CREATE FUNCTION function_name (argument IN data-type, �) RETURN data-type [IS]
BEGIN

PL/SQL statements;
...
RETURN (value or expression);

END;

Stored functions can be invoked only from within stored procedures or triggers and cannot be invoked from SQL
statements (unless the function follows some very specific compliance rules). Remember not to confuse built-in SQL
functions (such as MIN, MAX, and AVG) with stored functions.

FIGURE
8.48

A simple PRC_CURSOR_EXAMPLE

357A D V A N C E D S Q L

8.8 EMBEDDED SQL

There is little doubt that SQL’s popularity as a data manipulation language is in part due to its ease of use and its
powerful data-retrieval capabilities. But in the real world, database systems are related to other systems and programs,
and you still need a conventional programming language such as Visual Basic .NET, C#, or COBOL to integrate
database systems with other programs and systems. If you are developing Web applications, you are most likely familiar
with Visual Studio .NET, Java, ASP, or ColdFusion. Yet, almost regardless of the programming tools you use, if your
Web application or Windows-based GUI system requires access to a database such as MS Access, SQL Server, Oracle,
or DB2, you will likely need to use SQL to manipulate the data in the database.

Embedded SQL is a term used to refer to SQL statements that are contained within an application programming
language such as Visual Basic .NET, C#, COBOL, or Java. The program being developed might be a standard binary
executable in Windows or Linux, or it might be a Web application designed to run over the Internet. No matter what
language you use, if it contains embedded SQL statements, it is called the host language. Embedded SQL is still the
most common approach to maintaining procedural capabilities in DBMS-based applications. However, mixing SQL
with procedural languages requires that you understand some key differences between SQL and procedural languages.

� Run-time mismatch: Remember that SQL is a nonprocedural, interpreted language; that is, each instruction
is parsed, its syntax is checked, and it is executed one instruction at a time.1 All of the processing takes place
at the server side. Meanwhile, the host language is generally a binary-executable program (also known as a
compiled program). The host program typically runs at the client side in its own memory space (which is
different from the DBMS environment).

� Processing mismatch: Conventional programming languages (COBOL, ADA, FORTRAN, PASCAL, C++,
and PL/I) process one data element at a time. Although you can use arrays to hold data, you still process the
array elements one row at a time. This is especially true for file manipulation, where the host language typically
manipulates data one record at a time. However, newer programming environments (such as Visual Studio
.NET) have adopted several object-oriented extensions that help the programmer manipulate data sets in a
cohesive manner.

� Data type mismatch: SQL provides several data types, but some of those data types might not match data
types used in different host languages (for example, the date and varchar2 data types).

To bridge the differences, the Embedded SQL standard2 defines a framework to integrate SQL within several
programming languages. The Embedded SQL framework defines the following:

� A standard syntax to identify embedded SQL code within the host language (EXEC SQL/END-EXEC).

� A standard syntax to identify host variables. Host variables are variables in the host language that receive data
from the database (through the embedded SQL code) and process the data in the host language. All host
variables are preceded by a colon (“:”).

� A communication area used to exchange status and error information between SQL and the host language.
This communications area contains two variables—SQLCODE and SQLSTATE.

Another way to interface host languages and SQL is through the use of a call level interface (CLI),2 in which the
programmer writes to an application programming interface (API). A common CLI in Windows is provided by the
Open Database Connectivity (ODBC) interface.

1 The authors are particularly grateful for the thoughtful comments provided by Emil T. Cipolla.
2 You can obtain more details about the Embedded SQL standard at www.ansi.org, SQL/Bindings is in the SQL Part II–SQL/Foundation section of
the SQL 2003 standard.

358 C H A P T E R 8

Before continuing, let’s explore the process required to create and run an executable program with embedded SQL
statements. If you have ever programmed in COBOL or C++, you are familiar with the multiple steps required to
generate the final executable program. Although the specific details vary among language and DBMS vendors, the
following general steps are standard:

1. The programmer writes embedded SQL code within the host language instructions. The code follows the
standard syntax required for the host language and embedded SQL.

2. A preprocessor is used to transform the embedded SQL into specialized procedure calls that are DBMS- and
language-specific. The preprocessor is provided by the DBMS vendor and is specific to the host language.

3. The program is compiled using the host language compiler. The compiler creates an object code module for
the program containing the DBMS procedure calls.

4. The object code is linked to the respective library modules and generates the executable program. This process
binds the DBMS procedure calls to the DBMS run-time libraries. Additionally, the binding process typically
creates an “access plan” module that contains instructions to run the embedded code at run time.

5. The executable is run, and the embedded SQL statement retrieves data from the database.

Note that you can embed individual SQL statements or even an entire PL/SQL block. Up to this point in the book,
you have used a DBMS-provided application (SQL*Plus) to write SQL statements and PL/SQL blocks in an interpretive
mode to address one-time or ad hoc data requests. However, it is extremely difficult and awkward to use ad hoc queries
to process transactions inside a host language. Programmers typically embed SQL statements within a host language
that it is compiled once and executed as often as needed. To embed SQL into a host language, follow this syntax:

EXEC SQL
SQL statement;

END-EXEC.

The preceding syntax will work for SELECT, INSERT, UPDATE, and DELETE statements. For example, the following
embedded SQL code will delete employee 109, George Smith, from the EMPLOYEE table:

EXEC SQL
DELETE FROM EMPLOYEE WHERE EMP_NUM = 109;

END-EXEC.

Remember, the preceding embedded SQL statement is compiled to generate an executable statement. Therefore, the
statement is fixed permanently and cannot change (unless, of course, the programmer changes it). Each time the
program runs, it deletes the same row. In short, the preceding code is good only for the first run; all subsequent runs
will likely generate an error. Clearly, this code would be more useful if you could specify a variable to indicate the
employee number to be deleted.

In embedded SQL, all host variables are preceded by a colon (“:”). The host variables may be used to send data from
the host language to the embedded SQL, or they may be used to receive the data from the embedded SQL. To use
a host variable, you must first declare it in the host language. Common practice is to use similar host variable names
as the SQL source attributes. For example, if you are using COBOL, you would define the host variables in the
Working Storage section. Then you would refer to them in the embedded SQL section by preceding them with a colon

O n l i n e C o n t e n t

Additional coverage of CLIs and ODBC is found in Appendix F, Client/Server Systems, and Appendix J, Web
Database Development with ColdFusion in the Premium Website for this book.

359A D V A N C E D S Q L

(“:”). For example, to delete an employee whose employee number is represented by the host variable W_EMP_NUM,
you would write the following code:

EXEC SQL
DELETE FROM EMPLOYEE WHERE EMP_NUM = :W_EMP_NUM;

END-EXEC.

At run time, the host variable value will be used to execute the embedded SQL statement. What happens if the
employee you are trying to delete doesn’t exist in the database? How do you know that the statement has been
completed without errors? As mentioned previously, the embedded SQL standard defines a SQL communication area
to hold status and error information. In COBOL, such an area is known as the SQLCA area and is defined in the Data
Division as follows:

EXEC SQL
INCLUDE SQLCA

END-EXEC.

The SQLCA area contains two variables for status and error reporting. Table 8.11 shows some of the main values
returned by the variables and their meaning.

TABLE
8.11

SQL Status and Error Reporting Variables

VARIABLE NAME VALUE EXPLANATION
SQLCODE Old-style error reporting supported for backward compatibility only; returns

an integer value (positive or negative).
0 Successful completion of command.
100 No data; the SQL statement did not return any rows or did not select, update,

or delete any rows.
-999 Any negative value indicates that an error occurred.

SQLSTATE Added by SQL-92 standard to provide predefined error codes; defined as a
character string (5 characters long).

00000 Successful completion of command.
Multiple values in the format XXYYY where:
XX-> represents the class code.
YYY-> represents the subclass code.

The following embedded SQL code illustrates the use of the SQLCODE within a COBOL program.

EXEC SQL
EXEC SQL

SELECT EMP_LNAME, EMP_LNAME INTO :W_EMP_FNAME, :W_EMP_LNAME
WHERE EMP_NUM = :W_EMP_NUM;

END-EXEC.
IF SQLCODE = 0 THEN

PERFORM DATA_ROUTINE
ELSE

PERFORM ERROR_ROUTINE
END-IF.

In this example, the SQLCODE host variable is checked to determine whether the query completed successfully. If that
is the case, the DATA_ROUTINE is performed; otherwise, the ERROR_ROUTINE is performed.

360 C H A P T E R 8

Just as with PL/SQL, embedded SQL requires the use of cursors to hold data from a query that returns more than one
value. If COBOL is used, the cursor can be declared either in the Working Storage Section or in the Procedure
Division. The cursor must be declared and processed as you learned earlier in Section 8.7.3. To declare a cursor, you
use the syntax shown in the following example:

EXEC SQL
DECLARE PROD_CURSOR FOR
SELECT P_CODE, P_DESCRIPT FROM PRODUCT
WHERE P_QOH > (SELECT AVG(P_QOH) FROM PRODUCT);

END-EXEC.

Next, you must open the cursor to make it ready for processing:

EXEC SQL
OPEN PROD_CURSOR;

END-EXEC.

To process the data rows in the cursor, you use the FETCH command to retrieve one row of data at a time and place
the values in the host variables. The SQLCODE must be checked to ensure that the FETCH command completed
successfully. This section of code typically constitutes part of a routine in the COBOL program. Such a routine is
executed with the PERFORM command. For example:

EXEC SQL
FETCH PROD_CURSOR INTO :W_P_CODE, :W_P_DESCRIPT;

END-EXEC.
IF SQLCODE = 0 THEN

PERFORM DATA_ROUTINE
ELSE

PERFORM ERROR_ROUTINE
END-IF.

When all rows have been processed, you close the cursor as follows:

EXEC SQL
CLOSE PROD_CURSOR;

END-EXEC.

Thus far, you have seen examples of embedded SQL in which the programmer used predefined SQL statements and
parameters. Therefore, the end users of the programs are limited to the actions that were specified in the application
programs. That style of embedded SQL is known as static SQL, meaning that the SQL statements will not change
while the application is running. For example, the SQL statement might read like this:

SELECT P_CODE, P_DESCRIPT, P_QOH, P_PRICE
FROM PRODUCT
WHERE P_PRICE > 100;

Note that the attributes, tables, and conditions are known in the preceding SQL statement. Unfortunately, end users
seldom work in a static environment. They are more likely to require the flexibility of defining their data access
requirements on the fly. Therefore, the end user requires that SQL be as dynamic as the data access requirements.

Dynamic SQL is a term used to describe an environment in which the SQL statement is not known in advance;
instead, the SQL statement is generated at run time. At run time in a dynamic SQL environment, a program can
generate the SQL statements that are required to respond to ad hoc queries. In such an environment, neither the

361A D V A N C E D S Q L

programmer nor the end user is likely to know precisely what kind of queries are to be generated or how those queries
are to be structured. For example, a dynamic SQL equivalent of the preceding example could be:

SELECT :W_ATTRIBUTE_LIST
FROM :W_TABLE
WHERE :W_CONDITION;

Note that the attribute list and the condition are not known until the end user specifies them. W_TABLE,
W_ATTRIBUTE_LIST, and W_CONDITION are text variables that contain the end-user input values used in the query
generation. Because the program uses the end-user input to build the text variables, the end user can run the same
program multiple times to generate varying outputs. For example, in one instance, the end user might want to know
what products have a price less than $100; in another case, the end user might want to know how many units of a
given product are available for sale at any given moment.

Although dynamic SQL is clearly flexible, such flexibility carries a price. Dynamic SQL tends to be much slower than
static SQL. Dynamic SQL also requires more computer resources (overhead). Finally, you are more likely to find
inconsistent levels of support and incompatibilities among DBMS vendors.

362 C H A P T E R 8

S u m m a r y

◗ SQL provides relational set operators to combine the output of two queries to generate a new relation. The UNION
and UNION ALL set operators combine the output of two (or more) queries and produce a new relation with all
unique (UNION) or duplicate (UNION ALL) rows from both queries. The INTERSECT relational set operator selects
only the common rows. The MINUS set operator selects only the rows that are different. UNION, INTERSECT,
and MINUS require union-compatible relations.

◗ Operations that join tables can be classified as inner joins and outer joins. An inner join is the traditional join in
which only rows that meet a given criteria are selected. An outer join returns the matching rows as well as the rows
with unmatched attribute values for one table or both tables to be joined.

◗ A natural join returns all rows with matching values in the matching columns and eliminates duplicate columns. This
style of query is used when the tables share a common attribute with a common name. One important difference
between the syntax for a natural join and for the “old-style” join is that the natural join does not require the use
of a table qualifier for the common attributes.

◗ Joins may use keywords such as USING and ON. If the USING clause is used, the query will return only the rows
with matching values in the column indicated in the USING clause; that column must exist in both tables. If the ON
clause is used, the query will return only the rows that meet the specified join condition.

◗ Subqueries and correlated queries are used when it is necessary to process data based on other processed data.
That is, the query uses results that were previously unknown and that are generated by another query. Subqueries
may be used with the FROM, WHERE, IN, and HAVING clauses in a SELECT statement. A subquery may return
a single row or multiple rows.

◗ Most subqueries are executed in a serial fashion. That is, the outer query initiates the data request, and then the inner
subquery is executed. In contrast, a correlated subquery is a subquery that is executed once for each row in the outer
query. That process is similar to the typical nested loop in a programming language. A correlated subquery is so named
because the inner query is related to the outer query—the inner query references a column of the outer subquery.

◗ SQL functions are used to extract or transform data. The most frequently used functions are date and time
functions. The results of the function output can be used to store values in a database table, to serve as the basis
for the computation of derived variables, or to serve as a basis for data comparisons. Function formats can be
vendor-specific. Aside from time and date functions, there are numeric and string functions as well as conversion
functions that convert one data format to another.

◗ Oracle sequences may be used to generate values to be assigned to a record. For example, a sequence may be used
to number invoices automatically. MS Access uses an AutoNumber data type to generate numeric sequences. MS
SQL Server uses the Identity column property to designate the column that will have sequential numeric values
automatically assigned to it. There can only be one Identity column per SQL Server table.

◗ Procedural SQL (PL/SQL) can be used to create triggers, stored procedures, and PL/SQL functions. A trigger is
procedural SQL code that is automatically invoked by the DBMS upon the occurrence of a specified data
manipulation event (UPDATE, INSERT, or DELETE). Triggers are critical to proper database operation and
management. They help automate various transaction and data management processes, and they can be used to
enforce constraints that are not enforced at the DBMS design and implementation levels.

◗ A stored procedure is a named collection of SQL statements. Just like database triggers, stored procedures are
stored in the database. One of the major advantages of stored procedures is that they can be used to encapsulate
and represent complete business transactions. Use of stored procedures substantially reduces network traffic and
increases system performance. Stored procedures help reduce code duplication by creating unique PL/SQL
modules that are called by the application programs, thereby minimizing the chance of errors and the cost of
application development and maintenance.

363A D V A N C E D S Q L

◗ When SQL statements are designed to return more than one value inside the PL/SQL code, a cursor is needed.
You can think of a cursor as a reserved area of memory in which the output of the query is stored, like an array
holding columns and rows. Cursors are held in a reserved memory area in the DBMS server, rather than in the
client computer. There are two types of cursors: implicit and explicit.

◗ Embedded SQL refers to the use of SQL statements within an application programming language such as Visual Basic
.NET, C#, COBOL, or Java. The language in which the SQL statements are embedded is called the host language.
Embedded SQL is still the most common approach to maintaining procedural capabilities in DBMS-based applications.

K e y T e r m s

anonymous PL/SQL block, 338

batch update routine, 334

correlated subquery, 321

cross join, 306

cursor, 354

dynamic SQL, 361

embedded SQL, 358

explicit cursor, 354

host language, 358

implicit cursor, 354

inner join, 306

outer join, 306

persistent stored
module (PSM), 337

procedural SQL (PL/SQL), 337

row-level trigger, 343

set-oriented, 298

statement-level trigger, 343

static SQL, 361

stored function, 357

stored procedure, 350

trigger, 341

union-compatible, 298

updatable view, 335

R e v i e w Q u e s t i o n s

1. What does it mean to say that SQL operators are set-oriented?

2. The relational set operators UNION, INTERSECT, and MINUS work properly only when the relations are
union-compatible. What does union-compatible mean, and how would you check for this condition?

3. What is the difference between UNION and UNION ALL? Write the syntax for each.

4. Suppose you have two tables: EMPLOYEE and EMPLOYEE_1. The EMPLOYEE table contains the records for
three employees: Alice Cordoza, John Cretchakov, and Anne McDonald. The EMPLOYEE_1 table contains the
records for employees John Cretchakov and Mary Chen. Given that information, list the query output for the
UNION query.

5. Given the employee information in Question 4, list the query output for the UNION ALL query.

6. Given the employee information in Question 4, list the query output for the INTERSECT query.

7. Given the employee information in Question 4, list the query output for the MINUS query of EMPLOYEE to
EMPLOYEE_1.

8. Why does the order of the operands (tables) matter in a MINUS query but not in a UNION query?

9. What is a CROSS JOIN? Give an example of its syntax.

10. What three join types are included in the OUTER JOIN classification?

11. Using tables named T1 and T2, write a query example for each of the three join types you described in Question 10.
Assume that T1 and T2 share a common column named C1.

O n l i n e C o n t e n t

Answers to selected ReviewQuestions and Problems for this chapter are contained in the PremiumWebsite for
this book.

364 C H A P T E R 8

12. What is a subquery, and what are its basic characteristics?

13. What are the three types of results that a subquery can return?

14. What is a correlated subquery? Give an example.

15. Explain the difference between a regular subquery and a correlated subquery.

16. What MS Access/SQL Server function should you use to calculate the number of days between your birth date
and the current date?

17. What Oracle function should you use to calculate the number of days between your birth date and the current date?

18. Suppose a PRODUCT table contains two attributes, PROD_CODE and VEND_CODE. Those two attributes have
values of ABC, 125, DEF, 124, GHI, 124, and JKL, 123, respectively. The VENDOR table contains a single
attribute, VEND_CODE, with values 123, 124, 125, and 126, respectively. (The VEND_CODE attribute in the
PRODUCT table is a foreign key to the VEND_CODE in the VENDOR table.) Given that information, what
would be the query output for:

a. A UNION query based on the two tables?

b. A UNION ALL query based on the two tables?

c. An INTERSECT query based on the two tables?

d. A MINUS query based on the two tables?

19. What string function should you use to list the first three characters of a company’s EMP_LNAME values? Give
an example using a table named EMPLOYEE. Provide examples for Oracle and SQL Server.

20. What is an Oracle sequence? Write its syntax.

21. What is a trigger, and what is its purpose? Give an example.

22. What is a stored procedure, and why is it particularly useful? Give an example.

23. What is embedded SQL, and how is it used?

24. What is dynamic SQL, and how does it differ from static SQL?

P r o b l e m s

Use the database tables in Figure P8.1 as the basis for Problems 1−18.

Table name: CUSTOMER

Database name: CH08_SimpleCo

Table name: INVOICE

Table name: CUSTOMER_2

FIGURE
P8.1

Ch08_SimpleCo database tables

365A D V A N C E D S Q L

1. Create the tables. (Use the MS Access example shown in Figure P8.1 to see what table names and attributes to use.)

2. Insert the data into the tables you created in Problem 1.

3. Write the query that will generate a combined list of customers (from the tables CUSTOMER and CUSTOMER_2)
that do not include the duplicate customer records. (Note that only the customer named Juan Ortega shows up
in both customer tables.)

4. Write the query that will generate a combined list of customers to include the duplicate customer records.

5. Write the query that will show only the duplicate customer records.

6. Write the query that will generate only the records that are unique to the CUSTOMER_2 table.

7. Write the query to show the invoice number, the customer number, the customer name, the invoice date, and the
invoice amount for all customers with a customer balance of $1,000 or more.

8. Write the query that will show (for all the invoices) the invoice number, the invoice amount, the average invoice
amount, and the difference between the average invoice amount and the actual invoice amount.

9. Write the query that will write Oracle sequences to produce automatic customer number and invoice number
values. Start the customer numbers at 1000 and the invoice numbers at 5000.

10. Modify the CUSTOMER table to included two new attributes: CUST_DOB and CUST_AGE. Customer 1000
was born on March 15, 1979, and customer 1001 was born on December 22, 1988.

11. Assuming you completed Problem 10, write the query that will list the names and ages of your customers.

12. Assuming the CUSTOMER table contains a CUST_AGE attribute, write the query to update the values in that
attribute. (Hint: Use the results of the previous query.)

13. Write the query that lists the average age of your customers. (Assume that the CUSTOMER table has been
modified to include the CUST_DOB and the derived CUST_AGE attribute.)

14. Write the trigger to update the CUST_BALANCE in the CUSTOMER table when a new invoice record is entered.
(Assume that the sale is a credit sale.) Test the trigger, using the following new INVOICE record:

8005, 1001, ‘27-APR-10’, 225.40

Name the trigger trg_updatecustbalance.

15. Write a procedure to add a new customer to the CUSTOMER table. Use the following values in the new record:

1002, ‘Rauthor’, ‘Peter’, 0.00

Name the procedure prc_cust_add. Run a query to see if the record has been added.

16. Write a procedure to add a new invoice record to the INVOICE table. Use the following values in the new record:

8006, 1000, ‘30-APR-10’, 301.72

Name the procedure prc_invoice_add. Run a query to see if the record has been added.

17. Write a trigger to update the customer balance when an invoice is deleted. Name the trigger trg_
updatecustbalance2.

18. Write a procedure to delete an invoice, giving the invoice number as a parameter. Name the procedure
prc_inv_delete. Test the procedure by deleting invoices 8005 and 8006.

Use the Ch08_SaleCo2 database to work Problems 19−22, shown in Figure P8.19.

O n l i n e C o n t e n t

The Ch08_SimpleCo database is located in the Premium Website for this book, as are the script files to
duplicate this data set in Oracle.

366 C H A P T E R 8

19. Create a trigger named trg_line_total to write the LINE_TOTAL value in the LINE table every time you add a
new LINE row. (The LINE_TOTAL value is the product of the LINE_UNITS and the LINE_PRICE values.)

20. Create a trigger named trg_line_prod that will automatically update the quantity on hand for each product sold
after a new LINE row is added.

21. Create a stored procedure named prc_inv_amounts to update the INV_SUBTOTAL, INV_TAX, and
INV_TOTAL. The procedure takes the invoice number as a parameter. The INV_SUBTOTAL is the sum of the
LINE_TOTAL amounts for the invoice, the INV_TAX is the product of the INV_SUBTOTAL and the tax rate
(8%), and the INV_TOTAL is the sum of the INV_SUBTOTAL and the INV_TAX.

22. Create a procedure named prc_cus_balance_update that will take the invoice number as a parameter and
update the customer balance. (Hint: You can use the DECLARE section to define a TOTINV numeric variable
that holds the computed invoice total.)

Table name: CUSTOMER

Database name: CH08_SaleCo2

Table name: INVOICE

Table name: LINE

Table name: PRODUCT

Table name: VENDOR

FIGURE
P8.19

Ch08_SaleCo2 database tables

O n l i n e C o n t e n t

The Ch08_SaleCo2 database used in Problems 19−22 is located in the Premium Website for this book, as are
the script files to duplicate this data set in Oracle.

367A D V A N C E D S Q L

Use the Ch08_AviaCo database to work Problems 23−34, shown in Figure P8.23.

23. Modify the MODEL table to add the attribute and insert the values shown in the following table.

24. Write the queries to update the MOD_WAIT_CHG attribute values based on Problem 23.

Table name: CHARTER Database name: CH08_AviaCo

Table name: EARNEDRATING

Table name: CREW Table name: CUSTOMER

Table name: EMPLOYEE

Table name: RATING

Table name: MODEL

FIGURE
P8.23

Ch08_AviaCo database tables

Table name: AIRCRAFT Table name: PILOT

O n l i n e C o n t e n t

The Ch08_AviaCo database used for Problems 23−34 is located in the Premium Website for this book, as are
the script files to duplicate this data set in Oracle.

ATTRIBUTE NAME ATTRIBUTE DESCRIPTION ATTRIBUTE TYPE ATTRIBUTE VALUES

MOD_WAIT_CHG Waiting charge per hour for each
model

Numeric $100 for C-90A
$50 for PA23-250
$75 for PA31-350

368 C H A P T E R 8

25. Modify the CHARTER table to add the attributes shown in the following table.

26. Write the sequence of commands required to update the CHAR_WAIT_CHG attribute values in the CHARTER
table. (Hint: Use either an updatable view or a stored procedure.)

27. Write the sequence of commands required to update the CHAR_FLT_CHG_HR attribute values in the
CHARTER table. (Hint: Use either an updatable view or a stored procedure.)

28. Write the command required to update the CHAR_FLT_CHG attribute values in the CHARTER table.

29. Write the command required to update the CHAR_TAX_CHG attribute values in the CHARTER table.

30. Write the command required to update the CHAR_TOT_CHG attribute values in the CHARTER table.

31. Modify the PILOT table to add the attribute shown in the following table.

32. Create a trigger named trg_char_hours that will automatically update the AIRCRAFT table when a new
CHARTER row is added. Use the CHARTER table’s CHAR_HOURS_FLOWN to update the AIRCRAFT table’s
AC_TTAF, AC_TTEL, and AC_TTER values.

33. Create a trigger named trg_pic_hours that will automatically update the PILOT table when a new CREW row
is added and the CREW table uses a ‘pilot’ CREW_JOB entry. Use the CHARTER table’s CHAR_HOURS_
FLOWN to update the PILOT table’s PIL_PIC_HRS only when the CREW table uses a ‘pilot’ CREW_JOB entry.

34. Create a trigger named trg_cust_balance that will automatically update the CUSTOMER table’s CUST_
BALANCE when a new CHARTER row is added. Use the CHARTER table’s CHAR_TOT_CHG as the update
source. (Assume that all charter charges are charged to the customer balance.)

C a s e s

The following problems expand on the TinyVideo case from Chapter 7. To complete the following problems, it is
necessary to have first completed the table creation and data entry requirements specified in Problems 44 and 45 in
Chapter 7.

35. Alter the DETAILRENTAL table to include a derived attribute named DETAIL_DAYSLATE to store integers up
to 3 digits. The attribute should accept null values.

ATTRIBUTE NAME ATTRIBUTE DESCRIPTION ATTRIBUTE
TYPE

CHAR_WAIT_CHG Waiting charge for each model (copied from the MODEL table) Numeric
CHAR_FLT_CHG_HR Flight charge per mile for each model (copied from the MODEL table

using the MOD_CHG_MILE attribute)
Numeric

CHAR_FLT_CHG Flight charge (calculated by CHAR_HOURS_FLOWN x CHAR_FLT_
CHG_HR)

Numeric

CHAR_TAX_CHG CHAR_FLT_CHG x tax rate (8%) Numeric
CHAR_TOT_CHG CHAR_FLT_CHG + CHAR_TAX_CHG Numeric
CHAR_PYMT Amount paid by customer Numeric
CHAR_BALANCE Balance remaining after payment Numeric

ATTRIBUTE NAME ATTRIBUTE DESCRIPTION ATTRIBUTE
TYPE

PIL_PIC_HRS Pilot in command (PIC) hours; updated by adding the CHARTER table’s
CHAR_HOURS_FLOWN to the PIL_PIC_HRS when the CREW table shows the
CREW_JOB to be pilot

Numeric

369A D V A N C E D S Q L

36. Alter the VIDEO table to include an attribute named VID_STATUS to store character data up to 4 characters
long. The attribute should not accept null values. The attribute should have a constraint to enforce the domain
(“IN”, “OUT”, and “LOST”) and have a default value of “IN”.

37. Update the VID_STATUS attribute of the VIDEO table using a subquery to set the VID_STATUS to “OUT” for
all videos that have a null value in the DETAIL_RETURNDATE attribute of the DETAILRENTAL table.

38. Alter the PRICE table to include an attribute named PRICE_RENTDAYS to store integers up to 2 digits. The
attribute should not accept null values, and should have a default value of 3.

39. Update the PRICE table to place the values shown in the following table in the PRICE_RENTDAYS attribute.

40. Create a trigger named trg_late_return that will write the correct value to DETAIL_DAYSLATE in the
DETAILRENTAL table whenever a video is returned. The trigger should execute as a BEFORE trigger when the
DETAIL_RETURNDATE or DETAIL_DUEDATE attributes are updated. The trigger should satisfy the following
conditions.

a. If the return date is null, then the days late should also be null.

b. If the return date is not null, then the days late should determine if the video is returned late.

c. If the return date is noon of the day after the due date or earlier, then the video is not considered late, and
the days late should have a value of zero (0).

d. If the return date is past noon of the day after the due date, then the video is considered late so the number
of days late must be calculated and stored.

41. Create a trigger named trg_mem_balance that will maintain the correct value in the membership balance in the
MEMBERSHIP table when videos are returned late. The trigger should execute as an AFTER trigger when
the due date or return date attributes are updated in the DETAILRENTAL table. The trigger should satisfy the
following conditions.

a. Calculate the value of the late fee prior to the update that triggered this execution of the trigger. The value
of the late fee is the days late times the daily late fee. If the previous value of the late fee was null, then treat
it as zero (0).

b. Calculate the value of the late fee after the update that triggered this execution of the trigger. If the value of
the late fee is now null, then treat it as zero (0).

c. Subtract the prior value of the late fee from the current value of the late fee to determine the change in late
fee for this video rental.

d. If the amount calculated in part c is not zero (0), then update the membership balance by the amount
calculated for the membership associated the rental that this detail is a part of.

42. Create a sequence named rent_num_seq to start with 1100, increment by 1, and do not cache any values.

43. Create a stored procedure named prc_new_rental to insert new rows in the RENTAL table. The procedure should
satisfy the following conditions.

a. The membership number will be provided as a parameter.

b. Use a Count() function to verify that the membership number exists in the MEMBERSHIP table. If it does not
exist, then a message should be displayed stating that the membership does not exist and no data should be
written to the database.

PRICE_CODE PRICE_RENTDAYS
1 5
2 3
3 5
4 7

370 C H A P T E R 8

c. If the membership does exist, then retrieve the membership balance and display a message stating the
balance amount as the previous balance. (For example, if the membership has a balance of $5.00, then
display “Previous balance: $5.00”.)

d. Insert a new row in the rental table using the sequence created in #42 above to generate the value for
RENT_NUM, the current system date for the value for RENT_DATE, and the membership number provided
as the value for MEM_NUM.

44. Create a stored procedure named prc_new_detail to insert new rows in the DETAILRENTAL table. The
procedure should satisfy the following requirements.

a. The video number will be provided as a parameter.

b. Verify that the video number exists in the VIDEO table. If it does not exist, then display a message that the
video does not exist, and do not write any data to the database.

c. If the video number does exist, then verify that the VID_STATUS for that video is “IN”. If the status is not
“IN”, then display a message that the return of the video must be entered before it can be rented again, and
do not write any data to the database.

d. If the status is “IN”, then retrieve the values of PRICE_RENTFEE, PRICE_DAILYLATEFEE, and PRICE_
RENTDAYS associated with the video from the PRICE table.

e. Calculate the due date for the video rental by adding the number of days found in PRICE_RENTDAYS above
to 11:59:59PM (hours:minutes:seconds) on the current system date.

f. Insert a new row in the DETAILRENTAL table using the previous value returned by rent_num_seq as the
RENT_NUM, the video number provided in the parameter as the VID_NUM, the PRICE_RENTFEE as the
value for DETAIL_FEE, the due date calculated above for the DETAIL_DUEDATE, PRICE_DAILYLATEFEE
as the value for DETAIL_DAILYLATEFEE, and null for the DETAIL_RETURNDATE.

45. Create a stored procedure named prc_return_video to enter data about the return of videos that have been
rented. The procedure should satisfy the following requirements.

a. The video number will be provided as a parameter.

b. Verify the video number exists in the VIDEO table. If it does not exist, display a message that the video
number provided was not found and do not write any data to the database.

c. If the video number does exist, then use a Count() function to ensure that the video has only one record in
DETAILRENTAL for which it does not have a return date. If more than one row in DETAILRENTAL indicates
that the video is rented but not returned, display an error message that the video has multiple outstanding
rentals and do not write any data to the database.

d. If the video does not have any outstanding rentals, then update the video status for the video in the VIDEO
table to “IN”, and display a message that the video had no outstanding rentals but it is now available for rental.
If the video has only one outstanding rental, then update the return date to the current system date, and
update the video status for that video in the VIDEO table to “IN”. Then display a message stating that the
video was successfully returned.

371A D V A N C E D S Q L

Preview

Database Design

In this chapter, you will learn:

� That successful database design must reflect the information system of which the database is
a part

� That successful information systems are developed within a framework known as the
Systems Development Life Cycle (SDLC)

� That within the information system, the most successful databases are subject to frequent
evaluation and revision within a framework known as the Database Life Cycle (DBLC)

� How to conduct evaluation and revision within the SDLC and DBLC frameworks

� About database design strategies: top-down vs. bottom-up design and centralized vs.
decentralized design

Databases are a part of a larger picture called an information system. Database designs that

fail to recognize that the database is part of this larger whole are not likely to be successful.

That is, database designers must recognize that the database is a critical means to an end

rather than an end in itself. (Managers want the database to serve their management needs,

but too many databases seem to require that managers alter their routines to fit the

database requirements.)

Information systems don’t just happen; they are the product of a carefully staged

development process. Systems analysis is used to determine the need for an information

system and to establish its limits.Within systems analysis, the actual information system is

created through a process known as systems development.

The creation and evolution of information systems follows an iterative pattern called the

Systems Development Life Cycle (SDLC), a continuous process of creation, maintenance,

enhancement, and replacement of the information system. A similar cycle applies to

databases.The database is created, maintained, and enhanced.When even enhancement can

no longer stretch the database’s usefulness and the database can no longer perform its

functions adequately, it might have to be replaced. The Database Life Cycle (DBLC) is

carefully traced in this chapter and is shown in the context of the larger Systems

Development Life Cycle.

At the end of the chapter, you will be introduced to some classical approaches to database

design: top-down vs. bottom-up and centralized vs. decentralized.

9
N

I
N

E

9.1 THE INFORMATION SYSTEM

Basically, a database is a carefully designed and constructed repository of facts. The database is a part of a larger whole
known as an information system, which provides for data collection, storage, and retrieval. The information system
also facilitates the transformation of data into information, and it allows for the management of both data and
information. Thus, a complete information system is composed of people, hardware, software, the database(s),
application programs, and procedures. Systems analysis is the process that establishes the need for and the extent
of an information system. The process of creating an information system is known as systems development.

One key characteristic of current information systems is the strategic value of information in the age of global business.
Therefore, information systems should always be aligned with the strategic business goals; the view of isolated and
independent information systems is no longer valid. Current information systems should always be integrated with the
company’s enterprise-wide information systems architecture.

Within the framework of systems development, applications transform data into the information that forms the basis
for decision making. Applications usually produce formal reports, tabulations, and graphic displays designed to
produce insight into the information. Figure 9.1 illustrates that every application is composed of two parts: the data
and the code (program instructions) by which the data are transformed into information. The data and the code work
together to represent real-world business functions and activities. At any given moment, physically stored data
represent a snapshot of the business. But the picture is not complete without an understanding of the business activities
that are represented by the code.

Note

This chapter does not mean to cover all aspects of systems analysis and development—these are usually covered
in a separate course or book. However, this chapter should help you develop a better understanding of the
issues associated with database design, implementation, and management that are affected by the information
system in which the database is a critical component.

4th Qtr3rd Qtr2nd Qtr

90
80
70
60
50
40
30
20
10
0

1st Qtr

FIGURE
9.1

Generating information for decision making

Application
code

Information

Decisions

East

West

North

South

Data

373D A T A B A S E D E S I G N

The performance of an information system depends on three factors:

� Database design and implementation.

� Application design and implementation.

� Administrative procedures.

This book emphasizes the database design and implementation segment of the triad—arguably the most important of
the three. However, failure to address the other two segments will likely yield a poorly functioning information system.
Creating a sound information system is hard work: systems analysis and development require much planning to ensure
that all of the activities will interface with each other, that they will complement each other, and that they will be
completed on time.

In a broad sense, the term database development describes the process of database design and implementation.
The primary objective in database design is to create complete, normalized, nonredundant (to the extent possible), and
fully integrated conceptual, logical, and physical database models. The implementation phase includes creating the
database storage structure, loading data into the database, and providing for data management.

To make the procedures discussed in this chapter broadly applicable, the chapter focuses on the elements that are
common to all information systems. Most of the processes and procedures described in this chapter do not depend on
the size, type, or complexity of the database being implemented. However, the procedures that would be used to design
a small database, such as one for a neighborhood shoe store, do not precisely scale up to the procedures that would
be needed to design a database for a large corporation or even a segment of such a corporation. To use an analogy,
building a small house requires a blueprint, just as building the Golden Gate Bridge does, but the bridge requires more
complex and farther-ranging planning, analysis, and design than the house.

The next sections will trace the overall Systems Development Life Cycle and the related Database Life Cycle. Once you
are familiar with those processes and procedures, you will learn about various approaches to database design, such as
top-down vs. bottom-up and centralized vs. decentralized design.12

1See Rapid Application Development, James Martin, Prentice-Hall, Macmillan College Division, 1991.
2Further information about Agile Software Development can be found online at www.agilealliance.org.

Note

The Systems Development Life Cycle (SDLC) is a general framework through which you can track and
understand the activities required to develop and maintain information systems. Within that framework, there
are several ways to complete various tasks specified in the SDLC. For example, this book focuses on ER
modeling and on relational database design and implementation issues, and that focus is maintained in this
chapter. However, there are alternative methodologies, such as:

• UnifiedModeling Language (UML) provides object-oriented tools to support the tasks associated with the
development of information systems. UML is covered in Appendix H, Unified Modeling Language
(UML), in the Premium Website for this book.

• Rapid Application Development (RAD)1 is an iterative software development methodology that uses
prototypes, CASE tools, and flexible management to develop application systems. RAD started as an
alternative to traditional structured development, which suffered from long deliverable times and unful-
filled requirements.

• Agile Software Development2 is a framework for developing software applications that divides the work to
be done in smaller subprojects to obtain valuable deliverables in shorter times and with better cohesion.
This method emphasizes close communication among all users and continuous evaluation with the
purpose of increasing customer satisfaction.

Although the development methodologies may change, the basic framework within which those method-
ologies are used does not change.

374 C H A P T E R 9

9.2 THE SYSTEMS DEVELOPMENT LIFE CYCLE (SDLC)

The Systems Development Life Cycle (SDLC) traces the history (life cycle) of an information system. Perhaps
more important to the system designer, the SDLC provides the big picture within which the database design and
application development can be mapped out and evaluated.

As illustrated in Figure 9.2, the traditional SDLC is divided into five phases: planning, analysis, detailed systems design,
implementation, and maintenance. The SDLC is an iterative rather than a sequential process. For example, the details
of the feasibility study might help refine the initial assessment, and the details discovered during the user requirements
portion of the SDLC might help refine the feasibility study.

Because the Database Life Cycle (DBLC) fits into and resembles the Systems Development Life Cycle (SDLC), a brief
description of the SDLC is in order.

FIGURE
9.2

The Systems Development Life Cycle (SDLC)

Planning

Analysis

Detailed
systems design

Implementation

Maintenance

Phase

Initial assessment
Feasibility study

User requirements
Existing system evaluation
Logical system design

Detailed system specification

Coding, testing, and debugging
Installation, fine-tuning

Evaluation
Maintenance
Enhancement

Action(s) Section

9.2.1

9.2.2

9.2.3

9.2.4

9.2.5

375D A T A B A S E D E S I G N

9.2.1 Planning

The SDLC planning phase yields a general overview of the company and its objectives. An initial assessment of the
information flow-and-extent requirements must be made during this discovery portion of the SDLC. Such an
assessment should answer some important questions:

� Should the existing system be continued? If the information generator does its job well, there is no point in
modifying or replacing it. To quote an old saying, “If it ain’t broke, don’t fix it.”

� Should the existing system be modified? If the initial assessment indicates deficiencies in the extent and flow
of the information, minor (or even major) modifications might be in order. When considering modifications, the
participants in the initial assessment must keep in mind the distinction between wants and needs.

� Should the existing system be replaced? The initial assessment might indicate that the current system’s flaws
are beyond fixing. Given the effort required to create a new system, a careful distinction between wants and
needs is perhaps even more important in this case than it is when modifying the system.

Participants in the SDLC’s initial assessment must begin to study and evaluate alternative solutions. If it is decided that
a new system is necessary, the next question is whether it is feasible. The feasibility study must address the following:

� The technical aspects of hardware and software requirements. The decisions might not (yet) be vendor-
specific, but they must address the nature of the hardware requirements (desktop computer, multiprocessor
computer, mainframe, or supercomputer) and the software requirements (single- or multiuser operating
systems, database type and software, programming languages to be used by the applications, and so on).

� The system cost. The admittedly mundane question, “Can we afford it?” is crucial. (And the answer to that
question might force a careful review of the initial assessment.) It bears repeating that a million-dollar solution
to a thousand-dollar problem is not defensible.

� The operational cost. Does the company possess the human, technical, and financial resources to keep the
system operational? Do we include the cost of the management and end-user support needed to put in place
the operational procedures to ensure the success of this system?

9.2.2 Analysis

Problems defined during the planning phase are examined in greater detail during the analysis phase. A macroanalysis
must be made of both individual needs and organizational needs, addressing questions such as:

� What are the requirements of the current system’s end users?

� Do those requirements fit into the overall information requirements?

The analysis phase of the SDLC is, in effect, a thorough audit of user requirements.

The existing hardware and software systems are also studied during the analysis phase. The result of analysis should
be a better understanding of the system’s functional areas, actual and potential problems, and opportunities.

End users and the system designer(s) must work together to identify processes and to uncover potential problem areas.
Such cooperation is vital to defining the appropriate performance objectives by which the new system can be judged.

Along with a study of user requirements and the existing systems, the analysis phase also includes the creation of a
logical systems design. The logical design must specify the appropriate conceptual data model, inputs, processes, and
expected output requirements.

When creating a logical design, the designer might use tools such as data flow diagrams (DFDs), hierarchical input
process output (HIPO) diagrams, and entity relationship (ER) diagrams. The database design’s data-modeling activities
take place at this point to discover and describe all entities and their attributes and the relationships among the entities
within the database.

376 C H A P T E R 9

Defining the logical system also yields functional descriptions of the system’s components (modules) for each process
within the database environment. All data transformations (processes) are described and documented, using such
systems analysis tools as DFDs. The conceptual data model is validated against those processes.

9.2.3 Detailed Systems Design

In the detailed systems design phase, the designer completes the design of the system’s processes. The design includes
all the necessary technical specifications for the screens, menus, reports, and other devices that might be used to help
make the system a more efficient information generator. The steps are laid out for conversion from the old to the new
system. Training principles and methodologies are also planned and must be submitted for management’s approval.

9.2.4 Implementation

During the implementation phase, the hardware, DBMS software, and application programs are installed, and the
database design is implemented. During the initial stages of the implementation phase, the system enters into a cycle
of coding, testing, and debugging until it is ready to be delivered. The actual database is created, and the system is
customized by the creation of tables and views, user authorizations, and so on.

The database contents might be loaded interactively or in batch mode, using a variety of methods and devices:

� Customized user programs.

� Database interface programs.

� Conversion programs that import the data from a different file structure, using batch programs, a database
utility, or both.

The system is subjected to exhaustive testing until it is ready for use. Traditionally, the implementation and testing of
a new system took 50 to 60 percent of the total development time. However, the advent of sophisticated application
generators and debugging tools has substantially decreased coding and testing time. After testing is concluded, the final
documentation is reviewed and printed and end users are trained. The system is in full operation at the end of this
phase but will be continuously evaluated and fine-tuned.

9.2.5 Maintenance

Almost as soon as the system is operational, end users begin to request changes in it. Those changes generate system
maintenance activities, which can be grouped into three types:

� Corrective maintenance in response to systems errors.

� Adaptive maintenance due to changes in the business environment.

� Perfective maintenance to enhance the system.

Because every request for structural change requires retracing the SDLC steps, the system is, in a sense, always at
some stage of the SDLC.

Each system has a predetermined operational life span. The actual operational life span of a system depends on its
perceived utility. There are several reasons for reducing the operational life of certain systems. Rapid technological
change is one reason, especially for systems based on processing speed and expandability. Another common reason
is the cost of maintaining a system.

Note

Because attention has been focused on the details of the systems design process, the book has not until this
point explicitly recognized the fact that management approval is needed at all stages of the process. Such
approval is needed because aGO decision requires funding. There are manyGO/NOGO decision points along
the way to a completed systems design!

377D A T A B A S E D E S I G N

If the system’s maintenance cost is high, its value becomes suspect. Computer-aided systems engineering (CASE)
tools, such as System Architect or Visio Professional, helps make it possible to produce better systems within a
reasonable amount of time and at a reasonable cost. In addition, CASE-produced applications are more structured,
better documented, and especially standardized, which tends to prolong the operational life of systems by making
them easier and cheaper to update and maintain.

9.3 THE DATABASE LIFE CYCLE (DBLC)

Within the larger information system, the database, too, is subject to a life cycle. The Database Life Cycle (DBLC)
contains six phases, as shown in Figure 9.3: database initial study, database design, implementation and loading,
testing and evaluation, operation, and maintenance and evolution.

9.3.1 The Database Initial Study

If a designer has been called in, chances are the current system has failed to perform functions deemed vital by the
company. (You don’t call the plumber unless the pipes leak.) So, in addition to examining the current system’s
operation within the company, the designer must determine how and why the current system fails. That means

FIGURE
9.3

The Database Life Cycle (DBLC)

Database initial
study

Database design

Implementation
and loading

Testing and
evaluation

Operation

Maintenance and
evolution

Phase

Analyze the company situation

Action(s) Section

9.3.1

9.3.2

9.3.3

9.3.4

9.3.5

9.3.6

Define problems and constraints
Define objectives
Define scope and boundaries

Create the conceptual design
DBMS software selection
Create the logical design
Create the physical design

Install the DBMS
Create the database(s)
Load or convert the data

Test the database
Fine-tune the database
Evaluate the database and its application programs

Produce the required information flow

Introduce changes
Make enhancements

378 C H A P T E R 9

spending a lot of time talking with (but mostly listening to) end users. Although database design is a technical business,
it is also people-oriented. Database designers must be excellent communicators, and they must have finely tuned
interpersonal skills.

Depending on the complexity and scope of the database environment, the database designer might be a lone operator
or part of a systems development team composed of a project leader, one or more senior systems analysts, and one
or more junior systems analysts. The word designer is used generically here to cover a wide range of design team
compositions.

The overall purpose of the database initial study is to:

� Analyze the company situation.

� Define problems and constraints.

� Define objectives.

� Define scope and boundaries.

Figure 9-4 depicts the interactive and iterative processes required to complete the first phase of the DBLC successfully.
As you examine Figure 9.4, note that the database initial study phase leads to the development of the database system
objectives. Using Figure 9.4 as a discussion template, let’s examine each of its components in greater detail.

FIGURE
9.4

A summary of activities in the database initial study

Analysis of the
company situation

Company operationsCompany objectives Company structure

Definition of
problems and constraints

Database system
specifications

ScopeObjectives Boundaries

379D A T A B A S E D E S I G N

Analyze the Company Situation
The company situation describes the general conditions in which a company operates, its organizational structure,
and its mission. To analyze the company situation, the database designer must discover what the company’s
operational components are, how they function, and how they interact.

These issues must be resolved:

� What is the organization’s general operating environment, and what is its mission within that
environment? The design must satisfy the operational demands created by the organization’s mission. For
example, a mail-order business is likely to have operational requirements involving its database that are quite
different from those of a manufacturing business.

� What is the organization’s structure? Knowing who controls what and who reports to whom is quite useful
when you are trying to define required information flows, specific report and query formats, and so on.

Define Problems and Constraints
The designer has both formal and informal sources of information. If the company has existed for any length of time,
it already has some kind of system in place (either manual or computer-based). How does the existing system function?
What input does the system require? What documents does the system generate? By whom and how is the system
output used? Studying the paper trail can be very informative. In addition to the official version of the system’s
operation, there is also the more informal, real version; the designer must be shrewd enough to see how these differ.

The process of defining problems might initially appear to be unstructured. Company end users are often unable to
describe precisely the larger scope of company operations or to identify the real problems encountered during
company operations. Often the managerial view of a company’s operation and its problems is different from that of
the end users, who perform the actual routine work.

During the initial problem definition process, the designer is likely to collect very broad problem descriptions. For
example, note these concerns expressed by the president of a fast-growing transnational manufacturing company:

Although the rapid growth is gratifying, members of the management team are concerned that such growth is
beginning to undermine the ability to maintain a high customer service standard and, perhaps worse, to diminish
manufacturing standards control.

The problem definition process quickly leads to a host of general problem descriptions. For example, the marketing
manager comments:

I’m working with an antiquated filing system. We manufacture more than 1,700 specialty machine parts. When
a regular customer calls in, we can’t get a very quick inventory scan. If a new customer calls in, we can’t do a
current parts search by using a simple description, so we often do a machine setup for a part that we have in
inventory. That’s wasteful. And of course, some new customers get irritated when we can’t give a quick response.

The production manager comments:

At best, it takes hours to generate the reports I need for scheduling purposes. I don’t have hours for quick
turnarounds. It’s difficult to manage what I don’t have information about.

I don’t get quick product request routing. Take machine setup. Right now I’ve got operators either waiting for
the right stock or getting it themselves when a new part is scheduled for production. I can’t afford to have an
operator doing chores that a much lower-paid worker ought to be doing. There’s just too much waiting around
with the current scheduling. I’m losing too much time, and my schedules back up. Our overtime bill is ridiculous.

380 C H A P T E R 9

I sometimes produce parts that are already in inventory because we don’t seem to be able to match what we’ve
got in inventory with what we have scheduled. Shipping yells at me because I can’t turn out the parts, and often
they’ve got them in inventory one bay down. That’s costing us big bucks sometimes.

New reports can take days or even weeks to get to my office. And I need a ton of reports to schedule personnel,
downtime, training, etc. I can’t get new reports that I need NOW. What I need is the ability to get quick updates
on percent defectives, percent rework, the effectiveness of training, you name it. I need such reports by shift, by
date, by any characteristic I can think of to help me manage scheduling, training, you name it.

A machine operator comments:

It takes a long time to set my stuff up. If I get my schedule banged up because John doesn’t get the paperwork
on time, I wind up looking for setup specs, startup material, bin assignments, and other stuff. Sometimes I spend
two or three hours just setting up. Now you know why I can’t meet schedules. I try to be productive, but I’m
spending too much time getting ready to do my job.

After the initial declarations, the database designer must continue to probe carefully in order to generate additional
information that will help define the problems within the larger framework of company operations. How does the
problem of the marketing manager’s customer fit within the broader set of marketing department activities? How does
the solution to the customer’s problem help meet the objectives of the marketing department and the rest of the
company? How do the marketing department’s activities relate to those of the other departments? That last question
is especially important. Note that there are common threads in the problems described by the marketing and
production department managers. If the inventory query process can be improved, both departments are likely to find
simple solutions to at least some of the problems.

Finding precise answers is important, especially concerning the operational relationships among business units. If a
proposed system will solve the marketing department’s problems but exacerbate those of the production department,
not much progress will have been made. Using an analogy, suppose that your home water bill is too high. You have
determined the problem: the faucets leak. The solution? You step outside and cut off the water supply to the house.
Is that an adequate solution? Or would the replacement of faucet washers do a better job of solving the problem? You
might find the leaky faucet scenario simplistic, yet almost any experienced database designer can find similar instances
of so-called database problem solving (admittedly more complicated and less obvious).

Even the most complete and accurate problem definition does not always lead to the perfect solution. The real world
usually intrudes to limit the design of even the most elegant database by imposing constraints. Such constraints include
time, budget, personnel, and more. If you must have a solution within a month and within a $12,000 budget, a solution
that takes two years to develop at a cost of $100,000 is not a solution. The designer must learn to distinguish
between what’s perfect and what’s possible.

Define Objectives
A proposed database system must be designed to help solve at least the major problems identified during the problem
discovery process. As the list of problems unfolds, several common sources are likely to be discovered. In the previous
example, both the marketing manager and the production manager seem to be plagued by inventory inefficiencies. If
the designer can create a database that sets the stage for more efficient parts management, both departments gain.
The initial objective, therefore, might be to create an efficient inventory query and management system.

Note

When trying to develop solutions, the database designer must look for the source of the problems. There are
many cases of database systems that failed to satisfy the end users because they were designed to treat the
symptoms of the problems rather than their source.

381D A T A B A S E D E S I G N

Note that the initial study phase also yields proposed problem solutions. The designer’s job is to make sure that the
database system objectives, as seen by the designer, correspond to those envisioned by the end user(s). In any case,
the database designer must begin to address the following questions:

� What is the proposed system’s initial objective?

� Will the system interface with other existing or future systems in the company?

� Will the system share the data with other systems or users?

Define Scope and Boundaries
The designer must recognize the existence of two sets of limits: scope and boundaries. The system’s scope defines
the extent of the design according to operational requirements. Will the database design encompass the entire
organization, one or more departments within the organization, or one or more functions of a single department? The
designer must know the “size of the ballpark.” Knowing the scope helps in defining the required data structures, the
type and number of entities, the physical size of the database, and so on.

The proposed system is also subject to limits known as boundaries, which are external to the system. Has any
designer ever been told, “We have all the time in the world” or “Use an unlimited budget and use as many people as
needed to make the design come together”? Boundaries are also imposed by existing hardware and software. Ideally,
the designer can choose the hardware and software that will best accomplish the system goals. In fact, software
selection is an important aspect of the Systems Development Life Cycle. Unfortunately, in the real world, a system
must often be designed around existing hardware. Thus, the scope and boundaries become the factors that force the
design into a specific mold, and the designer’s job is to design the best system possible within those constraints. (Note
that problem definitions and the objectives must sometimes be reshaped to meet the system scope and boundaries.)

9.3.2 Database Design

The second phase focuses on the design of the database model that will support company operations and objectives.
This is arguably the most critical DBLC phase: making sure that the final product meets user and system requirements.
In the process of database design, you must concentrate on the data characteristics required to build the database
model. At this point, there are two views of the data within the system: the business view of data as a source of
information and the designer’s view of the data structure, its access, and the activities required to transform the data
into information. Figure 9.5 contrasts those views. Note that you can summarize the different views by looking at the
terms what and how. Defining data is an integral part of the DBLC’s second phase.

As you examine the procedures required to complete the design phase in the DBLC, remember these points:

� The process of database design is loosely related to the analysis and design of a larger system. The data
component is only one element of a larger information system.

� The systems analysts or systems programmers are in charge of designing the other system components. Their
activities create the procedures that will help transform the data within the database into useful information.

� The database design does not constitute a sequential process. Rather, it is an iterative process that provides
continuous feedback designed to trace previous steps.

382 C H A P T E R 9

The database design process is depicted in Figure 9.6.

Looking at Figure 9.6, you can see that there are four essential stages: conceptual, logical, and physical design, plus
the DBMS selection stage, which is critical to determine the type of logical and physical design to be performed. The
design process starts with conceptual design and moves to the logical and physical design stages. At each stage, more
details about the data model design are determined and documented. You could think of the conceptual design as the
overall data as seen by the end user, the logical design as the data as seen by the DBMS, and the physical design as
the data as seen by the operating system’s storage management devices.

It is important to note that the overwhelming majority of database designs and implementations are based on the
relational model and, therefore, use the relational model constructs and techniques. At the completion of the database
design activities, you will have a complete database design ready to be implemented.

Database design activities will be covered in detail in Sections 9.4 (Conceptual Design), 9.5 (DBMS Software
Selection), 9.6 (Logical Design), and 9.7 (Physical Design).

Company Database

FIGURE
9.5

Two views of data: business manager and database designer

Company

PurchasingEngineering Manufacturing

Shared information

Manager’s view

Designer’s view

What are the problems?
What are the solutions?
What information is needed to
implement the solutions?
What data are required to
generate the desired information?

How must the data be structured?
How will the data be accessed?
How are the data transformed
into information?

383D A T A B A S E D E S I G N

9.3.3 Implementation and Loading

The output of the database design phase is a series of instructions detailing the creation of tables, attributes, domains,
views, indexes, security constraints, and storage and performance guidelines. In this phase, you actually implement all
these design specifications.

Install the DBMS
This step is required only when a new dedicated instance of the DBMS is necessary for the system. In many cases, the
organization will have standardized on a particular DBMS in order to leverage investments in the technology and the
skills that employees have already developed. The DBMS may be installed on a new server or it may be installed on
existing servers. One current trend is called virtualization. Virtualization is a technique that creates logical
representations of computing resources that are independent of the underlying physical computing resources. This
technique is used in many areas of computing such as the creation of virtual servers, virtual storage, and virtual private
networks. In a database environment, database virtualization refers to the installation of a new instance of the DBMS
on a virtual server running on shared hardware. This is normally a task that involves system and network administrators
to create appropriate user groups and services in the server configuration and network routing.

FIGURE
9.6

Database design process

• Data analysis and requirements

• Entity Relationship modeling and normalization

• Data model verification

• Distributed database design*

• Determine end-user views, outputs and
 transaction requirements

• Define entities, attributes, domains and relationships
• Draw ER diagrams. Normalize entity attributes

• Identify ER modules and validate insert, update and delete rules
• Validate reports, queries,views integrity, access and security

• Define DBMS and data model to use

DBMS and Hardware Independent

DBMS Dependent

Hardware Dependent

• Determine DBMS and data model to use

• Define tables, columns, relationships, and constraints

• Normalized set of tables

• Ensure entity and referential integrity, Define column constraints

• Ensure the model supports user requirements

• Define tables, indexes, views physical organizations

• Define users, security groups, roles, and access controls

 * See Chapter 12, Distributed Database Management Systems
+ See Chapter 11, Database Performance Tuning and Query Optimization

• Define database and query execution parameters

• Map conceptual model to logical model components

• Validate logical model using normalization

• Validate logical modeling integrity constraints

• Validate logical model against user requirements

• Define data storage organization

• Define integrity and security measures

• Determine performance measures+

• Select the DBMS data model

Conceptual
Design

DBMS
Selection

Logical
Design

Section Stage Steps Activities

Physical
Design

9.5

9.4

9.6

9.7

O n l i n e C o n t e n t

Appendixes B and C in the Premium Website, The University Lab: Conceptual Design and The University
Lab: Conceptual Design Verification, Logical Design, and Implementation, respectively, provide a concise
example of a simple real-world database development process.

384 C H A P T E R 9

Create the Database(s)
In most modern relational DBMSs a new database implementation requires the creation of special storage-related
constructs to house the end-user tables. The constructs usually include the storage group (or file groups), the table
spaces, and the tables. Figure 9.7 depicts the fact that a storage space can contain more than one table space and that
a table space can contain more than one table.

For example, the implementation of the logical design in IBM’s DB2 would require that you:

1. Create the database storage group. This step (done by the system administrator or SYSADM) is mandatory for
such mainframe databases as DB2. Other DBMS software may create equivalent storage groups automatically
when a database is created. (See Step 2.) Consult your DBMS documentation to see if you must create a
storage group and, if so, what the command syntax must be.

2. Create the database within the storage group (also done by the SYSADM).

3. Assign the rights to use the database to a database administrator (DBA).

4. Create the table space(s) within the database (usually done by a DBA).

5. Create the table(s) within the table space(s) (also usually done by a DBA).

6. Assign access rights to the table spaces and to the tables within specified table spaces (another DBA duty).
Access rights may be limited to views rather than to whole tables. The creation of views is not required for
database access in the relational environment, but views are desirable from a security standpoint. For example,
access rights to a table named PROFESSOR may be granted to the user Shannon Scott whose identification
code is SSCOTT by typing:

GRANT SELECT ON PROFESSOR TO USER SSCOTT;

Table
Table

Table space

FIGURE
9.7

Physical organization of a DB2 database environment

Table

Table space

Table

Table
Table

Table

Table space

Table space

Database

Storage group

Table space

385D A T A B A S E D E S I G N

Load or Convert the Data
After the database has been created, the data must be loaded into the database tables. Typically, the data will have to be
migrated from the prior version of the system. Often, data to be included in the system must be aggregated from multiple
sources. In a best-case scenario, all of the data will be in a relational database so that it can be readily transferred to the
new database. Unfortunately, this is not always the case. Data may have to be imported from other relational databases,
nonrelational databases, flat files, legacy systems, or even manual paper-and-pencil systems. If the data format does not
support direct importing into the new database, conversion programs may have to be created to reformat the data so that
it can be imported. In a worst-case scenario, much of the data may have to be manually entered into the database. Once
the data has been loaded, the DBA works with the application developers to test and evaluate the database.

9.3.4 Testing and Evaluation

In the design phase, decisions were made to ensure integrity, security, performance, and recoverability of the database.
During implementation and loading, these plans were put into place. In testing and evaluation, the DBA tests and
fine-tunes the database to ensure that it performs as expected. This phase occurs in conjunction with applications
programming. Programmers use database tools to prototype the applications during the coding of the programs. Tools
such as report generators, screen painters, and menu generators are especially useful to the applications programmers.

Test the Database
During this step, the DBA tests the database to ensure that it maintains the integrity and security of the data. Data
integrity is enforced by the DBMS through the proper use of primary and foreign key rules. Many DBMS also support
the creation of domain constraints, and database triggers. Testing will ensure that these constraints were properly
designed and implemented. In addition, data integrity is also the result of properly implemented data management
policies. Such policies are part of a comprehensive data administration framework. For a more detailed study of this
topic, see The DBA’s Managerial Role section in Chapter 15, Database Administration and Security.

Previously, users and roles were created to grant users access to the data. In this stage, not only must those privileges
be tested, but also the broader view of data privacy and security must be addressed. Data stored in the company
database must be protected from access by unauthorized users. (It does not take much imagination to predict the likely
results if students have access to a student database or if employees have access to payroll data!) Consequently, you
must test for (at least) the following:

� Physical security allows only authorized personnel physical access to specific areas. Depending on the type of
database implementation, however, establishing physical security might not always be practical. For example,
a university student research database is not a likely candidate for physical security.

� Password security allows the assignment of access rights to specific authorized users. Password security is
usually enforced at login time at the operating system level.

� Access rights can be established through the use of database software. The assignment of access rights may
restrict operations (CREATE, UPDATE, DELETE, and so on) on predetermined objects such as databases,
tables, views, queries, and reports.

� Audit trails are usually provided by the DBMS to check for access violations. Although the audit trail is an
after-the-fact device, its mere existence can discourage unauthorized use.

� Data encryption can be used to render data useless to unauthorized users who might have violated some of
the database security layers.

� Diskless workstations allow end users to access the database without being able to download the information
from their workstations.

For a more detailed discussion of security issues, please refer to Chapter 15, Database Administration and Security.

386 C H A P T E R 9

Fine-Tune the Database
Although database performance can be difficult to evaluate because there are no standards for database performance
measures, it is typically one of the most important factors in database implementation. Different systems will place
different performance requirements on the database. Systems to support rapid transactions will require the database
to be implemented in such a way so as to provide superior performance during high volumes of inserts, updates, and
deletes. Other systems, like decision support systems, may require superior performance on complex data retrieval
tasks. Many factors can impact the database’s performance on various tasks. Environmental factors, such as the
hardware and software environment in which the database exists, can have a significant impact on database
performance. Naturally, the characteristics and volume of the data in the database also affect database performance:
a search of 10 tuples will be faster than a search of 100,000 tuples. Other important factors in database performance
include system and database configuration parameters such as data placement, access path definition, the use of
indexes, and buffer size. For a more in-depth discussion of database performance issues, see Chapter 11, Database
Performance Tuning and Query Optimization.

Evaluate the Database and Its Application Programs
As the database and application programs are created and tested, the system must also be evaluated from a more
holistic approach. Testing and evaluation of the individual components should culminate in a variety of broader system
tests to ensure that all of the components interact properly to meet the needs of the users. At this time, integration
issues and deployment plans are refined, user training is conducted, and system documentation is finalized. Once the
system receives final approval, it must be a sustainable resource for the organization. To ensure that the data contained
in the database are protected against loss, backup and recovery plans are tested.

Timely data availability is crucial for almost every database. Unfortunately, the database can be subject to data loss
through unintended data deletion, power outages, and other causes. Data backup and recovery procedures create a
safety valve, ensuring the availability of consistent data. Typically, database vendors encourage the use of fault-tolerant
components such as uninterruptible power supply (UPS) units, RAID storage devices, clustered servers, and data
replication technologies to ensure the continuous operation of the database in case of a hardware failure. Even with
these components, backup and restore functions constitute a very important component of daily database operations.
Some DBMSs provide functions that allow the database administrator to schedule automatic database backups to
permanent storage devices such as disks, DVDs, tapes, and online storage. Database backups can be performed at
different levels:

� A full backup of the database, or dump of the entire database. In this case, all database objects are backed
up in their entirety.

� A differential backup of the database, in which only the last modifications to the database (when compared
with a previous full backup copy) are copied. In this case, only the objects that have been updated since the
last full backup are backed up.

� A transaction log backup, which backs up only the transaction log operations that are not reflected in a
previous backup copy of the database. In this case, only the transaction log is backed up; no other database
objects are backed up. (For a complete explanation of the use of the transaction log see Chapter 10,
Transaction Management and Concurrency Control.)

The database backup is stored in a secure place, usually in a different building from the database itself, and is protected
against dangers such as fire, theft, flood, and other potential calamities. The main purpose of the backup is to
guarantee database restoration following system (hardware/software) failures.

Failures that plague databases and systems are generally induced by software, hardware, programming exemptions,
transactions, or external factors. Table 9.1 summarizes the most common sources of database failure.

387D A T A B A S E D E S I G N

TABLE
9.1

Common Sources of Database Failure

SOURCE DESCRIPTION EXAMPLE
Software Software-induced failures may be traceable to the operating system,

the DBMS software, application programs, or viruses.
The SQL.Slammer
worm affected many
unpatched MS SQL
Server systems in 2003
causing damages val-
ued in millions of
dollars.

Hardware Hardware-induced failures may include memory chip errors, disk
crashes, bad disk sectors, and “disk full” errors.

A bad memory module
or a multiple hard disk
failure in a database
system can bring a
database system to an
abrupt stop.

Programming
exemptions

Application programs or end users may roll back transactions when
certain conditions are defined. Programming exemptions can also
be caused by malicious or improperly tested code that can be
exploited by hackers.

Hackers constantly
searching for exploits
in unprotected Web
database systems.

Transactions The system detects deadlocks and aborts one of the transactions.
(See Chapter 10.)

Deadlock occurs when
executing multiple
simultaneous
transactions.

External factors Backups are especially important when a system suffers complete
destruction from fire, earthquake, flood, or other natural disaster.

In 2005, Hurricane
Katrina in New Orleans
caused data losses in
the millions of dollars.

Depending on the type and extent of the failure, the recovery process ranges from a minor short-term inconvenience
to a major long-term rebuild. Regardless of the extent of the required recovery process, recovery is not possible without
a usable backup.

The database recovery process generally follows a predictable scenario. First, the type and extent of the required
recovery are determined. If the entire database needs to be recovered to a consistent state, the recovery uses the most
recent backup copy of the database in a known consistent state. The backup copy is then rolled forward to restore all
subsequent transactions by using the transaction log information. If the database needs to be recovered but the
committed portion of the database is still usable, the recovery process uses the transaction log to “undo” all of the
transactions that were not committed (see Chapter 10, Transaction Management and Concurrency Control).

At the end of this phase, the database completes an iterative process of continuous testing, evaluation, and
modification that continues until the system is certified as ready to enter the operational phase.

388 C H A P T E R 9

9.3.5 Operation

Once the database has passed the evaluation stage, it is considered to be operational. At that point, the database, its
management, its users, and its application programs constitute a complete information system.

The beginning of the operational phase invariably starts the process of system evolution. As soon as all of the targeted
end users have entered the operations phase, problems that could not have been foreseen during the testing phase
begin to surface. Some of the problems are serious enough to warrant emergency “patchwork,” while others are
merely minor annoyances. For example, if the database design is implemented to interface with the Web, the sheer
volume of transactions might cause even a well-designed system to bog down. In that case, the designers have to
identify the source(s) of the bottleneck(s) and produce alternative solutions. Those solutions may include using
load-balancing software to distribute the transactions among multiple computers, increasing the available cache for the
DBMS, and so on. In any case, the demand for change is the designer’s constant concern, which leads to phase 6,
maintenance and evolution.

9.3.6 Maintenance and Evolution

The database administrator must be prepared to perform routine maintenance activities within the database. Some of
the required periodic maintenance activities include:

� Preventive maintenance (backup).

� Corrective maintenance (recovery).

� Adaptive maintenance (enhancing performance, adding entities and attributes, and so on).

� Assignment of access permissions and their maintenance for new and old users.

� Generation of database access statistics to improve the efficiency and usefulness of system audits and to
monitor system performance.

� Periodic security audits based on the system-generated statistics.

� Periodic (monthly, quarterly, or yearly) system-usage summaries for internal billing or budgeting purposes.

The likelihood of new information requirements and the demand for additional reports and new query formats require
application changes and possible minor changes in the database components and contents. Those changes can be
easily implemented only when the database design is flexible and when all documentation is updated and online.
Eventually, even the best-designed database environment will no longer be capable of incorporating such evolutionary
changes and then the whole DBLC process begins anew.

As you can see, many of the activities described in the Database Life Cycle (DBLC) are similar to those in the Systems
Development Life Cycle (SDLC). This should not be surprising, because the SDLC is the framework within which the
DBLC activities take place. A summary of the parallel activities that take place within the SDLC and the DBLC is
shown in Figure 9.8.

389D A T A B A S E D E S I G N

9.4 CONCEPTUAL DESIGN

Recall that the second phase of the DBLC is database design, and that database design comprises four stages:
conceptual design, DBMS selection, logical design, and physical design. Conceptual design is the first stage in the
database design process. The goal at this stage is to design a database that is independent of database software and
physical details. The output of this process is a conceptual data model that describes the main data entities, attributes,
relationships, and constraints of a given problem domain. This design is descriptive and narrative in form. That is, it
is generally composed of a graphical representation as well as textual descriptions of the main data elements,
relationships, and constraints.

In this stage, data modeling is used to create an abstract database structure that represents real-world objects in the
most realistic way possible. The conceptual model must embody a clear understanding of the business and its functional
areas. At this level of abstraction, the type of hardware and/or database model to be used might not have been
identified yet. Therefore, the design must be software and hardware independent so that the system can be set up
within any hardware and software platform chosen later.

Keep in mind the following minimal data rule:

All that is needed is there, and all that is there is needed.

FIGURE
9.8

Parallel activities in the DBLC and the SDLC

Database maintenance
and evolution

Operation

Application program
maintenance

Testing and
evaluation

Implementation
and loading

Database design

Database initial
study

System
design

System
implementation

Creation
Loading
Fine-tuning

Conceptual
Logical
Physical

DBLC SDLC

Analysis

Detailed design

Coding

Testing and
evaluation

Screens
Reports
Procedures

Prototyping

Debugging

390 C H A P T E R 9

In other words, make sure that all data needed are in the model and that all data in the model are needed. All data
elements required by the database transactions must be defined in the model, and all data elements defined in the
model must be used by at least one database transaction.

However, as you apply the minimal data rule, avoid an excessive short-term bias. Focus not only on the immediate data
needs of the business but also on the future data needs. Thus, the database design must leave room for future
modifications and additions, ensuring that the business’s investment in information resources will endure.

The conceptual design has four steps, which are depicted in Table 9.2.

TABLE
9.2

Conceptual Design Steps

STEP ACTIVITY
1 Data analysis and requirements
2 Entity relationship modeling and normalization
3 Data model verification
4 Distributed database design

The following sections cover these steps in more detail.

9.4.1 Data Analysis and Requirements

The first step in conceptual design is to discover the characteristics of the data elements. An effective database is an
information factory that produces key ingredients for successful decision making. Appropriate data element character-
istics are those that can be transformed into appropriate information. Therefore, the designer’s efforts are focused on:

� Information needs. What kind of information is needed—that is, what output (reports and queries) must be
generated by the system, what information does the current system generate, and to what extent is that
information adequate?

� Information users. Who will use the information? How is the information to be used? What are the various
end-user data views?

� Information sources. Where is the information to be found? How is the information to be extracted once it
is found?

� Information constitution. What data elements are needed to produce the information? What are the data
attributes? What relationships exist among the data? What is the data volume? How frequently are the data
used? What data transformations are to be used to generate the required information?

The designer obtains the answers to those questions from a variety of sources in order to compile the necessary
information. Note these sources:

� Developing and gathering end-user data views. The database designer and the end user(s) interact to jointly
develop a precise description of end-user data views. In turn, the end-user data views will be used to help
identify the database’s main data elements.

� Directly observing the current system: existing and desired output. The end user usually has an existing
system in place, whether it’s manual or computer-based. The designer reviews the existing system to identify
the data and their characteristics. The designer examines the input forms and files (tables) to discover the data
type and volume. If the end user already has an automated system in place, the designer carefully examines the
current and desired reports to describe the data required to support the reports.

� Interfacing with the systems design group. As noted earlier in this chapter, the database design process is part
of the Systems Development Life Cycle (SDLC). In some cases, the systems analyst in charge of designing the
new system will also develop the conceptual database model. (This is usually true in a decentralized

391D A T A B A S E D E S I G N

environment.) In other cases, the database design is considered part of the database administrator’s job. The
presence of a database administrator (DBA) usually implies the existence of a formal data-processing
department. The DBA designs the database according to the specifications created by the systems analyst.

To develop an accurate data model, the designer must have a thorough understanding of the company’s data types and
their extent and uses. But data do not, by themselves, yield the required understanding of the total business. From a
database point of view, the collection of data becomes meaningful only when business rules are defined. Remember
from Chapter 2, Data Models, that a business rule is a brief and precise description of a policy, procedure, or principle
within a specific organization’s environment. Business rules, derived from a detailed description of an organization’s
operations, help to create and enforce actions within that organization’s environment. When business rules are written
properly, they define entities, attributes, relationships, connectivities, cardinalities, and constraints.

To be effective, business rules must be easy to understand and they must be widely disseminated to ensure that every
person in the organization shares a common interpretation of the rules. Using simple language, business rules describe
the main and distinguishing characteristics of the data as viewed by the company. Examples of business rules are as
follows:

� A customer may make many payments on an account.

� Each payment on an account is credited to only one customer.

� A customer may generate many invoices.

� Each invoice is generated by only one customer.

Given their critical role in database design, business rules must not be established casually. Poorly defined or inaccurate
business rules lead to database designs and implementations that fail to meet the needs of the organization’s end users.

Ideally, business rules are derived from a formal description of operations, which is a document that provides a
precise, up-to-date, and thoroughly reviewed description of the activities that define an organization’s operating
environment. (To the database designer, the operating environment is both the data sources and the data users.)
Naturally, an organization’s operating environment is dependent on the organization’s mission. For example, the
operating environment of a university would be quite different from that of a steel manufacturer, an airline, or a nursing
home. Yet no matter how different the organizations may be, the data analysis and requirements component of the
database design process is enhanced when the data environment and data use are described accurately and precisely
within a description of operations.

In a business environment, the main sources of information for the description of operations—and, therefore, of
business rules—are company managers, policy makers, department managers, and written documentation such as
company procedures, standards, and operations manuals. A faster and more direct source of business rules is direct
interviews with end users. Unfortunately, because perceptions differ, the end user can be a less reliable source when
it comes to specifying business rules. For example, a maintenance department mechanic might believe that any
mechanic can initiate a maintenance procedure, when actually only mechanics with inspection authorization should
perform such a task. Such a distinction might seem trivial, but it has major legal consequences. Although end users are
crucial contributors to the development of business rules, it pays to verify end-user perceptions. Often interviews with
several people who perform the same job yield very different perceptions of their job components. While such a
discovery might point to “management problems,” that general diagnosis does not help the database designer. Given
the discovery of such problems, the database designer’s job is to reconcile the differences and verify the results of the
reconciliation to ensure that the business rules are appropriate and accurate.

Knowing the business rules enables the designer to fully understand how the business works and what role the data
plays within company operations. Consequently, the designer must identify the company’s business rules and analyze
their impact on the nature, role, and scope of data.

392 C H A P T E R 9

Business rules yield several important benefits in the design of new systems:

� They help standardize the company’s view of data.

� They constitute a communications tool between users and designers.

� They allow the designer to understand the nature, role, and scope of the data.

� They allow the designer to understand business processes.

� They allow the designer to develop appropriate relationship participation rules and foreign key constraints.
(See Chapter 4, Entity Relationship (ER) Modeling.)

The last point is especially noteworthy: whether a given relationship is mandatory or optional is usually a function of
the applicable business rule.

9.4.2 Entity Relationship Modeling and Normalization

Before creating the ER model, the designer must communicate and enforce appropriate standards to be used in the
documentation of the design. The standards include the use of diagrams and symbols, documentation writing style,
layout, and any other conventions to be followed during documentation. Designers often overlook this very important
requirement, especially when they are working as members of a design team. Failure to standardize documentation
often means a failure to communicate later, and communications failures often lead to poor design work. In contrast,
well-defined and enforced standards make design work easier and promise (but do not guarantee) a smooth integration
of all system components.

Because the business rules usually define the nature of the relationship(s) among the entities, the designer must
incorporate them into the conceptual model. The process of defining business rules and developing the conceptual
model using ER diagrams can be described using the steps shown in Table 9.3.3

TABLE
9.3

Developing the Conceptual Model Using ER Diagrams

STEP ACTIVITY
1 Identify, analyze, and refine the business rules.
2 Identify the main entities, using the results of Step 1.
3 Define the relationships among the entities, using the results of Steps 1 and 2.
4 Define the attributes, primary keys, and foreign keys for each of the entities.
5 Normalize the entities. (Remember that entities are implemented as tables in an RDBMS.)
6 Complete the initial ER diagram.
7 Validate the ER model against the end users’ information and processing requirements.
8 Modify the ER model, using the results of Step 7.

Some of the steps listed in Table 9.3 take place concurrently. And some, such as the normalization process, can
generate a demand for additional entities and/or attributes, thereby causing the designer to revise the ER model. For
example, while identifying two main entities, the designer might also identify the composite bridge entity that
represents the many-to-many relationship between those two main entities.

To review, suppose that you are creating a conceptual model for the JollyGood Movie Rental Corporation, whose end
users want to track customers’ movie rentals. The simple ER diagram presented in Figure 9.9 shows a composite entity
that helps track customers and their video rentals. Business rules define the optional nature of the relationships between

3See “Linking Rules to Models,” Alice Sandifer and Barbara von Halle, Database Programming and Design, 4(3), March 1991, pp. 13−16. Although
the source seems dated, it remains the current standard. The technology has changed substantially, but the process has not.

393D A T A B A S E D E S I G N

the entities VIDEO and CUSTOMER depicted in Figure 9.9. (For example, customers are not required to check out a
video. A video need not be checked out in order to exist on the shelf. A customer may rent many videos, and a video
may be rented by many customers.) In particular, note the composite RENTAL entity that connects the two main entities.

As you will likely discover, the initial ER model may be subjected to several revisions before it meets the system’s
requirements. Such a revision process is quite natural. Remember that the ER model is a communications tool as well as
a design blueprint. Therefore, when you meet with the proposed system users, the initial ER model should give rise to
questions such as, “Is this really what you meant?” For example, the ERD shown in Figure 9.9 is far from complete.
Clearly, many more attributes must be defined and the dependencies must be checked before the design can be
implemented. In addition, the design cannot yet support the typical video rental transaction environment. For example,
each video is likely to have many copies available for rental purposes. However, if the VIDEO entity shown in Figure 9.9
is used to store the titles as well as the copies, the design triggers the data redundancies shown in Table 9.4.

TABLE
9.4

Data Redundancies in the VIDEO Table

VIDEO_ID VIDEO_TITLE VIDEO_COPY VIDEO_CHG VIDEO_DAYS
SF-12345FT-1 Adventures on Planet III 1 $4.50 1
SF-12345FT-2 Adventures on Planet III 2 $4.50 1
SF-12345FT-3 Adventures on Planet III 3 $4.50 1
WE-5432GR-1 TipToe Canu and Tyler 2:

A Journey
1 $2.99 2

WE-5432GR-2 TipToe Canu and Tyler 2:
A Journey

2 $2.99 2

The initial ERD shown in Figure 9.9 must be modified to reflect the answer to the question, “Is more than one copy
available for each title?” Also, payment transactions must be supported. (You will have an opportunity to modify this
initial design in Problem 5 at the end of the chapter.)

From the preceding discussion, you might get the impression that ER modeling activities (entity/attribute definition,
normalization, and verification) take place in a precise sequence. In fact, once you have completed the initial ER model,
chances are you will move back and forth among the activities until you are satisfied that the ER model accurately
represents a database design that is capable of meeting the required system demands. The activities often take place
in parallel, and the process is iterative. Figure 9.10 summarizes the ER modeling process interactions. Figure 9.11
summarizes the array of design tools and information sources that the designer can use to produce the
conceptual model.

FIGURE
9.9

JollyGood Movie Rental ER

394 C H A P T E R 9

FIGURE
9.10

ER modeling is an iterative process based on many activities

Database initial study

DBLC
processes and

database transactions

Verification Attributes

Initial ER model

Normalization

Data analysis
User views and
business rules

Final ER model

FIGURE
9.11

Conceptual design tools and information sources

Conceptual model

Definition
and

validation

Design toolsInformation sources

ERD

Business rules and
data constraints

Data flow diagrams
DFD*

Process functional
descriptions (FD)*

(user views)

ER diagram

Normalization

Data dictionary

* Output generated by the systems analysis and design activities

395D A T A B A S E D E S I G N

All objects (entities, attributes, relations, views, and so on) are defined in a data dictionary, which is used in tandem with
the normalization process to help eliminate data anomalies and redundancy problems. During this ER modeling
process, the designer must:

� Define entities, attributes, primary keys, and foreign keys. (The foreign keys serve as the basis for the
relationships among the entities.)

� Make decisions about adding new primary key attributes to satisfy end-user and/or processing requirements.

� Make decisions about the treatment of composite and multivalued attributes.

� Make decisions about adding derived attributes to satisfy processing requirements.

� Make decisions about the placement of foreign keys in 1:1 relationships.

� Avoid unnecessary ternary relationships.

� Draw the corresponding ER diagram.

� Normalize the entities.

� Include all data element definitions in the data dictionary.

� Make decisions about standard naming conventions.

The naming conventions requirement is important, yet it is frequently ignored at the designer’s risk. Real database
design is generally accomplished by teams. Therefore, it is important to ensure that the team members work in an
environment in which naming standards are defined and enforced. Proper documentation is crucial to the successful
completion of the design. Adherence to the naming conventions serves database designers well. In fact, a common
refrain from users seems to be this: “I didn’t know why you made such a fuss over naming conventions, but now that
I’m doing this stuff for real, I’ve become a true believer.”

9.4.3 Data Model Verification

The data model verification step is one of the last steps in the conceptual design stage, and it is also one of the most
critical ones. In this step, the ER model must be verified against the proposed system processes in order to corroborate
that the intended processes can be supported by the database model. Verification requires that the model be run
through a series of tests against:

� End-user data views.

� All required transactions: SELECT, INSERT, UPDATE, and DELETE operations.

� Access rights and security.

� Business-imposed data requirements and constraints.

Because real-world database design is generally done by teams, it is very likely the database design is divided into major
components known as modules. A module is an information system component that handles a specific business
function, such as inventory, orders, payroll, and so on. Under these conditions, each module is supported by an
ER segment that is a subset or fragment of an enterprise ER model. Working with modules accomplishes several
important ends:

� The modules (and even the segments within them) can be delegated to design groups within teams, greatly
speeding up the development work.

� The modules simplify the design work. The large number of entities within a complex design can be daunting.
Each module contains a more manageable number of entities.

� The modules can be prototyped quickly. Implementation and applications programming trouble spots can be
identified more readily. (Quick prototyping is also a great confidence builder.)

� Even if the entire system can’t be brought online quickly, the implementation of one or more modules will
demonstrate that progress is being made and that at least part of the system is ready to begin serving the
end users.

396 C H A P T E R 9

As useful as modules are, they represent a loose collection of ER model fragments that if left unchecked could break
havoc in the database. For example, the ER model fragments:

� Might present overlapping, duplicated or conflicting views of the same data.

� Might not be able to support all system’s modules processes.

To avoid these problems, it is better if the modules’ ER fragments are merged into a single enterprise ER model. This
process starts by selecting a central ER model segment and iteratively adding additional ER model segments one at a
time. At each stage, for each new entity added to the model, you need to validate that the new entity doesn’t overlap
or conflict with a previously identified entity in the enterprise ER model.

Merging the ER model segments into an enterprise ER model triggers a careful reevaluation of the entities, followed
by a detailed examination of the attributes that describe those entities. This process serves several important purposes:

� The emergence of the attribute details might lead to a revision of the entities themselves. Perhaps some of the
components first believed to be entities will, instead, turn out to be attributes within other entities. Or what was
originally considered to be an attribute might turn out to contain a sufficient number of subcomponents to
warrant the introduction of one or more new entities.

� The focus on attribute details can provide clues about the nature of relationships as they are defined by the
primary and foreign keys. Improperly defined relationships lead to implementation problems first and to
application development problems later.

� To satisfy processing and/or end-user requirements, it might be useful to create a new primary key to replace
an existing primary key. For example, in the example illustrated in Figure 9.9, a surrogate primary key (i.e.
RENTAL_ID) could be introduced to replace the original primary key composed of VIDEO_ID and
CUST_NUMBER.

� Unless the entity details (the attributes and their characteristics) are precisely defined, it is difficult to evaluate
the extent of the design’s normalization. Knowledge of the normalization levels helps guard against undesirable
redundancies.

� A careful review of the rough database design blueprint is likely to lead to revisions. Those revisions will help
ensure that the design is capable of meeting end-user requirements.

After finishing the merging process, the resulting enterprise ER model is verified against each of the modules processes
The ER model verification process is detailed in Table 9.5.

TABLE
9.5

The ER Model Verification Process

STEP ACTIVITY
1 Identify the ER model’s central entity.
2 Identify each module and its components.
3 Identify each module’s transaction requirements:

Internal: Updates/Inserts/Deletes/Queries/Reports
External: Module interfaces

4 Verify all processes against system requirements.
5 Make all necessary changes suggested in Step 4.
6 Repeat Steps 2−5 for all modules.

Keep in mind that the verification process requires the continuous verification of business transactions as well as system
and user requirements. The verification sequence must be repeated for each of the system’s modules. Figure 9.12
illustrates the iterative nature of the process.

397D A T A B A S E D E S I G N

The verification process starts with selecting the central (most important) entity. The central entity is defined in terms
of its participation in most of the model’s relationships, and it is the focus for most of the system’s operations. In other
words, to identify the central entity, the designer selects the entity involved in the greatest number of relationships. In
the ER diagram, it is the entity that has more lines connected to it than any other.

The next step is to identify the module or subsystem to which the central entity belongs and to define that module’s
boundaries and scope. The entity belongs to the module that uses it most frequently. Once each module is identified,
the central entity is placed within the module’s framework to let you focus your attention on the module’s details.

Within the central entity/module framework, you must:

� Ensure the module’s cohesivity. The term cohesivity describes the strength of the relationships found
among the module’s entities. A module must display high cohesivity—that is, the entities must be strongly
related, and the module must be complete and self-sufficient.

� Analyze each module’s relationships with other modules to address module coupling. Module coupling
describes the extent to which modules are independent of one another. Modules must display low coupling,
indicating that they are independent of other modules. Low coupling decreases unnecessary intermodule
dependencies, thereby allowing the creation of a truly modular system and eliminating unnecessary relation-
ships among entities.

FIGURE
9.12

Iterative ER model verification process

ER model verified

Yes

No

Identify central entity,
module and components

Define processes and
transaction steps

Verify ER model

Make changes
to ER model

Does ER
require changes

398 C H A P T E R 9

Processes may be classified according to their:

� Frequency (daily, weekly, monthly, yearly, or exceptions).

� Operational type (INSERT or ADD, UPDATE or CHANGE, DELETE, queries and reports, batches, mainte-
nance, and backups).

All identified processes must be verified against the ER model. If necessary, appropriate changes are implemented. The
process verification is repeated for all of the model’s modules. You can expect that additional entities and attributes will
be incorporated into the conceptual model during its validation.

At this point, a conceptual model has been defined as hardware- and software-independent. Such independence
ensures the system’s portability across platforms. Portability can extend the database’s life by making it possible to
migrate to another DBMS and/or another hardware platform.

9.4.4 Distributed Database Design

Although not a requirement for most databases, sometimes a database may need to be distributed among multiple
geographically disperse locations. Processes that access the database may also vary from one location to another. For
example, a retail process and a warehouse storage process are likely to be found in different physical locations. If the
database data and processes are to be distributed across the system, portions of a database, known as database
fragments, may reside in several physical locations. A database fragment is a subset of a database that is stored at
a given location. The database fragment may be composed of a subset of rows or columns from one or multiple tables.

Distributed database design defines the optimum allocation strategy for database fragments in order to ensure database
integrity, security, and performance. The allocation strategy determines how to partition the database and where to
store each fragment. The design implications introduced by distributed processes are examined in detail in Chapter 12,
Distributed Database Management Systems.

9.5 DBMS SOFTWARE SELECTION

The selection of DBMS software is critical to the information system’s smooth operation. Consequently, the
advantages and disadvantages of the proposed DBMS software should be carefully studied. To avoid false expectations,
the end user must be made aware of the limitations of both the DBMS and the database.

Although the factors affecting the purchasing decision vary from company to company, some of the most
common are:

� Cost. This includes the original purchase price, along with maintenance, operational, license, installation,
training, and conversion costs.

� DBMS features and tools. Some database software includes a variety of tools that facilitate the application
development task. For example, the availability of query by example (QBE), screen painters, report generators,
application generators, data dictionaries, and so on, helps to create a more pleasant work environment for
both the end user and the application programmer. Database administrator facilities, query facilities, ease of
use, performance, security, concurrency control, transaction processing, and third-party support also influence
DBMS software selection.

� Underlying model. This can be hierarchical, network, relational, object/relational, or object-oriented.

� Portability. A DBMS can be portable across platforms, systems, and languages.

� DBMS hardware requirements. Items to consider include processor(s), RAM, disk space, and so on.

399D A T A B A S E D E S I G N

9.6 LOGICAL DESIGN

Logical design is the second stage in the database design process. The logical design goal is to design an
enterprise-wide database based on a specific data model but independent of physical-level details. Logical design
requires that all objects in the conceptual model be mapped to the specific constructs used by the selected database
model. For example, the logical design for a relational DBMS includes the specifications for the relations (tables),
relationships, and constraints (i.e., domain definitions, data validations, and security views).

The logical design is generally performed in four steps, which are depicted in Table 9.6.

TABLE
9.6

Logical Design Steps

STEP ACTIVITY
1 Map conceptual model to logical model components
2 Validate logical model using normalization
3 Validate logical model integrity constraints
4 Validate logical model against user requirements

Such steps, like most of the data-modeling process, are not necessarily performed sequentially, but in an iterative
fashion. The following sections cover these steps in more detail.

9.6.1 Map the Conceptual Model to the Logical Model

The first step in creating the logical design is to map the conceptual model to the chosen database constructs. Because
this book deals primarily with relational databases and because most current database design projects are based on the
relational database model, we will focus on logical design using relational constructs. In the real world, logical design
generally involves translating the ER model into a set of relations (tables), columns, and constraints definitions. The
process of translating the conceptual model into a set of relations is depicted in Table 9.7.

TABLE
9.7

Mapping the Conceptual Model to the Relational Model

STEP ACTIVITY
1 Map strong entities
2 Map supertype/subtype relationships
3 Map weak entities
4 Map binary relationships
5 Map higher degree relationships

To illustrate this process, we will use the example of the SimpleCollege ER model shown in Figure 9.13. Remember,
the steps indicated in Table 9.7 are not sequential but iterative.

As indicated in Table 9.7, the first step in the logical design stage is to map strong entities to tables. Recall from
Chapter 4 that a strong entity is one that resides in the 1 side of all its relationships, that is, an entity that does not
have any mandatory attribute that is a foreign key to another table. Therefore, the first entities to be translated into
tables would be the EMPLOYEE and COURSE entities. In this case, you define what would be the table name, what

400 C H A P T E R 9

would be its columns and their characteristics. For example, the relation definitions for the strong entities on
SimpleCollege would be:

COURSE (CRS_CODE, CRS_TITLE, CRS_DESCRIPT, CRS_CREDIT)
PRIMARY KEY: CRS_CODE

EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_E_MAIL)
PRIMARY KEY: EMP_NUM

Once all strong entities are mapped, you are ready to map any entities involved in a supertype/subtype relationship
or any weak entities. In the case of SimpleCollege, you have the PROFESSOR entity that is a subtype of the
EMPLOYEE entity. PROFESSOR is also a weak entity because it inherits its primary key from EMPLOYEE and it is
existence-dependent on EMPLOYEE. At this time, you could also start defining the relationships between supertype
and subtype entities. For example:

PROFESSOR (EMP_NUM, PROF_SPECIALTY, PROF_RANK)
PRIMARY KEY: EMP_NUM
FOREIGN KEY: EMP_NUM REFERENCES PROFESSOR

Next, you start mapping all binary relationships. Note that in the previous example you have already defined the
supertype/subtype relationship between EMPLOYEE and PROFESSOR. This is an instance that demonstrates the
iterative nature of this process. Continuing with the SimpleCollege ER model, you would define the CLASS relation
and define its 1:M relationships with PROFESSOR and COURSE:

CLASS (CLASS_CODE, EMP_NUM, CLASS_TIME, CLASS_DAYS, CRS_CODE)
PRIMARY KEY: CLASS_CODE
FOREIGN KEYS: EMP_NUM REFERENCES PROFESSOR

CRS_CODE REFERENCES COURSE
Next, you will proceed with all relationships between three or more entities until all relationships in the model are
clearly defined. The logical design’s tables must correspond to the entities (EMPLOYEE, PROFESSOR, COURSE, and
CLASS) shown in the conceptual design of Figure 9.13, and the table columns must correspond to the attributes
specified in the conceptual design. The final outcome of this process is a list of relations, attributes, and relationships
that will be the basis for the next step.

FIGURE
9.13

The SimpleCollege conceptual model

401D A T A B A S E D E S I G N

9.6.2 Validate the Logical Model Using Normalization

The logical design should contain only properly normalized tables. The process of mapping the conceptual model to
the logical model may unveil some new attributes or the discovery of new multivalued or composite attributes.
Therefore, it’s very likely that new attributes may be added to tables or entire new tables added to the logical model.
For each identified table (old and new), you must ensure that all attributes are fully dependent on the identified primary
key and that the tables are in at least third normal form (3NF).

As indicated throughout this section, database design is an iterative process. Activities such as normalization take place
at different stages in the design process. Each time you reiterate a step, the model is further refined and better
documented. New attributes may be created and assigned to the proper entities. Functional dependencies among
determinant and dependent attributes are evaluated and data anomalies are prevented via normalization.

9.6.3 Validate Logical Model Integrity Constraints

The translation of the conceptual model into a logical model also requires the definition of the attribute domains and
appropriate constraints. For example, the domain definitions for the CLASS_CODE, CLASS_DAYS, and CLASS_
TIME attributes displayed in the CLASS entity in Figure 9.13 are written this way:

CLASS_CODE is a valid class code.
Type: numeric
Range: low value = 1000 high value = 9999
Display format: 9999
Length: 4

CLASS_DAYS is a valid day code.
Type: character
Display format: XXX
Valid entries: MWF, TTh, M, T, W, Th, F, S
Length: 3

CLASS_TIME is a valid time.
Type: character
Display format: 99:99 (24-hour clock)
Display range: 06:00 to 22:00
Length: 5

All those defined constraints must be supported by the logical data model. In this stage, you must map all those
constraints to the proper relational model constraints. For example, the CLASS_DAYS attribute is character data that
should be restricted to a list of valid character combinations. Here, you define that this attribute will have a CHECK
IN constraint to enforce that the only allowed values are “MWF”, “TR”, “M”, “T”, “W”, “”R”, “F”, and “S”. During
this step, you also define which attributes are mandatory and which are optional and ensure that all entities maintain
entity and referential integrity.

The right to use the database is also specified during the logical design phase. Who will be allowed to use the tables
and what portion(s) of the table(s) will be available to which users? Within a relational framework, the answers to those
questions require the definition of appropriate views. For example, a given process may require the creation of a view
to get data about the class schedules. Such a requirement could be met with the following view:

CREATE VIEW vSCHEDULE AS
SELECT EMP_LNAME, EMP_FNAME, CLASS_CODE, CRS_TILE, CLASS_TIME, CLASS_DAYS
FROM PROFESSOR, CLASS, COURSE
WHERE PROFESSOR.EMP_NUM = CLASS.EMP_NUM AND

CLASS.CRS_CODE = COURSE.CRS_CODE

Special attention should be place at this stage to ensure that all views could be resolved and that security is enforced
to ensure the privacy of the data. Additionally, if you are working with a distributed database design, data could be

402 C H A P T E R 9

located at multiple locations and each location may have different security restrictions. After validating the logical
model integrity constraints, you are ready to validate the model against the end user requirements.

9.6.4 Validate the Logical Model against User Requirements

The logical design translates the software-independent conceptual model into a software-dependent model. The final
step in the logical design process is to validate all logical model definitions against all end-user data, transaction, and
security requirements. A process similar to the one depicted in Table 9.5 takes place again to ensure the correctness
of the logical model. The stage is now set to define the physical requirements that allow the system to function within
the selected DBMS/hardware environment.

9.7 PHYSICAL DESIGN

Physical design is the process of determining the data storage organization and data access characteristics of the
database in order to ensure its integrity, security, and performance. This is the last stage in the database design
process. The storage characteristics are a function of the types of devices supported by the hardware, the type of data
access methods supported by the system, and the DBMS. Physical design could become a very technical job that affects
not only the accessibility of the data in the storage device(s) but also the performance of the system.

The physical design stage is composed of the steps depicted in Table 9.8.

TABLE
9.8

Physical Design Steps

STEP ACTIVITY
1 Define data storage organization
2 Define integrity and security measures
3 Determine performance measurements

The following sections cover these steps in more detail.

9.7.1 Define Data Storage Organization

Before you can define the data storage organization, you must determine the volume of data to be managed and the
data usage patterns.

� Knowing the data volume will help you determine how much storage space to reserve for the database. To do
this, the designer follows a process similar to the one used during the ER model verification process. For each
table, identify all possible transactions, their frequency, and volume. For each transaction, you determine the
amount of data to be added or deleted from the database. This information will help you determine the amount
of data to be stored in the related table.

� Conversely, knowing how frequently the new data is inserted, updated, and retrieved will help the designer to
determine the data usage patterns. Usage patterns are critical, in particular in distributed database design. For
example, are there any weekly batch uploads or monthly aggregation reports to be generated? How frequently
is new data added to the system?

Equipped with the two previous pieces of information, the designer must:

� Determine the location and physical storage organization for each table. As you saw in section 9.3.3, tables
are stored in table spaces and a table space can hold data from multiple tables. In this step the designer assigns
which tables will use what table spaces and the location of the table spaces. For example, a useful technique

403D A T A B A S E D E S I G N

available in most relational databases is the use of clustered tables. The clustered tables storage technique
stores related rows from two related tables in adjacent data blocks on disk. This ensures that the data are stored
in sequentially adjacent locations, thereby reducing data access time and increasing system performance.

� Identify what indexes and the type of indexes to be used for each table. As you saw in previous chapters,
indexes are useful for ensuring the uniqueness of data values in a column and to facilitate data lookups. You
also know that the DBMS automatically creates a unique index for the primary key of each table. You will learn
in Chapter 11 that there are various types of index organizations. At this time, you identify all required indexes
and determine the best type of organization to use based on the data usage patterns and performance
requirements.

� Identify what views and the type of views to be used on each table. As you learned in Chapter 7, a view
is useful to limit access to data based on user or transaction needs. Views can also be used to simplify
processing and end-user data access. In this step the designer must ensure that all views can be implemented
and that they provide only the required data. At this time, the designer must also get familiar with the types
of views supported by the DBMS and how those types of views could help meet system goals.

9.7.2 Define Integrity and Security Measures

Once the physical organization of the tables, indexes, and views are defined, the database is ready to be used by the
end users. But before a user can access the data in the database, he or she must be properly authenticated. In this step
of physical design, two tasks must be addressed:

� Define user and security groups and roles. User management is more a function of database administration
than database design. But, as a designer you must be aware of the different types of users and group of users
in order to properly enforce database security. Most DBMS implementations support the use of database roles.
A database role is a set of database privileges that could be assigned as a unit to a user or group. For example
you could define an Advisor role that has Read access to the vSCHEDULE view.

� Assign security controls. The DBMS also allows administrators to assign specific access rights on database
objects to a user or group of users. For example, you could assign the SELECT and UPDATE access rights to
the user sscott on the CLASS table. An access right could also be revoked from a specific user or groups of
users. This feature could come in handy during database backups or scheduled maintenance events.

9.7.3 Determine Performance Measures

Physical design becomes more complex when data are distributed at different locations because the performance is
affected by the communication media’s throughput. Given such complexities, it is not surprising that designers favor
database software that hides as many of the physical-level activities as possible. In spite of the fact that relational models
tend to hide the complexities of the computer’s physical characteristics, the performance of relational databases is
affected by physical storage characteristics. For example, performance can be affected by the characteristics of the
storage media, such as seek time, sector and block (page) size, buffer pool size, and the number of disk platters and
read/write heads. In addition, factors such as the creation of an index can have a considerable effect on the relational
database’s performance, that is, data access speed and efficiency.

In summary, physical design performance measurement deals with fine-tuning the DBMS and queries to ensure that
they will meet end-user performance requirements.

The preceding sections have separated the discussions of logical and physical design activities. In fact, logical and
physical design can be carried out in parallel, on a table-by-table basis. Such parallel activities require the designer to

N o t e

For a detailed discussion of database performance and query optimization techniques that could be used here,
please see Chapter 11, Database Performance Tuning and Query Optimization.

404 C H A P T E R 9

have a thorough understanding of the software and hardware in order to take full advantage of both software and
hardware characteristics.

9.8 DATABASE DESIGN STRATEGIES

There are two classical approaches to database design:

� Top-down design starts by identifying the data sets and then defines the data elements for each of those sets.
This process involves the identification of different entity types and the definition of each entity’s attributes.

� Bottom-up design first identifies the data elements (items) and then groups them together in data sets. In
other words, it first defines attributes, and then groups them to form entities.

The two approaches are illustrated in Figure 9.14. The selection of a primary emphasis on top-down or bottom-up
procedures often depends on the scope of the problem or on personal preferences. Although the two methodologies
are complementary rather than mutually exclusive, a primary emphasis on a bottom-up approach may be more
productive for small databases with few entities, attributes, relations, and transactions. For situations in which the
number, variety, and complexity of entities, relations, and transactions is overwhelming, a primarily top-down
approach may be more easily managed. Most companies have standards for systems development and database design
already in place.

O n l i n e C o n t e n t

Physical design is particularly important in the older hierarchical and networkmodels described in Appendixes
K and L, The Hierarchical Database Model and The Network Database Model, respectively, in the Premium
Website for this book. Relational databases are more insulated from physical details than the older hierarchical
and network models.

B
o
t
t
o
m

U
p

T
o
p

D
o
w
n

Conceptual model

Entity Entity

Attribute Attribute Attribute Attribute

FIGURE
9.14

Top-down vs. bottom-up design sequencing

405D A T A B A S E D E S I G N

9.9 CENTRALIZED VS. DECENTRALIZED DESIGN

The two general approaches (bottom-up and top-down) to database design can be influenced by factors such as the
scope and size of the system, the company’s management style, and the company’s structure (centralized or
decentralized). Depending on such factors, the database design may be based on two very different design
philosophies: centralized and decentralized.

Centralized design is productive when the data component is composed of a relatively small number of objects and
procedures. The design can be carried out and represented in a fairly simple database. Centralized design is typical of
relatively simple and/or small databases and can be successfully done by a single person (database administrator) or by
a small, informal design team. The company operations and the scope of the problem are sufficiently limited to allow
even a single designer to define the problem(s), create the conceptual design, verify the conceptual design with the user
views, define system processes and data constraints to ensure the efficacy of the design, and ensure that the design
will comply with all the requirements. (Although centralized design is typical for small companies, do not make the
mistake of assuming that centralized design is limited to small companies. Even large companies can operate within
a relatively simple database environment.) Figure 9.15 summarizes the centralized design option. Note that a single
conceptual design is completed and then validated in the centralized design approach.

Decentralized design might be used when the data component of the system has a considerable number of entities
and complex relations on which very complex operations are performed. Decentralized design is also likely to be
employed when the problem itself is spread across several operational sites and each element is a subset of the entire
data set. (See Figure 9.16.)

Note

Even when a primarily top-down approach is selected, the normalization process that revises existing table
structures is (inevitably) a bottom-up technique. ER models constitute a top-down process even when the
selection of attributes and entities can be described as bottom-up. Because both the ER model and normaliza-
tion techniques form the basis for most designs, the top-down vs. bottom-up debate may be based on a
theoretical distinction rather than an actual difference.

FIGURE
9.15

Centralized design

Conceptual model

User views System processes Data constraints

Conceptual model verification

Data dictionary

406 C H A P T E R 9

In large and complex projects, the database design typically cannot be done by only one person. Instead, a carefully
selected team of database designers is employed to tackle a complex database project. Within the decentralized design
framework, the database design task is divided into several modules. Once the design criteria have been established,
the lead designer assigns design subsets or modules to design groups within the team.

Because each design group focuses on modeling a subset of the system, the definition of boundaries and the
interrelation among data subsets must be very precise. Each design group creates a conceptual data model
corresponding to the subset being modeled. Each conceptual model is then verified individually against the user views,
processes, and constraints for each of the modules. After the verification process has been completed, all modules are
integrated into one conceptual model. Because the data dictionary describes the characteristics of all objects within the
conceptual data model, it plays a vital role in the integration process. Naturally, after the subsets have been aggregated
into a larger conceptual model, the lead designer must verify that the combined conceptual model is still able to support
all of the required transactions.

Keep in mind that the aggregation process requires the designer to create a single model in which various aggregation
problems must be addressed. (See Figure 9.17.)

FIGURE
9.16

Decentralized design

Data component

PurchasingEngineering Manufacturing

Views
Processes

Constraints

Views
Processes

Constraints

Views
Processes

Constraints

Aggregation

Submodule criteria

Conceptual
models

Verification

Conceptual model

Data dictionary

407D A T A B A S E D E S I G N

� Synonyms and homonyms. Various departments might know the same object by different names (synonyms),
or they might use the same name to address different objects (homonyms). The object can be an entity, an
attribute, or a relationship.

� Entity and entity subtypes. An entity subtype might be viewed as a separate entity by one or more
departments. The designer must integrate such subtypes into a higher-level entity.

� Conflicting object definitions. Attributes can be recorded as different types (character, numeric), or different
domains can be defined for the same attribute. Constraint definitions, too, can vary. The designer must remove
such conflicts from the model.

Entity X

Synonyms: two departments use different names for the same entity.

Department A

Entity X

Entity Y

Entity X

Entity X1 Entity X2

EMPLOYEE

SECRETARY PILOT

Label used:

Department B
X
Y

Homonyms: two different entities are addressed by the same label.
(Department B uses the label X to describe both entity X and entity Y.)

Entity and entity subclass: The entities X1 and X2 are subsets of entity X.
Example:

Name
Address
Phone

Common
attributes

Department A Typing speed
Classification

Hours flown
License

Distinguishing
attributes

Conflicting object definitions: attributes for the entity PROFESSOR

Conflicting
definitions

Primary key:
Phone attribute:

Payroll Dept.
PROF_SSN
898-2853

Label used:
X
X

Department B

Systems Dept.
PROF_NUM
2853

FIGURE
9.17

Summary of aggregation problems

408 C H A P T E R 9

S u m m a r y

◗ An information system is designed to facilitate the transformation of data into information and to manage both data
and information. Thus, the database is a very important part of the information system. Systems analysis is the
process that establishes the need for and the extent of an information system. Systems development is the process
of creating an information system.

◗ The Systems Development Life Cycle (SDLC) traces the history (life cycle) of an application within the information
system. The SDLC can be divided into five phases: planning, analysis, detailed systems design, implementation,
and maintenance. The SDLC is an iterative rather than a sequential process.

◗ The Database Life Cycle (DBLC) describes the history of the database within the information system. The DBLC
is composed of six phases: database initial study, database design, implementation and loading, testing and
evaluation, operation, and maintenance and evolution. Like the SDLC, the DBLC is iterative rather than sequential.

◗ The database design and implementation process moves through a series of well-defined stages: database initial
study, database design, implementation and loading, testing and evaluation, operation, and maintenance and
evolution.

◗ The conceptual portion of the design may be subject to several variations based on two basic design philosophies:
bottom-up vs. top-down and centralized vs. decentralized.

K e y T e r m s

bottom-up design, 405

boundaries, 382

centralized design, 406

clustered tables, 404

cohesivity, 398

computer-aided systems engineering
(CASE), 378

conceptual design, 390

database development, 374

database fragment, 399

Database Life Cycle (DBLC), 378

database role, 404

decentralized design, 406

description of operations, 392

differential backup, 387

full backup, 387

information system, 373

logical design, 400

minimal data rule, 390

module, 396

module coupling, 398

physical design, 403

scope, 382

systems analysis, 373

systems development, 373

Systems Development Life Cycle
(SDLC), 375

top-down design, 405

transaction log backup, 387

virtualization, 384

409D A T A B A S E D E S I G N

R e v i e w Q u e s t i o n s

1. What is an information system? What is its purpose?

2. How do systems analysis and systems development fit into a discussion about information systems?

3. What does the acronym SDLC mean, and what does an SDLC portray?

4. What does the acronym DBLC mean, and what does a DBLC portray?

5. Discuss the distinction between centralized and decentralized conceptual database design.

6. What is the minimal data rule in conceptual design? Why is it important?

7. Discuss the distinction between top-down and bottom-up approaches in database design.

8. What are business rules? Why are they important to a database designer?

9. What is the data dictionary’s function in database design?

10. What steps are required in the development of an ER diagram? (Hint: See Table 9.3.)

11. List and briefly explain the activities involved in the verification of an ER model.

12. What factors are important in a DBMS software selection?

13. List and briefly explain the four steps performed during the logical design stage.

14. List and briefly explain the three steps performed during the physical design stage.

15. What three levels of backup may be used in database recovery management? Briefly describe what each of those
three backup levels does.

P r o b l e m s

1. The ABC Car Service & Repair Centers are owned by the SILENT car dealer; ABC services and repairs only
SILENT cars. Three ABC Car Service & Repair Centers provide service and repair for the entire state.

Each of the three centers is independently managed and operated by a shop manager, a receptionist, and at least
eight mechanics. Each center maintains a fully stocked parts inventory.

Each center also maintains a manual file system in which each car’s maintenance history is kept: repairs made,
parts used, costs, service dates, owner, and so on. Files are also kept to track inventory, purchasing, billing,
employees’ hours, and payroll.

You have been contacted by the manager of one of the centers to design and implement a computerized database
system. Given the preceding information, do the following:

a. Indicate the most appropriate sequence of activities by labeling each of the following steps in the correct
order. (For example, if you think that “Load the database.” is the appropriate first step, label it “1.”)

___________ Normalize the conceptual model.

___________ Obtain a general description of company operations.

___________ Load the database.

___________ Create a description of each system process.

___________ Test the system.

___________ Draw a data flow diagram and system flowcharts.

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the PremiumWebsite for
this book.

410 C H A P T E R 9

___________ Create a conceptual model using ER diagrams.

___________ Create the application programs.

___________ Interview the mechanics.

___________ Create the file (table) structures.

___________ Interview the shop manager.

b. Describe the various modules that you believe the system should include.

c. How will a data dictionary help you develop the system? Give examples.

d. What general (system) recommendations might you make to the shop manager? (For example, if the system
will be integrated, what modules will be integrated? What benefits would be derived from such an integrated
system? Include several general recommendations.)

e. What is the best approach to conceptual database design? Why?

f. Name and describe at least four reports the system should have. Explain their use. Who will use those reports?

2. Suppose that you have been asked to create an information system for a manufacturing plant that produces nuts
and bolts of many shapes, sizes, and functions. What questions would you ask, and how would the answers to
those questions affect the database design?

a. What do you envision the SDLC to be?

b. What do you envision the DBLC to be?

3. Suppose that you perform the same functions noted in Problem 2 for a larger warehousing operation. How are
the two sets of procedures similar? How and why are they different?

4. Using the same procedures and concepts employed in Problem 1, how would you create an information system
for the Tiny College example in Chapter 4?

5. Write the proper sequence of activities in the design of a video rental database. (The initial ERD was shown in
Figure 9.9.) The design must support all rental activities, customer payment tracking, and employee work
schedules, as well as track which employees checked out the videos to the customers. After you finish writing the
design activity sequence, complete the ERD to ensure that the database design can be successfully implemented.
(Make sure that the design is normalized properly and that it can support the required transactions.)

411D A T A B A S E D E S I G N

PART

IV
Advanced Database

Concepts

10Transaction Management and
Concurrency Control

11Database Performance Tuning and
Query Optimization

12Distributed Database Management Systems

13Business Intelligence and Data Warehouses

B
V

usiness
ignette

Combating Data Explosion

The Allegro Group is the leading e-commerce firm in Eastern Europe. It operates the

world’s second largest auction site with over 9 million transactions per day as well as

maintaining a price comparison site and real estate, automotive, and general classified

sites and providing Web and payment services.With about 13 million current users and

over 2 million new users per year, the firm has enjoyed an annual growth rate of about

40 percent over the last 10 years.

But the amount of data the company produces has grown even more rapidly—by about

65 percent each year! CIO Christian Maar believes that this rapid growth created a

“knowledge gap” in Allegro’s business intelligence (BI). Managers needed to explore

clickstream data to uncover customers’ purchasing trends and to evaluate the success of

cross-selling activities. But with such extreme growth, the company had a hard time

keeping up with storing, retrieving, and analyzing data.

In 2008, Allegro Group began searching for ways to expand their BI and data

warehousing capabilities. They needed centralized data control in real time. They also

needed a system that could handle over 7 terabytes (TB) of data and still run efficient

queries.They decided that the new HP Oracle Database Machine was the solution they

had been looking for. Maar explains that it was the combination of storage facility and

computation capabilities that informed their choice. Allegro Group also decided to

implement Oracle’s data extraction and BI software.

The HP Oracle Database Machine arrived in December 2008 and was up and running in

two weeks.The company then used Oracle Warehouse Builder, an Oracle Database 11g

component, to pull data from its legacy systems. By March, Allegro Group had deployed

the Oracle Business Intelligence Suite.

The results were startling. Prior to deployment, the company had only been able to

update Web statistics and BI data twice a week. Now, they get updated data every 24

hours—and within months, the company plans to provide real-time data with a maximum

delay of 30 minutes. Queries are also running much more quickly, taking minutes instead

of hours. These new capabilities not only improve Allegro Group’s ability to drill down

into its own data, but soon the company plans to offer these BI services to its clients. So,

the HP Oracle machine and BI solution will support Allegro Group’s growth in more than

one way.

Preview

Transaction Management and Concurrency Control

In this chapter, you will learn:

� About database transactions and their properties

� What concurrency control is and what role it plays in maintaining the database’s integrity

� What locking methods are and how they work

� How stamping methods are used for concurrency control

� How optimistic methods are used for concurrency control

� How database recovery management is used to maintain database integrity

Database transactions reflect real-world transactions that are triggered by events such as

buying a product, registering for a course, or making a deposit in a checking account.

Transactions are likely to contain many parts. For example, a sales transaction might require

updating the customer’s account, adjusting the product inventory, and updating the seller’s

accounts receivable. All parts of a transaction must be successfully completed to prevent

data integrity problems. Therefore, executing and managing transactions are important

database system activities.

The main database transaction properties are atomicity, consistency, isolation, and durability.

In addition, serializability is a characteristic of the schedule of operations for the execution

of concurrent transactions. After defining those transaction properties, the chapter shows

how SQL can be used to represent transactions and how transaction logs can ensure the

DBMS’s ability to recover transactions.

When many transactions take place at the same time, they are called concurrent

transactions. Managing the execution of such transactions is called concurrency control. As

you can imagine, concurrency control is especially important in a multiuser database

environment. (Just imagine the number of transactions routinely handled by companies that

conduct sales and provide services via the Web!) This chapter discusses some of the

problems that can occur with concurrent transactions—lost updates, uncommitted data,

and inconsistent summaries. And you discover that such problems can be solved when a

DBMS scheduler enforces concurrency control.

In this chapter you will learn about the most common algorithms for concurrency control:

locks, time stamping, and optimistic methods. Because locks are the most widely used

method, you will examine various levels and types of locks. Locks can also create deadlocks,

so you will learn about strategies for managing deadlocks.

Database contents can be damaged or destroyed by critical operational errors, including

transaction management failures.Therefore, in this chapter you will also learn how database

recovery management maintains a database’s contents.

10
T

E
N

10.1 WHAT IS A TRANSACTION?

To illustrate what transactions are and how they work, let’s use the Ch10_SaleCo database. The relational diagram
for that database is shown in Figure 10.1.

As you examine the relational diagram in Figure 10.1, note the following features:

� The design stores the customer balance (CUST_BALANCE) value in the CUSTOMER table to indicate the total
amount owed by the customer. The CUST_BALANCE attribute is increased when the customer makes a
purchase on credit, and it is decreased when the customer makes a payment. Including the current customer
account balance in the CUSTOMER table makes it very easy to write a query to determine the current balance
for any customer and to generate important summaries such as total, average, minimum, and maximum balances.

FIGURE
10.1

The Ch10_SaleCo database relational diagram

O n l i n e C o n t e n t

The Ch10_SaleCo database used to illustrate the material in this chapter is found in the Premium Website for
this book.

Note

Although SQL commands illustrate several transaction and concurrency control issues, you should be able to
follow the discussions even if you have not studied Chapter 7, Introduction to Structured Query Language
(SQL), and Chapter 8, Advanced SQL. If you don't know SQL, ignore the SQL commands and focus on the
discussions. If you have a working knowledge of SQL, you can use the Ch10_SaleCo database to generate your
own SELECT andUPDATE examples and to augment the material presented in Chapters 7 and 8 by writing your
own triggers and stored procedures.

415T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

� The ACCT_TRANSACTION table records all customer purchases and payments to track the details of
customer account activity.

You could change the database design of the Ch10_SaleCo database to reflect accounting practice more precisely,
but the implementation provided here will enable you to track the transactions well enough to serve the purpose of the
chapter’s discussions.

To understand the concept of a transaction, suppose that you sell a product to a customer. Furthermore, suppose that
the customer may charge the purchase to his or her account. Given that scenario, your sales transaction consists of
at least the following parts:

� You must write a new customer invoice.

� You must reduce the quantity on hand in the product’s inventory.

� You must update the account transactions.

� You must update the customer balance.

The preceding sales transaction must be reflected in the database. In database terms, a transaction is any action that
reads from and/or writes to a database. A transaction may consist of a simple SELECT statement to generate a list
of table contents; it may consist of a series of related UPDATE statements to change the values of attributes in various
tables; it may consist of a series of INSERT statements to add rows to one or more tables, or it may consist of a
combination of SELECT, UPDATE, and INSERT statements. The sales transaction example includes a combination of
INSERT and UPDATE statements.

Given the preceding discussion, you can now augment the definition of a transaction. A transaction is a logical unit
of work that must be entirely completed or entirely aborted; no intermediate states are acceptable. In other words, a
multicomponent transaction, such as the previously mentioned sale, must not be partially completed. Updating only
the inventory or only the accounts receivable is not acceptable. All of the SQL statements in the transaction must be
completed successfully. If any of the SQL statements fail, the entire transaction is rolled back to the original database
state that existed before the transaction started. A successful transaction changes the database from one consistent
state to another. A consistent database state is one in which all data integrity constraints are satisfied.

To ensure consistency of the database, every transaction must begin with the database in a known consistent state. If
the database is not in a consistent state, the transaction will yield an inconsistent database that violates its integrity and
business rules. For that reason, subject to limitations discussed later, all transactions are controlled and executed by the
DBMS to guarantee database integrity.

Most real-world database transactions are formed by two or more database requests. A database request is the
equivalent of a single SQL statement in an application program or transaction. For example, if a transaction is
composed of two UPDATE statements and one INSERT statement, the transaction uses three database requests. In
turn, each database request generates several input/output (I/O) operations that read from or write to physical storage
media.

10.1.1 Evaluating Transaction Results

Not all transactions update the database. Suppose that you want to examine the CUSTOMER table to determine the
current balance for customer number 10016. Such a transaction can be completed by using the SQL code:

SELECT CUST_NUMBER, CUST_BALANCE
FROM CUSTOMER
WHERE CUST_NUMBER = 10016;

416 C H A P T E R 1 0

Although that query does not make any changes in the CUSTOMER table, the SQL code represents a transaction
because it accesses the database. If the database existed in a consistent state before the access, the database remains
in a consistent state after the access because the transaction did not alter the database.

Remember that a transaction may consist of a single SQL statement or a collection of related SQL statements. Let’s
revisit the previous sales example to illustrate a more complex transaction, using the Ch10_SaleCo database.
Suppose that on January 18, 2010 you register the credit sale of one unit of product 89-WRE-Q to customer 10016
in the amount of $277.55. The required transaction affects the INVOICE, LINE, PRODUCT, CUSTOMER, and
ACCT_TRANSACTION tables. The SQL statements that represent this transaction are as follows:

INSERT INTO INVOICE
VALUES (1009, 10016,'18-Jan-2010', 256.99, 20.56, 277.55, 'cred', 0.00, 277.55);

INSERT INTO LINE
VALUES (1009, 1, '89-WRE-Q', 1, 256.99, 256.99);

UPDATE PRODUCT
SET PROD_QOH = PROD_QOH – 1
WHERE PROD_CODE = '89-WRE-Q';

UPDATE CUSTOMER
SET CUST_BALANCE = CUST_BALANCE + 277.55
WHERE CUST_NUMBER = 10016;

INSERT INTO ACCT_TRANSACTION
VALUES (10007, '18-Jan-10', 10016, 'charge', 277.55);

COMMIT;

The results of the successfully completed transaction are shown in Figure 10.2. (Note that all records involved in the
transaction have been outlined in red.)

To further your understanding of the transaction results, note the following:

� A new row 1009 was added to the INVOICE table. In this row, derived attribute values were stored for the
invoice subtotal, the tax, the invoice total, and the invoice balance.

� The LINE row for invoice 1009 was added to reflect the purchase of one unit of product 89-WRE-Q with a
price of $256.99. In this row, the derived attribute values for the line amount were stored.

� The product 89-WRE-Q’s quantity on hand (PROD_QOH) in the PRODUCT table was reduced by one (the
initial value was 12), thus leaving a quantity on hand of 11.

� The customer balance (CUST_BALANCE) for customer 10016 was updated by adding $277.55 to the existing
balance (the initial value was $0.00).

� A new row was added to the ACCT_TRANSACTION table to reflect the new account transaction
number 10007.

� The COMMIT statement is used to end a successful transaction. (See Section 10.1.3.)

Now suppose that the DBMS completes the first three SQL statements. Furthermore, suppose that during the
execution of the fourth statement (the UPDATE of the CUSTOMER table’s CUST_BALANCE value for customer
10016), the computer system experiences a loss of electrical power. If the computer does not have a backup power
supply, the transaction cannot be completed. Therefore, the INVOICE and LINE rows were added, the PRODUCT
table was updated to represent the sale of product 89-WRE-Q, but customer 10016 was not charged, nor was the
required record in the ACCT_TRANSACTION table written. The database is now in an inconsistent state, and it is not
usable for subsequent transactions. Assuming that the DBMS supports transaction management, the DBMS will roll
back the database to a previous consistent state.

417T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

Although the DBMS is designed to recover a database to a previous consistent state when an interruption prevents the
completion of a transaction, the transaction itself is defined by the end user or programmer and must be semantically
correct. The DBMS cannot guarantee that the semantic meaning of the transaction truly represents the real-world
event. For example, suppose that following the sale of 10 units of product 89-WRE-Q, the inventory UPDATE
commands were written this way:

UPDATE PRODUCT
SET PROD_QOH = PROD_QOH + 10
WHERE PROD_CODE = '89-WRE-Q';

The sale should have decreased the PROD_QOH value for product 89-WRE-Q by 10. Instead, the UPDATE added
10 to product 89-WRE-Q’s PROD_QOH value.

Although the UPDATE command’s syntax is correct, its use yields incorrect results. Yet the DBMS will execute the
transaction anyway. The DBMS cannot evaluate whether the transaction represents the real-world event correctly; that
is the end user’s responsibility. End users and programmers are capable of introducing many errors in this fashion.

FIGURE
10.2

Tracing the transaction in the Ch10_SaleCo database

Table name: PRODUCT

Table name: INVOICE Table name: LINE
Database name: ch10_SaleCo

Table name: ACCT_TRANSACTIONTable name: CUSTOMER

Note

By default,MS Access does not support transaction management as discussed here.More sophisticated DBMSs,
such as Oracle, SQL Server, and DB2, do support the transaction management components discussed in this
chapter.

418 C H A P T E R 1 0

Imagine the consequences of reducing the quantity on hand for product 1546-QQ2 instead of product 89-WRE-Q or
of crediting the CUST_BALANCE value for customer 10012 rather than customer 10016.

Clearly, improper or incomplete transactions can have a devastating effect on database integrity. Some DBMSs—
especially the relational variety—provide means by which the user can define enforceable constraints based on
business rules. Other integrity rules, such as those governing referential and entity integrity, are enforced automatically
by the DBMS when the table structures are properly defined, thereby letting the DBMS validate some transactions.
For example, if a transaction inserts a new customer number into a customer table and the customer number being
inserted already exists, the DBMS will end the transaction with an error code to indicate a violation of the primary key
integrity rule.

10.1.2 Transaction Properties

Each individual transaction must display atomicity, consistency, isolation, and durability. These properties are
sometimes referred to as the ACID test. In addition, when executing multiple transactions, the DBMS must schedule
the concurrent execution of the transaction’s operations. The schedule of such transaction’s operations must exhibit
the property of serializability. Let’s look briefly at each of the properties.

� Atomicity requires that all operations (SQL requests) of a transaction be completed; if not, the transaction is
aborted. If a transaction T1 has four SQL requests, all four requests must be successfully completed; otherwise,
the entire transaction is aborted. In other words, a transaction is treated as a single, indivisible, logical unit
of work.

� Consistency indicates the permanence of the database’s consistent state. A transaction takes a database from
one consistent state to another consistent state. When a transaction is completed, the database must be in a
consistent state; if any of the transaction parts violates an integrity constraint, the entire transaction is aborted.

� Isolation means that the data used during the execution of a transaction cannot be used by a second
transaction until the first one is completed. In other words, if a transaction T1 is being executed and is using
the data item X, that data item cannot be accessed by any other transaction (T2 ... Tn) until T1 ends. This
property is particularly useful in multiuser database environments because several users can access and update
the database at the same time.

� Durability ensures that once transaction changes are done (committed), they cannot be undone or lost, even
in the event of a system failure.

� Serializability ensures that the schedule for the concurrent execution of the transactions yields consistent
results. This property is important in multiuser and distributed databases, where multiple transactions are likely
to be executed concurrently. Naturally, if only a single transaction is executed, serializability is not an issue.

A single-user database system automatically ensures serializability and isolation of the database because only one
transaction is executed at a time. The atomicity, consistency, and durability of transactions must be guaranteed by the
single-user DBMSs. (Even a single-user DBMS must manage recovery from errors created by operating-system-induced
interruptions, power interruptions, and improper application execution.)

Multiuser databases are typically subject to multiple concurrent transactions. Therefore, the multiuser DBMS must
implement controls to ensure serializability and isolation of transactions—in addition to atomicity and durability—to
guard the database’s consistency and integrity. For example, if several concurrent transactions are executed over the
same data set and the second transaction updates the database before the first transaction is finished, the isolation
property is violated and the database is no longer consistent. The DBMS must manage the transactions by using
concurrency control techniques to avoid such undesirable situations.

10.1.3 Transaction Management with SQL

The American National Standards Institute (ANSI) has defined standards that govern SQL database transactions.
Transaction support is provided by two SQL statements: COMMIT and ROLLBACK. The ANSI standards require that

419T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

when a transaction sequence is initiated by a user or an application program, the sequence must continue through all
succeeding SQL statements until one of the following four events occurs:

� A COMMIT statement is reached, in which case all changes are permanently recorded within the database. The
COMMIT statement automatically ends the SQL transaction.

� A ROLLBACK statement is reached, in which case all changes are aborted and the database is rolled back to
its previous consistent state.

� The end of a program is successfully reached, in which case all changes are permanently recorded within the
database. This action is equivalent to COMMIT.

� The program is abnormally terminated, in which case the changes made in the database are aborted and the
database is rolled back to its previous consistent state. This action is equivalent to ROLLBACK.

The use of COMMIT is illustrated in the following simplified sales example, which updates a product’s quantity on hand
(PROD_QOH) and the customer’s balance when the customer buys two units of product 1558-QW1 priced at $43.99
per unit (for a total of $87.98) and charges the purchase to the customer’s account:

UPDATE PRODUCT
SET PROD_QOH = PROD_QOH – 2
WHERE PROD_CODE = '1558-QW1';
UPDATE CUSTOMER
SET CUST_BALANCE = CUST_BALANCE + 87.98
WHERE CUST_NUMBER = '10011';
COMMIT;

(Note that the example is simplified to make it easy to trace the transaction. In the Ch10_SaleCo database, the
transaction would involve several additional table updates.)

Actually, the COMMIT statement used in that example is not necessary if the UPDATE statement is the application’s
last action and the application terminates normally. However, good programming practice dictates that you include the
COMMIT statement at the end of a transaction declaration.

A transaction begins implicitly when the first SQL statement is encountered. Not all SQL implementations follow the
ANSI standard; some (such as SQL Server) use transaction management statements such as:

BEGIN TRANSACTION;

to indicate the beginning of a new transaction. Other SQL implementations allow you to assign characteristics for the
transactions as parameters to the BEGIN statement. For example, the Oracle RDBMS uses the SET TRANSACTION
statement to declare a new transaction start and its properties.

10.1.4 The Transaction Log

A DBMS uses a transaction log to keep track of all transactions that update the database. The information stored
in this log is used by the DBMS for a recovery requirement triggered by a ROLLBACK statement, a program’s
abnormal termination, or a system failure such as a network discrepancy or a disk crash. Some RDBMSs use the
transaction log to recover a database forward to a currently consistent state. After a server failure, for example, Oracle
automatically rolls back uncommitted transactions and rolls forward transactions that were committed but not yet
written to the physical database. This behavior is required for transactional correctness and is typical of any
transactional DBMS.

While the DBMS executes transactions that modify the database, it also automatically updates the transaction log. The
transaction log stores:

� A record for the beginning of the transaction.

420 C H A P T E R 1 0

� For each transaction component (SQL statement):

- The type of operation being performed (update, delete, insert).

- The names of the objects affected by the transaction (the name of the table).

- The “before” and “after” values for the fields being updated.

- Pointers to the previous and next transaction log entries for the same transaction.

� The ending (COMMIT) of the transaction.

Although using a transaction log increases the processing overhead of a DBMS, the ability to restore a corrupted
database is worth the price.

Table 10.1 illustrates a simplified transaction log that reflects a basic transaction composed of two SQL UPDATE
statements. If a system failure occurs, the DBMS will examine the transaction log for all uncommitted or incomplete
transactions and restore (ROLLBACK) the database to its previous state on the basis of that information. When the
recovery process is completed, the DBMS will write in the log all committed transactions that were not physically
written to the database before the failure occurred.

TABLE
10.1

A Transaction Log

TRL
ID

TRX
NUM

PREV
PTR

NEXT
PTR

OPERATION TABLE ROW ID ATTRIBUTE BEFORE
VALUE

AFTER
VALUE

341 101 Null 352 START ****Start
Transaction

352 101 341 363 UPDATE PRODUCT 1558-QW1 PROD_QOH 25 23
363 101 352 365 UPDATE CUSTOMER 10011 CUST_

BALANCE
525.75 615.73

365 101 363 Null COMMIT **** End of
Transaction

TRL_ID = Transaction log record ID
TRX_NUM = Transaction number
PTR = Pointer to a transaction log record ID
(Note: The transaction number is automatically assigned by the DBMS.)

If a ROLLBACK is issued before the termination of a transaction, the DBMS will restore the database only for that
particular transaction, rather than for all transactions, to maintain the durability of the previous transactions. In other
words, committed transactions are not rolled back.

The transaction log is a critical part of the database, and it is usually implemented as one or more files that are
managed separately from the actual database files. The transaction log is subject to common dangers such as disk-full
conditions and disk crashes. Because the transaction log contains some of the most critical data in a DBMS, some
implementations support logs on several different disks to reduce the consequences of a system failure.

10.2 CONCURRENCY CONTROL

The coordination of the simultaneous execution of transactions in a multiuser database system is known as
concurrency control. The objective of concurrency control is to ensure the serializability of transactions in a
multiuser database environment. Concurrency control is important because the simultaneous execution of transactions
over a shared database can create several data integrity and consistency problems. The three main problems are lost
updates, uncommitted data, and inconsistent retrievals.

421T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

10.2.1 Lost Updates

The lost update problem occurs when two concurrent transactions, T1 and T2, are updating the same data element
and one of the updates is lost (overwritten by the other transaction). To see an illustration of lost updates, let’s examine
a simple PRODUCT table. One of the PRODUCT table’s attributes is a product’s quantity on hand (PROD_QOH).
Assume that you have a product whose current PROD_QOH value is 35. Also assume that two concurrent
transactions, T1 and T2, occur that update the PROD_QOH value for some item in the PRODUCT table. The
transactions are shown in Table 10.2:

TABLE
10.2

Two Concurrent Transactions to Update QOH

TRANSACTION COMPUTATION
T1: Purchase 100 units PROD_QOH = PROD_QOH + 100
T2: Sell 30 units PROD_QOH = PROD_QOH − 30

Table 10.3 shows the serial execution of those transactions under normal circumstances, yielding the correct answer
PROD_QOH = 105.

TABLE
10.3

Serial Execution of Two Transactions

TIME TRANSACTION STEP STORED VALUE
1 T1 Read PROD_QOH 35
2 T1 PROD_QOH = 35 + 100
3 T1 Write PROD_QOH 135
4 T2 Read PROD_QOH 135
5 T2 PROD_QOH = 135 − 30
6 T2 Write PROD_QOH 105

But suppose that a transaction is able to read a product’s PROD_QOH value from the table before a previous
transaction (using the same product) has been committed. The sequence depicted in Table 10.4 shows how the lost
update problem can arise. Note that the first transaction (T1) has not yet been committed when the second transaction
(T2) is executed. Therefore, T2 still operates on the value 35, and its subtraction yields 5 in memory. In the meantime,
T1 writes the value 135 to disk, which is promptly overwritten by T2. In short, the addition of 100 units is “lost” during
the process.

422 C H A P T E R 1 0

TABLE
10.4

Lost Updates

TIME TRANSACTION STEP STORED VALUE
1 T1 Read PROD_QOH 35
2 T2 Read PROD_QOH 35
3 T1 PROD_QOH = 35 + 100
4 T2 PROD_QOH = 35 − 30
5 T1 Write PROD_QOH (Lost update) 135
6 T2 Write PROD_QOH 5

10.2.2 Uncommitted Data

The phenomenon of uncommitted data occurs when two transactions, T1 and T2, are executed concurrently and
the first transaction (T1) is rolled back after the second transaction (T2) has already accessed the uncommitted
data—thus violating the isolation property of transactions. To illustrate that possibility, let’s use the same transactions
described during the lost updates discussion. T1 has two atomic parts to it, one of which is the update of the inventory,
the other possibly being the update of the invoice total (not shown). T1 is forced to roll back due to an error during
the updating of the invoice’s total; hence, it rolls back all the way, undoing the inventory update as well. This time the
T1 transaction is rolled back to eliminate the addition of the 100 units. (See Table 10.5.) Because T2 subtracts 30 from
the original 35 units, the correct answer should be 5.

TABLE
10.5

Transactions Creating an Uncommitted Data Problem

TRANSACTION COMPUTATION
T1: Purchase 100 units PROD_QOH = PROD_QOH + 100 (Rolled back)
T2: Sell 30 units PROD_QOH = PROD_QOH − 30

Table 10.6 shows how, under normal circumstances, the serial execution of those transactions yields the correct
answer.

TABLE
10.6

Correct Execution of Two Transactions

TIME TRANSACTION STEP STORED VALUE
1 T1 Read PROD_QOH 35
2 T1 PROD_QOH = 35 + 100
3 T1 Write PROD_QOH 135
4 T1 *****ROLLBACK ***** 35
5 T2 Read PROD_QOH 35
6 T2 PROD_QOH = 35 − 30
7 T2 Write PROD_QOH 5

423T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

Table 10.7 shows how the uncommitted data problem can arise when the ROLLBACK is completed after T2 has
begun its execution.

TABLE
10.7

An Uncommitted Data Problem

TIME TRANSACTION STEP STORED VALUE
1 T1 Read PROD_QOH 35
2 T1 PROD_QOH = 35 + 100
3 T1 Write PROD_QOH 135
4 T2 Read PROD_QOH

(Read uncommitted data)
135

5 T2 PROD_QOH = 135 − 30
6 T1 ***** ROLLBACK ***** 35
7 T2 Write PROD_QOH 105

10.2.3 Inconsistent Retrievals

Inconsistent retrievals occur when a transaction accesses data before and after another transaction(s) finish working
with such data. For example, an inconsistent retrieval would occur if transaction T1 calculated some summary
(aggregate) function over a set of data while another transaction (T2) was updating the same data. The problem is that
the transaction might read some data before they are changed and other data after they are changed, thereby yielding
inconsistent results.

To illustrate that problem, assume the following conditions:

1. T1 calculates the total quantity on hand of the products stored in the PRODUCT table.

2. At the same time, T2 updates the quantity on hand (PROD_QOH) for two of the PRODUCT table’s products.

The two transactions are shown in Table 10.8.

TABLE
10.8

Retrieval During Update

TRANSACTION T1 TRANSACTION T2
SELECT SUM(PROD_QOH)
FROM PRODUCT

UPDATE PRODUCT
SET PROD_QOH = PROD_QOH + 10
WHERE PROD_CODE = ’1546-QQ2’
UPDATE PRODUCT
SET PROD_QOH = PROD_QOH − 10
WHERE PROD_CODE = ’1558-QW1’
COMMIT;

While T1 calculates the total quantity on hand (PROD_QOH) for all items, T2 represents the correction of a typing
error: the user added 10 units to product 1558-QW1’s PROD_QOH but meant to add the 10 units to product
1546-QQ2’s PROD_QOH. To correct the problem, the user adds 10 to product 1546-QQ2’s PROD_QOH and
subtracts 10 from product 1558-QW1’s PROD_QOH. (See the two UPDATE statements in Table 10.7.) The initial
and final PROD_QOH values are reflected in Table 10.9. (Only a few of the PROD_CODE values for the PRODUCT
table are shown. To illustrate the point, the sum for the PROD_QOH values is given for those few products.)

424 C H A P T E R 1 0

TABLE
10.9

Transaction Results: Data Entry Correction

BEFORE AFTER
PROD_CODE PROD_QOH PROD_QOH
11QER/31 8 8
13-Q2/P2 32 32
1546-QQ2 15 (15 + 10) 25
1558-QW1 23 (23 − 10) 13
2232-QTY 8 8
2232-QWE 6 6
Total 92 92

Although the final results shown in Table 10.8 are correct after the adjustment, Table 10.10 demonstrates that
inconsistent retrievals are possible during the transaction execution, making the result of T1’s execution incorrect. The
“After” summation shown in Table 10.9 reflects the fact that the value of 25 for product 1546-QQ2 was read after
the WRITE statement was completed. Therefore, the “After” total is 40 + 25 = 65. The “Before” total reflects the fact
that the value of 23 for product 1558-QW1 was read before the next WRITE statement was completed to reflect the
corrected update of 13. Therefore, the “Before” total is 65 + 23 = 88.

TABLE
10.10

Inconsistent Retrievals

TIME TRANSACTION ACTION VALUE TOTAL
1 T1 Read PROD_QOH for PROD_CODE = '11QER/31' 8 8
2 T1 Read PROD_QOH for PROD_CODE = '13-Q2/P2' 32 40
3 T2 Read PROD_QOH for PROD_CODE = '1546-QQ2' 15
4 T2 PROD_QOH = 15 + 10
5 T2 Write PROD_QOH for PROD_CODE = '1546-QQ2' 25
6 T1 Read PROD_QOH for PROD_CODE = '1546-QQ2' 25 (After) 65
7 T1 Read PROD_QOH for PROD_CODE = '1558-QW1' 23 (Before) 88
8 T2 Read PROD_QOH for PROD_CODE = '1558-QW1' 23
9 T2 PROD_QOH = 23 − 10
10 T2 Write PROD_QOH for PROD_CODE = '1558-QW1' 13
11 T2 ***** COMMIT *****
12 T1 Read PROD_QOH for PROD_CODE = '2232-QTY' 8 96
13 T1 Read PROD_QOH for PROD_CODE = '2232-QWE' 6 102

The computed answer of 102 is obviously wrong because you know from Table 10.9 that the correct answer is 92.
Unless the DBMS exercises concurrency control, a multiuser database environment can create havoc within the
information system.

10.2.4 The Scheduler

You now know that severe problems can arise when two or more concurrent transactions are executed. You also know
that a database transaction involves a series of database I/O operations that take the database from one consistent
state to another. Finally, you know that database consistency can be ensured only before and after the execution of
transactions. A database always moves through an unavoidable temporary state of inconsistency during a transaction’s
execution if such transaction updates multiple tables/rows. (If the transaction contains only one update, then there is
no temporary inconsistency.) That temporary inconsistency exists because a computer executes the operations serially,
one after another. During this serial process, the isolation property of transactions prevents them from accessing the
data not yet released by other transactions. The job of the scheduler is even more important today, with the use of
multicore processors that have the capability of executing several instructions at the same time. What would happen
if two transactions executed concurrently and they were accessing the same data?

425T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

In previous examples, the operations within a transaction were executed in an arbitrary order. As long as two
transactions, T1 and T2, access unrelated data, there is no conflict and the order of execution is irrelevant to the final
outcome. But if the transactions operate on related (or the same) data, conflict is possible among the transaction
components and the selection of one execution order over another might have some undesirable consequences. So
how is the correct order determined, and who determines that order? Fortunately, the DBMS handles that tricky
assignment by using a built-in scheduler.

The scheduler is a special DBMS process that establishes the order in which the operations within concurrent
transactions are executed. The scheduler interleaves the execution of database operations to ensure serializability and
isolation of transactions. To determine the appropriate order, the scheduler bases its actions on concurrency control
algorithms, such as locking or time stamping methods, which are explained in the next sections. However, it is
important to understand that not all transactions are serializable. The DBMS determines what transactions are
serializable and proceeds to interleave the execution of the transaction’s operations. Generally, transactions that are
not serializable are executed on a first-come, first-served basis by the DBMS. The scheduler’s main job is to create a
serializable schedule of a transaction’s operations. A serializable schedule is a schedule of a transaction’s operations
in which the interleaved execution of the transactions (T1, T2, T3, etc.) yields the same results as if the transactions
were executed in serial order (one after another).

The scheduler also makes sure that the computer’s central processing unit (CPU) and storage systems are used
efficiently. If there were no way to schedule the execution of transactions, all transactions would be executed on a
first-come, first-served basis. The problem with that approach is that processing time is wasted when the CPU waits
for a READ or WRITE operation to finish, thereby losing several CPU cycles. In short, first-come, first-served
scheduling tends to yield unacceptable response times within the multiuser DBMS environment. Therefore, some other
scheduling method is needed to improve the efficiency of the overall system.

Additionally, the scheduler facilitates data isolation to ensure that two transactions do not update the same data
element at the same time. Database operations might require READ and/or WRITE actions that produce conflicts. For
example, Table 10.11 shows the possible conflict scenarios when two transactions, T1 and T2, are executed
concurrently over the same data. Note that in Table 10.11, two operations are in conflict when they access the same
data and at least one of them is a WRITE operation.

TABLE
10.11

Read/Write Conflict Scenarios: Conflicting Database Operations Matrix

TRANSACTIONS
T1 T2 RESULT

Operations Read Read No conflict
Read Write Conflict
Write Read Conflict
Write Write Conflict

Several methods have been proposed to schedule the execution of conflicting operations in concurrent transactions.
Those methods have been classified as locking, time stamping, and optimistic. Locking methods, discussed next, are
used most frequently.

10.3 CONCURRENCY CONTROL WITH LOCKING METHODS

A lock guarantees exclusive use of a data item to a current transaction. In other words, transaction T2 does not have
access to a data item that is currently being used by transaction T1. A transaction acquires a lock prior to data access;
the lock is released (unlocked) when the transaction is completed so that another transaction can lock the data item
for its exclusive use. This series of locking actions assumes that there is a likelihood of concurrent transactions

426 C H A P T E R 1 0

attempting to manipulate the same data item at the same time. The use of locks based on the assumption that conflict
between transactions is likely to occur is often referred to as pessimistic locking.

Recall from the earlier discussions (Section 10.1.1, Evaluating Transaction Results and Section 10.1.2, Transaction
Properties) that data consistency cannot be guaranteed during a transaction; the database might be in a temporary
inconsistent state when several updates are executed. Therefore, locks are required to prevent another transaction
from reading inconsistent data.

Most multiuser DBMSs automatically initiate and enforce locking procedures. All lock information is managed by a
lock manager, which is responsible for assigning and policing the locks used by the transactions.

10.3.1 Lock Granularity

Lock granularity indicates the level of lock use. Locking can take place at the following levels: database, table, page,
row, or even field (attribute).

Database Level
In a database-level lock, the entire database is locked, thus preventing the use of any tables in the database by
transaction T2 while transaction Tl is being executed. This level of locking is good for batch processes, but it is
unsuitable for multiuser DBMSs. You can imagine how s-l-o-w the data access would be if thousands of transactions
had to wait for the previous transaction to be completed before the next one could reserve the entire database.
Figure 10.3 illustrates the database-level lock. Note that because of the database-level lock, transactions T1 and T2
cannot access the same database concurrently even when they use different tables.

1

2

3

4

5

6

7

8

9

Time

Table A

Table B

Payroll Database

Transaction 1 (T1)
(Update Table A)

Lock database request

Locked OK

Unlocked

Transaction 2 (T2)
(Update Table B)

Lock database request

WAIT

LockedOK

Unlocked

FIGURE
10.3

Database-level locking sequence

427T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

Table Level
In a table-level lock, the entire table is locked, preventing access to any row by transaction T2 while transaction T1
is using the table. If a transaction requires access to several tables, each table may be locked. However, two transactions
can access the same database as long as they access different tables.

Table-level locks, while less restrictive than database-level locks, cause traffic jams when many transactions are waiting
to access the same table. Such a condition is especially irksome if the lock forces a delay when different transactions
require access to different parts of the same table, that is, when the transactions would not interfere with each other.
Consequently, table-level locks are not suitable for multiuser DBMSs. Figure 10.4 illustrates the effect of a table-level
lock. Note that in Figure 10.4, transactions T1 and T2 cannot access the same table even when they try to use different
rows; T2 must wait until T1 unlocks the table.

Page Level
In a page-level lock, the DBMS will lock an entire diskpage. A diskpage, or page, is the equivalent of a diskblock,
which can be described as a directly addressable section of a disk. A page has a fixed size, such as 4K, 8K, or 16K.
For example, if you want to write only 73 bytes to a 4K page, the entire 4K page must be read from disk, updated
in memory, and written back to disk. A table can span several pages, and a page can contain several rows of one or
more tables. Page-level locks are currently the most frequently used multiuser DBMS locking method. An example of
a page-level lock is shown in Figure 10.5. Note that T1 and T2 access the same table while locking different diskpages.
If T2 requires the use of a row located on a page that is locked by T1, T2 must wait until the page is unlocked by T1.

1

2

3

4

5

6

7

8

9

Time Table ATransaction 1 (T1)
(Update row 5)

Lock Table A request

Locked OK

Unlocked (end of transaction 1)

Transaction 2 (T2)
(Update row 30)

Lock Table A request

WAIT

LockedOK

Unlocked
(end of transaction 2)

Payroll Database

FIGURE
10.4

An example of a table-level lock

428 C H A P T E R 1 0

Row Level
A row-level lock is much less restrictive than the locks discussed earlier. The DBMS allows concurrent transactions
to access different rows of the same table even when the rows are located on the same page. Although the row-level
locking approach improves the availability of data, its management requires high overhead because a lock exists for
each row in a table of the database involved in a conflicting transaction. Modern DBMSs automatically escalate a lock
from a row-level to a page-level lock when the application session requests multiple locks on the same page. Figure
10.6 illustrates the use of a row-level lock.

Note in Figure 10.6 that both transactions can execute concurrently, even when the requested rows are on the same
page. T2 must wait only if it requests the same row as T1.

Page 1

Page 2

1
2
3
4
5
6
7

Time
Table A

Transaction 1 (T1)
(Update row 1)

Lock page 1 request

Locked OK

Unlock page 1
(end of transaction)

Transaction 2 (T2)
(Update rows 5 and 2)

Lock page 2 request

Lock page 1 request

OK

Unlock pages 1 and 2
(end of transaction)

1

2

3

4

5

6

Locked

Row number

Payroll Database

OK

Locked

Wait

FIGURE
10.5

An example of a page-level lock

1

2

3

4

5

6

Time
Table A

Transaction 1 (T1)
(Update row 1)

Lock row 1 request

OK

Transaction 2 (T2)
(Update row 2)

1

2

3

4

5

6

Lock row 2 request

Row number

Locked

Unlock row 1
(end of transaction)

Payroll Database

OK
Locked

Unlock row 2
(end of transaction)

Page 1

Page 2

FIGURE
10.6

An example of a row-level lock

429T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

Field Level
The field-level lock allows concurrent transactions to access the same row as long as they require the use of different
fields (attributes) within that row. Although field-level locking clearly yields the most flexible multiuser data access, it is
rarely implemented in a DBMS because it requires an extremely high level of computer overhead and because the
row-level lock is much more useful in practice.

10.3.2 Lock Types

Regardless of the level of locking, the DBMS may use different lock types: binary or shared/exclusive.

Binary Locks
A binary lock has only two states: locked (1) or unlocked (0). If an object—that is, a database, table, page, or row—is
locked by a transaction, no other transaction can use that object. If an object is unlocked, any transaction can lock the
object for its use. Every database operation requires that the affected object be locked. As a rule, a transaction must
unlock the object after its termination. Therefore, every transaction requires a lock and unlock operation for each data
item that is accessed. Such operations are automatically managed and scheduled by the DBMS; the user does not need
to be concerned about locking or unlocking data items. (Every DBMS has a default locking mechanism. If the end user
wants to override the default, the LOCK TABLE and other SQL commands are available for that purpose.)

The binary locking technique is illustrated in Table 10.12, using the lost updates problem you encountered in Table
10.4. Note that the lock and unlock features eliminate the lost update problem because the lock is not released until
the WRITE statement is completed. Therefore, a PROD_QOH value cannot be used until it has been properly updated.
However, binary locks are now considered too restrictive to yield optimal concurrency conditions. For example, the
DBMS will not allow two transactions to read the same database object even though neither transaction updates the
database, and therefore, no concurrency problems can occur. Remember from Table 10.11 that concurrency conflicts
occur only when two transactions execute concurrently and one of them updates the database.

TABLE
10.12

An Example of a Binary Lock

TIME TRANSACTION STEP STORED VALUE
1 T1 Lock PRODUCT
2 T1 Read PROD_QOH 15
3 T1 PROD_QOH = 15 + 10
4 T1 Write PROD_QOH 25
5 T1 Unlock PRODUCT
6 T2 Lock PRODUCT
7 T2 Read PROD_QOH 23
8 T2 PROD_QOH = 23 − 10
9 T2 Write PROD_QOH 13
10 T2 Unlock PRODUCT

Shared/Exclusive Locks
The labels “shared” and “exclusive” indicate the nature of the lock. An exclusive lock exists when access is reserved
specifically for the transaction that locked the object. The exclusive lock must be used when the potential for conflict
exists. (See Table 10.11, Read vs. Write.) A shared lock exists when concurrent transactions are granted read access
on the basis of a common lock. A shared lock produces no conflict as long as all the concurrent transactions are
read-only.

A shared lock is issued when a transaction wants to read data from the database and no exclusive lock is held on that
data item. An exclusive lock is issued when a transaction wants to update (write) a data item and no locks are currently

430 C H A P T E R 1 0

held on that data item by any other transaction. Using the shared/exclusive locking concept, a lock can have three
states: unlocked, shared (read), and exclusive (write).

As shown in Table 10.11, two transactions conflict only when at least one of them is a Write transaction. Because the
two Read transactions can be safely executed at once, shared locks allow several Read transactions to read the same
data item concurrently. For example, if transaction T1 has a shared lock on data item X and transaction T2 wants to
read data item X, T2 may also obtain a shared lock on data item X.

If transaction T2 updates data item X, an exclusive lock is required by T2 over data item X. The exclusive lock is
granted if and only if no other locks are held on the data item. Therefore, if a shared or exclusive lock is already
held on data item X by transaction T1, an exclusive lock cannot be granted to transaction T2 and T2 must wait to begin
until T1 commits. This condition is known as the mutual exclusive rule: only one transaction at a time can own an
exclusive lock on the same object.

Although the use of shared locks renders data access more efficient, a shared/exclusive lock schema increases the lock
manager’s overhead, for several reasons:

� The type of lock held must be known before a lock can be granted.

� Three lock operations exist: READ_LOCK (to check the type of lock), WRITE_LOCK (to issue the lock), and
UNLOCK (to release the lock).

� The schema has been enhanced to allow a lock upgrade (from shared to exclusive) and a lock downgrade (from
exclusive to shared).

Although locks prevent serious data inconsistencies, they can lead to two major problems:

� The resulting transaction schedule might not be serializable.

� The schedule might create deadlocks. A deadlock occurs when two transactions wait indefinitely for each
other to unlock data. A database deadlock, which is equivalent to traffic gridlock in a big city, is caused when
two or more transactions wait for each other to unlock data.

Fortunately, both problems can be managed: serializability is guaranteed through a locking protocol known as
two-phase locking, and deadlocks can be managed by using deadlock detection and prevention techniques. Those
techniques are examined in the next two sections.

10.3.3 Two-Phase Locking to Ensure Serializability

Two-phase locking defines how transactions acquire and relinquish locks. Two-phase locking guarantees serializ-
ability, but it does not prevent deadlocks. The two phases are:

1. A growing phase, in which a transaction acquires all required locks without unlocking any data. Once all locks
have been acquired, the transaction is in its locked point.

2. A shrinking phase, in which a transaction releases all locks and cannot obtain any new lock.

The two-phase locking protocol is governed by the following rules:

� Two transactions cannot have conflicting locks.

� No unlock operation can precede a lock operation in the same transaction.

� No data are affected until all locks are obtained—that is, until the transaction is in its locked point.

431T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

Figure 10.7 depicts the two-phase locking protocol.

In this example, the transaction acquires all of the locks it needs until it reaches its locked point. (In this example, the
transaction requires two locks.) When the locked point is reached, the data are modified to conform to the transaction’s
requirements. Finally, the transaction is completed as it releases all of the locks it acquired in the first phase.

Two-phase locking increases the transaction processing cost and might cause additional undesirable effects. One
undesirable effect is the possibility of creating deadlocks.

10.3.4 Deadlocks

A deadlock occurs when two transactions wait indefinitely for each other to unlock data. For example, a deadlock
occurs when two transactions, T1 and T2, exist in the following mode:

T1 = access data items X and Y

T2 = access data items Y and X

If T1 has not unlocked data item Y, T2 cannot begin; if T2 has not unlocked data item X, T1 cannot continue.
Consequently, T1 and T2 each wait for the other to unlock the required data item. Such a deadlock is also known as
a deadly embrace. Table 10.13 demonstrates how a deadlock condition is created.

FIGURE
10.7

Two-phase locking protocol

Locked
point

Acquire
lock

Acquire
lock

Release
lock

Release
lock

Time

Start Operations End

Growing phase
Locked
phase Shrinking phase

1 2 3 4 5 6 7 8

432 C H A P T E R 1 0

The preceding example used only two concurrent transactions to demonstrate a deadlock condition. In a real-world
DBMS, many more transactions can be executed simultaneously, thereby increasing the probability of generating
deadlocks. Note that deadlocks are possible only when one of the transactions wants to obtain an exclusive lock on a
data item; no deadlock condition can exist among shared locks.

The three basic techniques to control deadlocks are:

� Deadlock prevention. A transaction requesting a new lock is aborted when there is the possibility that a
deadlock can occur. If the transaction is aborted, all changes made by this transaction are rolled back and all
locks obtained by the transaction are released. The transaction is then rescheduled for execution. Deadlock
prevention works because it avoids the conditions that lead to deadlocking.

� Deadlock detection. The DBMS periodically tests the database for deadlocks. If a deadlock is found, one of
the transactions (the “victim”) is aborted (rolled back and restarted) and the other transaction continues.

� Deadlock avoidance. The transaction must obtain all of the locks it needs before it can be executed. This
technique avoids the rolling back of conflicting transactions by requiring that locks be obtained in succession.
However, the serial lock assignment required in deadlock avoidance increases action response times.

The choice of the best deadlock control method to use depends on the database environment. For example, if the
probability of deadlocks is low, deadlock detection is recommended. However, if the probability of deadlocks is high,
deadlock prevention is recommended. If response time is not high on the system’s priority list, deadlock avoidance
might be employed. All current DBMSs support deadlock detention in transactional databases, while some DBMSs use
a blend of prevention and avoidance techniques for other types of data, such as data warehouses or XML data.

10.4 CONCURRENCY CONTROL WITH TIME STAMPING METHODS

The time stamping approach to scheduling concurrent transactions assigns a global, unique time stamp to each
transaction. The time stamp value produces an explicit order in which transactions are submitted to the DBMS. Time
stamps must have two properties: uniqueness and monotonicity. Uniqueness ensures that no equal time stamp values
can exist, and monotonicity1 ensures that time stamp values always increase.

1The term monotonicity is part of the standard concurrency control vocabulary. The authors’ first introduction to this term and its proper use was in
an article written by W. H. Kohler, “A Survey of Techniques for Synchronization and Recovery in Decentralized Computer Systems,” Computer Surveys
3(2), June 1981, pp. 149−283.

TABLE
10.13

How a Deadlock Condition Is Created

TIME TRANSACTION REPLY LOCK STATUS
0 Data X Data Y
1 T1:LOCK(X) OK Unlocked Unlocked
2 T2: LOCK(Y) OK Locked Unlocked
3 T1:LOCK(Y) WAIT Locked Locked
4 T2:LOCK(X) WAIT Locked Locked
5 T1:LOCK(Y) WAIT Locked Locked
6 T2:LOCK(X) WAIT Locked Locked
7 T1:LOCK(Y) WAIT Locked Locked
8 T2:LOCK(X) WAIT Locked Locked
9 T1:LOCK(Y) WAIT Locked Locked
� ����.. ��.. ��� ��.�
� ����.. ��.. ��� ��.�
� ����.. ��.. ��� ��.�
� ����.. ��.. ��� ���

433T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

All database operations (Read and Write) within the same transaction must have the same time stamp. The DBMS
executes conflicting operations in time stamp order, thereby ensuring serializability of the transactions. If two
transactions conflict, one is stopped, rolled back, rescheduled, and assigned a new time stamp value.

The disadvantage of the time stamping approach is that each value stored in the database requires two additional time
stamp fields: one for the last time the field was read and one for the last update. Time stamping thus increases memory
needs and the database’s processing overhead. Time stamping demands a lot of system resources because many
transactions might have to be stopped, rescheduled, and restamped.

10.4.1 Wait/Die and Wound/Wait Schemes

You have learned that time stamping methods are used to manage concurrent transaction execution. In this section,
you will learn about two schemes used to decide which transaction is rolled back and which continues executing: the
wait/die scheme and the wound/wait scheme.2 An example illustrates the difference. Assume that you have two
conflicting transactions: T1 and T2, each with a unique time stamp. Suppose T1 has a time stamp of 11548789 and
T2 has a time stamp of 19562545. You can deduce from the time stamps that T1 is the older transaction (the lower
time stamp value) and T2 is the newer transaction. Given that scenario, the four possible outcomes are shown in
Table 10.14.

TABLE
10.14

Wait/Die and Wound/Wait Concurrency Control Schemes

TRANSACTION
REQUESTING LOCK

TRANSACTION
OWNING LOCK WAIT/DIE SCHEME WOUND/WAIT SCHEME

T1 (11548789) T2 (19562545)
• T1 waits until T2 is
completed and T2 releases
its locks.

• T1 preempts (rolls back) T2.
• T2 is rescheduled using the
same time stamp.

T2 (19562545) T1 (11548789)
• T2 dies (rolls back).
• T2 is rescheduled using
the same time stamp.

• T2 waits until T1 is com-
pleted and T1 releases
its locks.

Using the wait/die scheme:

� If the transaction requesting the lock is the older of the two transactions, it will wait until the other transaction
is completed and the locks are released.

� If the transaction requesting the lock is the younger of the two transactions, it will die (roll back) and is
rescheduled using the same time stamp.

In short, in the wait/die scheme, the older transaction waits for the younger to complete and release its locks.

In the wound/wait scheme:

� If the transaction requesting the lock is the older of the two transactions, it will preempt (wound) the younger
transaction (by rolling it back). T1 preempts T2 when T1 rolls back T2. The younger, preempted transaction
is rescheduled using the same time stamp.

� If the transaction requesting the lock is the younger of the two transactions, it will wait until the other
transaction is completed and the locks are released.

In short, in the wound/wait scheme, the older transaction rolls back the younger transaction and reschedules it.

2The procedure was first described by R. E. Stearnes and P. M. Lewis II in “System-level Concurrency Control for Distributed Database Systems,” ACM
Transactions on Database Systems, No. 2, June 1978, pp. 178−198.

434 C H A P T E R 1 0

In both schemes, one of the transactions waits for the other transaction to finish and release the locks. However, in
many cases, a transaction requests multiple locks. How long does a transaction have to wait for each lock request?
Obviously, that scenario can cause some transactions to wait indefinitely, causing a deadlock. To prevent that type of
deadlock, each lock request has an associated time-out value. If the lock is not granted before the time-out expires, the
transaction is rolled back.

10.5 CONCURRENCY CONTROL WITH OPTIMISTIC METHODS

The optimistic approach is based on the assumption that the majority of the database operations do not conflict.
The optimistic approach requires neither locking nor time stamping techniques. Instead, a transaction is executed
without restrictions until it is committed. Using an optimistic approach, each transaction moves through two or three
phases, referred to as read, validation, and write.3

� During the read phase, the transaction reads the database, executes the needed computations, and makes the
updates to a private copy of the database values. All update operations of the transaction are recorded in a
temporary update file, which is not accessed by the remaining transactions.

� During the validation phase, the transaction is validated to ensure that the changes made will not affect the
integrity and consistency of the database. If the validation test is positive, the transaction goes to the write
phase. If the validation test is negative, the transaction is restarted and the changes are discarded.

� During the write phase, the changes are permanently applied to the database.

� The optimistic approach is acceptable for most read or query database systems that require few update
transactions.

In a heavily used DBMS environment, the management of deadlocks—their prevention and detection—constitutes an
important DBMS function. The DBMS will use one or more of the techniques discussed here, as well as variations on
those techniques. However, the deadlock is sometimes worse than the disease that locks are supposed to cure.
Therefore, it may be necessary to employ database recovery techniques to restore the database to a consistent state.

10.6 DATABASE RECOVERY MANAGEMENT

Database recovery restores a database from a given state (usually inconsistent) to a previously consistent state.
Recovery techniques are based on the atomic transaction property: all portions of the transaction must be treated
as a single, logical unit of work in which all operations are applied and completed to produce a consistent database.
If, for some reason, any transaction operation cannot be completed, the transaction must be aborted and any changes
to the database must be rolled back (undone). In short, transaction recovery reverses all of the changes that the
transaction made to the database before the transaction was aborted.

Although this chapter has emphasized the recovery of transactions, recovery techniques also apply to the database
and to the system after some type of critical error has occurred. Critical events can cause a database to become
nonoperational and compromise the integrity of the data. Examples of critical events are:

� Hardware/software failures. A failure of this type could be a hard disk media failure, a bad capacitor on a
motherboard, or a failing memory bank. Other causes of errors under this category include application
program or operating system errors that cause data to be overwritten, deleted, or lost. Some database
administrators argue that this is one of the most common sources of database problems.

3The optimistic approach to concurrency control is described in an article by H. T. King and J. T. Robinson, “Optimistic Methods for Concurrency
Control,” ACM Transactions on Database Systems 6(2), June 1981, pp. 213−226. Even the most current software is built on conceptual standards
that were developed more than two decades ago.

435T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

� Human-caused incidents. This type of event can be categorized as unintentional or intentional.

- An unintentional failure is caused by carelessness by end users. Such errors include deleting the wrong rows
from a table, pressing the wrong key on the keyboard, or shutting down the main database server by
accident.

- Intentional events are of a more severe nature and normally indicate that the company data are at serious
risk. Under this category are security threats caused by hackers trying to gain unauthorized access to data
resources and virus attacks caused by disgruntled employees trying to compromise the database operation
and damage the company.

� Natural disasters. This category includes fires, earthquakes, floods, and power failures.

Whatever the cause, a critical error can render the database in an inconsistent state. The following section introduces
the various techniques used to recover the database from an inconsistent state to a consistent state.

10.6.1 Transaction Recovery

In Section 10.1.4, you learned about the transaction log and how it contains data for database recovery purposes.
Database transaction recovery uses data in the transaction log to recover a database from an inconsistent state to a
consistent state.

Before continuing, let’s examine four important concepts that affect the recovery process:

� The write-ahead-log protocol ensures that transaction logs are always written before any database data are
actually updated. This protocol ensures that, in case of a failure, the database can later be recovered to a
consistent state, using the data in the transaction log.

� Redundant transaction logs (several copies of the transaction log) ensure that a physical disk failure will not
impair the DBMS’s ability to recover data.

� Database buffers are temporary storage areas in primary memory used to speed up disk operations. To
improve processing time, the DBMS software reads the data from the physical disk and stores a copy of it on
a “buffer” in primary memory. When a transaction updates data, it actually updates the copy of the data in the
buffer because that process is much faster than accessing the physical disk every time. Later on, all buffers that
contain updated data are written to a physical disk during a single operation, thereby saving significant
processing time.

� Database checkpoints are operations in which the DBMS writes all of its updated buffers to disk. While this
is happening, the DBMS does not execute any other requests. A checkpoint operation is also registered in the
transaction log. As a result of this operation, the physical database and the transaction log will be in sync. This
synchronization is required because update operations update the copy of the data in the buffers and not in the
physical database. Checkpoints are automatically scheduled by the DBMS several times per hour. As you will
see next, checkpoints also play an important role in transaction recovery.

The database recovery process involves bringing the database to a consistent state after a failure. Transaction recovery
procedures generally make use of deferred-write and write-through techniques.

When the recovery procedure uses a deferred-write technique (also called a deferred update), the transaction
operations do not immediately update the physical database. Instead, only the transaction log is updated. The database
is physically updated only after the transaction reaches its commit point, using information from the transaction log.
If the transaction aborts before it reaches its commit point, no changes (no ROLLBACK or undo) need to be made to
the database because the database was never updated. The recovery process for all started and committed transactions
(before the failure) follows these steps:

1. Identify the last checkpoint in the transaction log. This is the last time transaction data was physically saved to disk.

2. For a transaction that started and was committed before the last checkpoint, nothing needs to be done because
the data are already saved.

436 C H A P T E R 1 0

3. For a transaction that performed a commit operation after the last checkpoint, the DBMS uses the transaction
log records to redo the transaction and to update the database, using the “after” values in the transaction log.
The changes are made in ascending order, from oldest to newest.

4. For any transaction that had a ROLLBACK operation after the last checkpoint or that was left active (with
neither a COMMIT nor a ROLLBACK) before the failure occurred, nothing needs to be done because the
database was never updated.

When the recovery procedure uses a write-through technique (also called an immediate update), the database is
immediately updated by transaction operations during the transaction’s execution, even before the transaction reaches
its commit point. If the transaction aborts before it reaches its commit point, a ROLLBACK or undo operation needs
to be done to restore the database to a consistent state. In that case, the ROLLBACK operation will use the transaction
log “before” values. The recovery process follows these steps:

1. Identify the last checkpoint in the transaction log. This is the last time transaction data were physically saved
to disk.

2. For a transaction that started and was committed before the last checkpoint, nothing needs to be done because
the data are already saved.

3. For a transaction that was committed after the last checkpoint, the DBMS redoes the transaction, using the
“after” values of the transaction log. Changes are applied in ascending order, from oldest to newest.

4. For any transaction that had a ROLLBACK operation after the last checkpoint or that was left active (with
neither a COMMIT nor a ROLLBACK) before the failure occurred, the DBMS uses the transaction log records
to ROLLBACK or undo the operations, using the “before” values in the transaction log. Changes are applied
in reverse order, from newest to oldest.

Use the transaction log in Table 10.15 to trace a simple database recovery process. To make sure you understand the
recovery process, a simple transaction log is used that includes three transactions and one checkpoint. This transaction
log includes the transaction components used earlier in the chapter, so you should already be familiar with the basic
process. Given the transaction, the transaction log has the following characteristics:

� Transaction 101 consists of two UPDATE statements that reduce the quantity on hand for product 54778-2T
and increase the customer balance for customer 10011 for a credit sale of two units of product 54778-2T.

� Transaction 106 is the same credit sales event you saw in Section 10.1.1. This transaction represents the credit
sale of one unit of product 89-WRE-Q to customer 10016 in the amount of $277.55. This transaction consists
of five SQL DML statements: three INSERT statements and two UPDATE statements.

� Transaction 155 represents a simple inventory update. This transaction consists of one UPDATE statement
that increases the quantity on hand of product 2232/QWE from 6 units to 26 units.

� A database checkpoint wrote all updated database buffers to disk. The checkpoint event writes only the
changes for all previously committed transactions. In this case, the checkpoint applies all changes done by
transaction 101 to the database data files.

437T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

Using Table 10.15, you can now trace the database recovery process for a DBMS, using the deferred update method
as follows:

1. Identify the last checkpoint. In this case, the last checkpoint was TRL ID 423. This was the last time database
buffers were physically written to disk.

2. Note that transaction 101 started and finished before the last checkpoint. Therefore, all changes were already
written to disk, and no additional action needs to be taken.

3. For each transaction that committed after the last checkpoint (TRL ID 423), the DBMS will use the transaction
log data to write the changes to disk, using the “after” values. For example, for transaction 106:

a. Find COMMIT (TRL ID 457).

b. Use the previous pointer values to locate the start of the transaction (TRL ID 397).

c. Use the next pointer values to locate each DML statement and apply the changes to disk, using the “after”
values. (Start with TRL ID 405, then 415, 419, 427 and 431.) Remember that TRL ID 457 was the
COMMIT statement for this transaction.

d. Repeat the process for transaction 155.

4. Any other transactions will be ignored. Therefore, for transactions that ended with ROLLBACK or that were
left active (those that do not end with a COMMIT or ROLLBACK), nothing is done because no changes were
written to disk.

438 C H A P T E R 1 0

TA
BL

E
10

.1
5

A
Tr

an
sa

ct
io

n
Lo

g
fo

r
Tr

an
sa

ct
io

n
Re

co
ve

ry
Ex

am
pl

es

TR
L

ID
TR

X
N

U
M

PR
EV

PT
R

N
EX

T
PT

R
O

PE
RA

TI
O

N
TA

BL
E

RO
W

ID
AT

TR
IB

U
TE

BE
FO

RE
VA

LU
E

AF
TE

R
VA

LU
E

34
1

10
1

N
ul
l

35
2

ST
A

RT
**

**
St
ar
tT
ra
ns
ac
tio
n

35
2

10
1

34
1

36
3

U
PD

AT
E

PR
O
D

U
C
T

54
77

8-
2T

PR
O
D

_Q
O

H
45

43
36

3
10

1
35

2
36

5
U
PD

AT
E

C
U

ST
O

M
ER

10
01

1
C

U
ST

_B
AL

AN
C

E
61

5.
73

67
5.

62
36

5
10

1
36

3
N
ul
l

C
O

M
M
IT

**
**

En
d
of
Tr
an
sa
ct
io
n

39
7

10
6

N
ul
l

40
5

ST
AR
T

**
**

St
ar
tT
ra
ns
ac
tio
n

40
5

10
6

39
7

41
5

IN
SE

RT
IN

VO
IC

E
10

09
10

09
,1

00
16
,.
..

41
5

10
6

40
5

41
9

IN
SE

RT
LI

N
E

10
09
,1

10
09
,1
,8

9-
W

RE
-Q
,1
,.
..

41
9

10
6

41
5

42
7

U
PD

AT
E

PR
O
D

U
C
T

89
-W

RE
-Q

PR
O
D

_Q
O

H
12

11
42

3
C

H
EC

KP
O
IN
T

42
7

10
6

41
9

43
1

U
PD

AT
E

C
U

ST
O

M
ER

10
01

6
C

U
ST

_B
AL

AN
C

E
0.

00
27

7.
55

43
1

10
6

42
7

45
7

IN
SE

RT
AC
C
T_
TR

AN
SA
C
TI
O

N
10

00
7

10
07
,1

8-
JA

N
-2

01
0,
...

45
7

10
6

43
1

N
ul
l

C
O

M
M
IT

**
**

En
d
of
Tr
an
sa
ct
io
n

52
1

15
5

N
ul
l

52
5

ST
AR
T

**
**

St
ar
tT
ra
ns
ac
tio
n

52
5

15
5

52
1

52
8

U
PD

AT
E

PR
O
D

U
C
T

22
32

/Q
W

E
PR
O
D

_Q
O

H
6

26
52

8
15

5
52

5
N
ul
l

C
O

M
M
IT

**
**

En
d
of
Tr
an
sa
ct
io
n

*
*

*
*

*
C

*R
*A

*
S*

H
*

*
*

*

439T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

S u m m a r y

◗ A transaction is a sequence of database operations that access the database. A transaction represents a real-world
event. A transaction must be a logical unit of work; that is, no portion of the transaction can exist by itself. Either
all parts are executed or the transaction is aborted. A transaction takes a database from one consistent state to
another. A consistent database state is one in which all data integrity constraints are satisfied.

◗ Transactions have four main properties: atomicity (all parts of the transaction are executed; otherwise, the
transaction is aborted), consistency (the database’s consistent state is maintained), isolation (data used by one
transaction cannot be accessed by another transaction until the first transaction is completed), and durability (the
changes made by a transaction cannot be rolled back once the transaction is committed). In addition, transaction
schedules have the property of serializability (the result of the concurrent execution of transactions is the same as
that of the transactions being executed in serial order).

◗ SQL provides support for transactions through the use of two statements: COMMIT (saves changes to disk) and
ROLLBACK (restores the previous database state).

◗ SQL transactions are formed by several SQL statements or database requests. Each database request originates
several I/O database operations.

◗ The transaction log keeps track of all transactions that modify the database. The information stored in the
transaction log is used for recovery (ROLLBACK) purposes.

◗ Concurrency control coordinates the simultaneous execution of transactions. The concurrent execution of
transactions can result in three main problems: lost updates, uncommitted data, and inconsistent retrievals.

◗ The scheduler is responsible for establishing the order in which the concurrent transaction operations are executed.
The transaction execution order is critical and ensures database integrity in multiuser database systems. Locking,
time stamping, and optimistic methods are used by the scheduler to ensure the serializability of transactions.

◗ A lock guarantees unique access to a data item by a transaction. The lock prevents one transaction from using the data
item while another transaction is using it. There are several levels of locks: database, table, page, row, and field.

◗ Two types of locks can be used in database systems: binary locks and shared/exclusive locks. A binary lock can have
only two states: locked (1) or unlocked (0). A shared lock is used when a transaction wants to read data from a
database and no other transaction is updating the same data. Several shared or “read” locks can exist for a
particular item. An exclusive lock is issued when a transaction wants to update (write to) the database and no other
locks (shared or exclusive) are held on the data.

◗ Serializability of schedules is guaranteed through the use of two-phase locking. The two-phase locking schema has
a growing phase, in which the transaction acquires all of the locks that it needs without unlocking any data, and
a shrinking phase, in which the transaction releases all of the locks without acquiring new locks.

◗ When two or more transactions wait indefinitely for each other to release a lock, they are in a deadlock, also called
a deadly embrace. There are three deadlock control techniques: prevention, detection, and avoidance.

◗ Concurrency control with time stamping methods assigns a unique time stamp to each transaction and schedules
the execution of conflicting transactions in time stamp order. Two schemes are used to decide which transaction
is rolled back and which continues executing: the wait/die scheme and the wound/wait scheme.

◗ Concurrency control with optimistic methods assumes that the majority of database transactions do not conflict and
that transactions are executed concurrently, using private, temporary copies of the data. At commit time, the
private copies are updated to the database.

◗ Database recovery restores the database from a given state to a previous consistent state. Database recovery is
triggered when a critical event occurs, such as a hardware error or application error.

440 C H A P T E R 1 0

K e y T e r m s

atomicity, 419

atomic transaction property, 435

binary lock, 430

buffers, 436

checkpoints, 436

concurrency control, 421

consistency, 419

consistent database state, 416

database-level lock, 427

database recovery, 435

database request, 416

deadlock, 431

deadly embrace, 432

deferred update, 436

deferred-write technique, 436

diskpage, 428

durability, 419

exclusive lock, 430

field-level lock, 430

immediate update, 437

inconsistent retrievals, 424

isolation, 419

lock, 426

lock granularity, 427

lock manager, 427

lost update, 422

monotonicity, 433

mutual exclusive rule, 431

optimistic approach, 435

page, 428

page-level lock, 428

pessimistic locking, 427

redundant transaction logs, 436

row-level lock, 429

scheduler, 426

serializable schedule, 426

serializability, 419

shared lock, 430

table-level lock, 428

time stamping, 433

transaction, 416

transaction log, 420

two-phase locking, 431

uncommitted data, 423

uniqueness, 433

wait/die, 434

wound/wait, 434

write-ahead-log protocol, 436

write-through technique, 437

R e v i e w Q u e s t i o n s

1. Explain the following statement: a transaction is a logical unit of work.

2. What is a consistent database state, and how is it achieved?

3. The DBMS does not guarantee that the semantic meaning of the transaction truly represents the real-world event.
What are the possible consequences of that limitation? Give an example.

4. List and discuss the four transaction properties.

5. What does serializability of transactions mean?

6. What is a transaction log, and what is its function?

7. What is a scheduler, what does it do, and why is its activity important to concurrency control?

8. What is a lock, and how, in general, does it work?

9. What are the different levels of lock granularity?

10. Why might a page-level lock be preferred over a field-level lock?

11. What is concurrency control, and what is its objective?

12. What is an exclusive lock, and under what circumstances is it granted?

13. What is a deadlock, and how can it be avoided? Discuss several strategies for dealing with deadlocks.

14. What are some disadvantages of time-stamping methods for concurrency control?

O n l i n e C o n t e n t

Answers to selected ReviewQuestions and Problems for this chapter are contained in the PremiumWebsite for
this book.

441T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

15. Why might it take a long time to complete transactions when an optimistic approach to concurrency control
is used?

16. What are the three types of database-critical events that can trigger the database recovery process? Give some
examples for each one.

P r o b l e m s

1. Suppose that you are a manufacturer of product ABC, which is composed of parts A, B, and C. Each time a new
product ABC is created, it must be added to the product inventory, using the PROD_QOH in a table named
PRODUCT. And each time the product is created, the parts inventory, using PART_QOH in a table named
PART, must be reduced by one each of parts A, B, and C. The sample database contents are shown in the
following tables.

Given that information, answer Questions a through e.

a. How many database requests can you identify for an inventory update for both PRODUCT and PART?

b. Using SQL, write each database request you identified in Step a.

c. Write the complete transaction(s).

d. Write the transaction log, using Table 10.1 as your template.

e. Using the transaction log you created in Step d, trace its use in database recovery.

2. Describe the three most common concurrent transaction execution problems. Explain how concurrency control
can be used to avoid those problems.

3. What DBMS component is responsible for concurrency control? How is this feature used to resolve conflicts?

4. Using a simple example, explain the use of binary and shared/exclusive locks in a DBMS.

5. Suppose that your database system has failed. Describe the database recovery process and the use of
deferred-write and write-through techniques.

6. ABC Markets sell products to customers. The relational diagram shown in Figure P10.6 represents the main
entities for ABC’s database. Note the following important characteristics:

� A customer may make many purchases, each one represented by an invoice.

- The CUS_BALANCE is updated with each credit purchase or payment and represents the amount the
customer owes.

- The CUS_BALANCE is increased (+) with every credit purchase and decreased (–) with every customer
payment.

TABLE
P10.1
TABLE NAME: PRODUCT
PROD_CODE PROD_QOH
ABC 1,205

TABLE NAME: PART
PART_CODE PART_QOH
A 567
B 98
C 549

O n l i n e C o n t e n t

The Ch10_ABC_Markets database is located in the Premium Website for this book. Use this database to
provide solutions for Problems 6−11.

442 C H A P T E R 1 0

- The date of last purchase is updated with each new purchase made by the customer.

- The date of last payment is updated with each new payment made by the customer.

� An invoice represents a product purchase by a customer.

- An INVOICE can have many invoice LINEs, one for each product purchased.

- The INV_TOTAL represents the total cost of the invoice, including taxes.

- The INV_TERMS can be “30,” “60,” or “90” (representing the number of days of credit) or “CASH,”
“CHECK,” or “CC.”

- The invoice status can be “OPEN,” “PAID,” or “CANCEL.”

� A product’s quantity on hand (P_QTYOH) is updated (decreased) with each product sale.

� A customer may make many payments. The payment type (PMT_TYPE) can be one of the following:

- “CASH” for cash payments.

- “CHECK” for check payments.

- “CC” for credit card payments.

� The payment details (PMT_DETAILS) are used to record data about check or credit card payments:

- The bank, account number, and check number for check payments.

- The issuer, credit card number, and expiration date for credit card payments.

Note: Not all entities and attributes are represented in this example. Use only the attributes indicated.

Using this database, write the SQL code to represent each of the following transactions. Use BEGIN
TRANSACTION and COMMIT to group the SQL statements in logical transactions.

a. On May 11, 2010, customer 10010 makes a credit purchase (30 days) of one unit of product 11QER/31
with a unit price of $110.00; the tax rate is 8 percent. The invoice number is 10983, and this invoice has
only one product line.

b. On June 3, 2010, customer 10010 makes a payment of $100 in cash. The payment ID is 3428.

7. Create a simple transaction log (using the format shown in Table 10.14) to represent the actions of the
transactions in Problems 6a and 6b.

FIGURE
P10.6

The ABC Markets relational diagram

443T R A N S A C T I O N M A N A G E M E N T A N D C O N C U R R E N C Y C O N T R O L

8. Assuming that pessimistic locking is being used, but the two-phase locking protocol is not, create a chronological
list of the locking, unlocking, and data manipulation activities that would occur during the complete processing
of the transaction described in Problem 6a.

9. Assuming that pessimistic locking with the two-phase locking protocol is being used, create a chronological list
of the locking, unlocking, and data manipulation activities that would occur during the complete processing of the
transaction described in Problem 6a.

10. Assuming that pessimistic locking is being used, but the two-phase locking protocol is not, create a chronological
list of the locking, unlocking, and data manipulation activities that would occur during the complete processing
of the transaction described in Problem 6b.

11. Assuming that pessimistic locking with the two-phase locking protocol is being used, create a chronological list
of the locking, unlocking, and data manipulation activities that would occur during the complete processing of the
transaction described in Problem 6b.

444 C H A P T E R 1 0

Preview

Database Performance Tuning and Query
Optimization

In this chapter, you will learn:

� Basic database performance-tuning concepts

� How a DBMS processes SQL queries

� About the importance of indexes in query processing

� About the types of decisions the query optimizer has to make

� Some common practices used to write efficient SQL code

� How to formulate queries and tune the DBMS for optimal performance

Database performance tuning is a critical topic, yet it usually receives minimal coverage in

the database curriculum. Most databases used in classrooms have only a few records per

table. As a result, the focus is often on making SQL queries perform an intended task,

without considering the efficiency of the query process. In fact, even the most efficient

query environment yields no visible performance improvements over the least efficient

query environment when only 20 or 30 table rows (records) are queried. Unfortunately,

that lack of attention to query efficiency can yield unacceptably slow results in the real

world when queries are executed over tens of millions of records. In this chapter, you will

learn what it takes to create a more efficient query environment.

11

E
L

E
V

E
N

11.1 DATABASE PERFORMANCE-TUNING CONCEPTS

One of the main functions of a database system is to provide timely answers to end users. End users interact with the
DBMS through the use of queries to generate information, using the following sequence:

1. The end-user (client-end) application generates a query.

2. The query is sent to the DBMS (server end).

3. The DBMS (server end) executes the query.

4. The DBMS sends the resulting data set to the end-user (client-end) application.

End users expect their queries to return results as quickly as possible. How do you know that the performance of a
database is good? Good database performance is hard to evaluate. How do you know if a 1.06-second query response
time is good enough? It’s easier to identify bad database performance than good database performance—all it takes
is end-user complaints about slow query results. Unfortunately, the same query might perform well one day and not
so well two months later. Regardless of end-user perceptions, the goal of database performance is to execute queries
as fast as possible. Therefore, database performance must be closely monitored and regularly tuned. Database
performance tuning refers to a set of activities and procedures designed to reduce the response time of the database
system—that is, to ensure that an end-user query is processed by the DBMS in the minimum amount of time.

The time required by a query to return a result set depends on many factors. Those factors tend to be wide-ranging
and to vary from environment to environment and from vendor to vendor. The performance of a typical DBMS is
constrained by three main factors: CPU processing power, available primary memory (RAM), and input/output (hard
disk and network) throughput. Table 11.1 lists some system components and summarizes general guidelines for
achieving better query performance.

TABLE
11.1

General Guidelines for Better System Performance

SYSTEM
RESOURCES

CLIENT SERVER

Hardware CPU The fastest possible
dual-core CPU or higher

The fastest possible
Multiple processors (quad-core technology)

RAM The maximum possible The maximum possible
Hard disk Fast SATA/EIDE hard disk

with sufficient free hard
disk space

Multiple high-speed, high-capacity hard disks
(SCSI/SATA/Firewire/Fibre Channel) in RAID
configuration

Network High-speed connection High-speed connection
Software Operating

system
Fine-tuned for best client
application performance

Fine-tuned for best server application
performance

Network Fine-tuned for best
throughput

Fine-tuned for best throughput

Application Optimize SQL in client
application

Optimize DBMS server for best performance

Note

Because this book focuses on databases, this chapter covers only those factors directly affecting database
performance. Also, because performance-tuning techniques can be DBMS-specific, the material in this chapter
might not be applicable under all circumstances, nor will it necessarily pertain to all DBMS types. This chapter
is designed to build a foundation for the general understanding of database performance-tuning issues and to
help you choose appropriate performance-tuning strategies. (For the most current information about tuning
your database, consult the vendor’s documentation.)

446 C H A P T E R 1 1

Naturally, the system will perform best when its hardware and software resources are optimized. However, in the real
world, unlimited resources are not the norm; internal and external constraints always exist. Therefore, the system
components should be optimized to obtain the best throughput possible with existing (and often limited) resources,
which is why database performance tuning is important.

Fine-tuning the performance of a system requires a holistic approach. That is, all factors must be checked to ensure
that each one operates at its optimum level and has sufficient resources to minimize the occurrence of bottlenecks.
Because database design is such an important factor in determining the database system’s performance efficiency, it
is worth repeating this book’s mantra:

Good database performance starts with good database design. No amount of fine tuning will make a poorly
designed database perform as well as a well-designed database. This is particularly true in the case of redesigning
existing databases, where the end user expects unrealistic performance gains from older databases.

What constitutes a good, efficient database design? From the performance tuning point of view, the database designer
must ensure that the design makes use of the database features available in the DBMS that guarantee the integrity and
optimal performance of the database. This chapter provides you with fundamental knowledge that will help you to
optimize database performance by selecting the appropriate database server configuration, utilizing indexes, under-
standing table storage organization and data locations, and implementing the most efficient SQL query syntax.

11.1.1 Performance Tuning: Client and Server

In general, database performance-tuning activities can be divided into those taking place on the client side and those
taking place on the server side.

� On the client side, the objective is to generate a SQL query that returns the correct answer in the least amount
of time, using the minimum amount of resources at the server end. The activities required to achieve that goal
are commonly referred to as SQL performance tuning.

� On the server side, the DBMS environment must be properly configured to respond to clients’ requests in the
fastest way possible, while making optimum use of existing resources. The activities required to achieve that
goal are commonly referred to as DBMS performance tuning.

Keep in mind that DBMS implementations are typically more complex than just a two-tier client/server configuration.
However, even in multitier (client front-end, application middleware, and database server back-end) client/server
environments, performance-tuning activities are frequently divided into subtasks to ensure the fastest possible response
time between any two component points.

This chapter covers SQL performance-tuning practices on the client side and DBMS performance-tuning practices on
the server side. But before you can start learning about the tuning processes, you must first learn more about the
DBMS architectural components and processes and how those processes interact to respond to end-users’ requests.

11.1.2 DBMS Architecture

The architecture of a DBMS is represented by the processes and structures (in memory and in permanent storage) used
to manage a database. Such processes collaborate with one another to perform specific functions. Figure 11.1
illustrates the basic DBMS architecture.

O n l i n e C o n t e n t

If you want to learn more about clients and servers, check Appendix F, Client/Server Systems, located in the
Premium Website for this book.

447D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

Note the following components and functions in Figure 11.1:

� All data in a database are stored in data files. A typical enterprise database is normally composed of several
data files. A data file can contain rows from one single table, or it can contain rows from many different tables.
A database administrator (DBA) determines the initial size of the data files that make up the database; however,
as required, the data files can automatically expand in predefined increments known as extends. For example,
if more space is required, the DBA can define that each new extend will be in 10 KB or 10 MB increments.

� Data files are generally grouped in file groups or table spaces. A table space or file group is a logical grouping
of several data files that store data with similar characteristics. For example, you might have a system table
space where the data dictionary table data are stored, a user data table space to store the user-created tables,
an index table space to hold all indexes, and a temporary table space to do temporary sorts, grouping, and
so on. Each time you create a new database, the DBMS automatically creates a minimum set of table spaces.

� The data cache or buffer cache is a shared, reserved memory area that stores the most recently accessed
data blocks in RAM. The data cache is where the data read from the database data files are stored after the
data have been read or before the data are written to the database data files. The data cache also caches system
catalog data and the contents of the indexes.

� The SQL cache, or procedure cache, is a shared, reserved memory area that stores the most recently
executed SQL statements or PL/SQL procedures, including triggers and functions. (To learn more about
PL/SQL procedures, triggers, and SQL functions, study Chapter 8, Advanced SQL.) The SQL cache does not
store the end-user-written SQL. Rather, the SQL cache stores a “processed” version of the SQL that is ready
for execution by the DBMS.

� To work with the data, the DBMS must retrieve the data from permanent storage (data files in which the data
are stored) and place it in RAM (data cache).

FIGURE
11.1

Basic DBMS architecture

DBMS server
computer

Client
computer

Client
process

Result set
is sent
back to
client

I/O
operations

Data files

Table spaces

Database

Scheduler
Lock

manager
Optimizer

SQL cache

Listener

User
process

DBMS processes
running in primary

memory (RAM)

Database data files
stored in permanent
secondary memory

(hard disk)

Data cache

SQL
query

448 C H A P T E R 1 1

� To move data from the permanent storage (data files) to the RAM (data cache), the DBMS issues I/O requests
and waits for the replies. An input/output (I/O) request is a low-level (read or write) data access operation
to and from computer devices, such as memory, hard disks, video, and printers. The purpose of the I/O
operation is to move data to and from various computer components and devices. Note that an I/O disk read
operation retrieves an entire physical disk block, generally containing multiple rows, from permanent storage
to the data cache, even if you will be using only one attribute from only one row. The physical disk block size
depends on the operating system and could be 4K, 8K, 16K, 32K, 64K, or even larger. Furthermore,
depending on the circumstances, a DBMS might issue a single-block read request or a multiblock read request.

� Working with data in the data cache is many times faster than working with data in the data files because the
DBMS doesn’t have to wait for the hard disk to retrieve the data. This is because no hard disk I/O operations
are needed to work within the data cache.

� The majority of performance-tuning activities focus on minimizing the number of I/O operations because using
I/O operations is many times slower than reading data from the data cache. For example, as of this writing,
RAM access times range from 5 to 70 ns (nanoseconds), while hard disk access times range from 5 to 15 ms
(milliseconds).This means that hard disks are about six orders of magnitude (a million times) slower than RAM.

Also illustrated in Figure 11.1 are some typical DBMS processes. Although the number of processes and their names
vary from vendor to vendor, the functionality is similar. The following processes are represented in Figure 11.1:

� Listener. The listener process listens for clients’ requests and handles the processing of the SQL requests to
other DBMS processes. Once a request is received, the listener passes the request to the appropriate user
process.

� User. The DBMS creates a user process to manage each client session. Therefore, when you log on to the
DBMS, you are assigned a user process. This process handles all requests you submit to the server. There are
many user processes—at least one per each logged-in client.

� Scheduler. The scheduler process organizes the concurrent execution of SQL requests. (See Chapter 10,
Transaction Management and Concurrency Control.)

� Lock manager. This process manages all locks placed on database objects, including disk pages. (See
Chapter 10.)

� Optimizer. The optimizer process analyzes SQL queries and finds the most efficient way to access the data.
You will learn more about this process later in the chapter.

11.1.3 Database Statistics

Another DBMS process that plays an important role in query optimization is gathering database statistics. The term
database statistics refers to a number of measurements about database objects, such as number of processors used,
processor speed, and temporary space available. Such statistics give a snapshot of database characteristics.

As you will learn later in this chapter, the DBMS uses these statistics to make critical decisions about improving query
processing efficiency. Database statistics can be gathered manually by the DBA or automatically by the DBMS. For
example, many DBMS vendors support the ANALYZE command in SQL to gather statistics. In addition, many vendors
have their own routines to gather statistics. For example, IBM’s DB2 uses the RUNSTATS procedure, while Microsoft’s
SQL Server uses the UPDATE STATISTICS procedure and provides the Auto-Update and Auto-Create Statistics
options in its initialization parameters. A sample of measurements that the DBMS may gather about various database
objects is shown in Table 11.2.

449D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

TABLE
11.2

Sample Database Statistics Measurements

DATABASE OBJECT SAMPLE MEASUREMENTS
Tables Number of rows, number of disk blocks used, row length, number of columns in each

row, number of distinct values in each column, maximum value in each column, mini-
mum value in each column, and columns that have indexes

Indexes Number and name of columns in the index key, number of key values in the index,
number of distinct key values in the index key, histogram of key values in an index, and
number of disk pages used by the index

Environment Resources Logical and physical disk block size, location and size of data files, and number of
extends per data file

If the object statistics exist, the DBMS will use them in query processing. Most newer DBMSs (such as Oracle, SQL
Server, and DB2) automatically gather statistics; others require the DBA to gather statistics manually. To generate the
database object statistics manually, you could use the following syntax:

ANALYZE <TABLE/INDEX> object_name COMPUTE STATISTICS;

(In SQL Server, use UPDATE STATISTICS <object_name>, where object_name refers to a table or a view.)

For example, to generate statistics for the VENDOR table, you would use the following command:

ANALYZE TABLE VENDOR COMPUTE STATISTICS;

(In SQL Server, use UPDATE STATISTICS VENDOR;.)

When you generate statistics for a table, all related indexes are also analyzed. However, you could generate statistics
for a single index by using the following command:

ANALYZE INDEX VEND_NDX COMPUTE STATISTICS;

In the preceding example, VEND_NDX is the name of the index.

(In SQL Server, use UPDATE STATISTICS <table_name> <index_name>. For example: UPDATE STATISTICS
VENDOR VEND_NDX;.)

Database statistics are stored in the system catalog in specially designated tables. It is common to periodically
regenerate the statistics for database objects, especially those database objects that are subject to frequent change. For
example, if you are the owner of a video store and you have a video rental DBMS, your system will likely use a
RENTAL table to store the daily video rentals. That RENTAL table (and its associated indexes) would be subject to
constant inserts and updates as you record your daily rentals and returns. Therefore, the RENTAL table statistics you
generated last week do not depict an accurate picture of the table as it exists today. The more current the statistics,
the better the chances are for the DBMS to properly select the fastest way to execute a given query.

Now that you know the basic architecture of DBMS processes and memory structures, and the importance and timing
of the database statistics gathered by the DBMS, you are ready to learn how the DBMS processes a SQL query request.

450 C H A P T E R 1 1

11.2 QUERY PROCESSING

What happens at the DBMS server end when the client’s SQL statement is received? In simple terms, the DBMS
processes a query in three phases:

1. Parsing. The DBMS parses the SQL query and chooses the most efficient access/execution plan.

2. Execution. The DBMS executes the SQL query using the chosen execution plan.

3. Fetching. The DBMS fetches the data and sends the result set back to the client.

The processing of SQL DDL statements (such as CREATE TABLE) is different from the processing required by DML
statements. The difference is that a DDL statement actually updates the data dictionary tables or system catalog, while
a DML statement (SELECT, INSERT, UPDATE, and DELETE) mostly manipulates end-user data. Figure 11.2 shows
the general steps required for query processing. Each of the steps will be discussed in the following sections.

FIGURE
11.2

Query processing

Parsing
phase

Fetching
phase

Data files

Select
From ...

Where ...

Data cache

• Syntax check
• Naming check
• Access rights check
• Decompose and analyze
• Generate access plan
• Store access plan in SQL cache

• Execute I/O operations
• Add locks for transaction mgmt
• Retrieve data blocks from data files
• Place data blocks in data cache

• Generate result set

Execution
phase

SQL cache

Access plan

451D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

11.2.1 SQL Parsing Phase

The optimization process includes breaking down—parsing—the query into smaller units and transforming the original
SQL query into a slightly different version of the original SQL code, but one that is fully equivalent and more efficient.
Fully equivalent means that the optimized query results are always the same as the original query. More efficient
means that the optimized query will almost always execute faster than the original query. (Note that it almost always
executes faster because, as explained earlier, many factors affect the performance of a database. Those factors include
the network, the client computer’s resources, and other queries running concurrently in the same database.) To
determine the most efficient way to execute the query, the DBMS may use the database statistics you learned about
earlier.

The SQL parsing activities are performed by the query optimizer, which analyzes the SQL query and finds the most
efficient way to access the data. This process is the most time-consuming phase in query processing. Parsing a SQL
query requires several steps, in which the SQL query is:

� Validated for syntax compliance.

� Validated against the data dictionary to ensure that tables and column names are correct.

� Validated against the data dictionary to ensure that the user has proper access rights.

� Analyzed and decomposed into more atomic components.

� Optimized through transformation into a fully equivalent but more efficient SQL query.

� Prepared for execution by determining the most efficient execution or access plan.

Once the SQL statement is transformed, the DBMS creates what is commonly known as an access or execution plan.
An access plan is the result of parsing a SQL statement; it contains the series of steps a DBMS will use to execute
the query and to return the result set in the most efficient way. First, the DBMS checks to see if an access plan already
exists for the query in the SQL cache. If it does, the DBMS reuses the access plan to save time. If it doesn’t, the
optimizer evaluates various plans and makes decisions about what indexes to use and how to best perform join
operations. The chosen access plan for the query is then placed in the SQL cache and made available for use and
future reuse.

Access plans are DBMS-specific and translate the client’s SQL query into the series of complex I/O operations required
to read the data from the physical data files and generate the result set. Table 11.3 illustrates some I/O operations for
an Oracle RDBMS. Most DBMSs perform similar types of operations when accessing and manipulating data sets.

TABLE
11.3

Sample DBMS Access Plan I/O Operations

OPERATION DESCRIPTION
Table Scan (Full) Reads the entire table sequentially, from the first row to the last row, one row at

a time (slowest)
Table Access (Row ID) Reads a table row directly, using the row ID value (fastest)
Index Scan (Range) Reads the index first to obtain the row IDs and then accesses the table rows

directly (faster than a full table scan)
Index Access (Unique) Used when a table has a unique index in a column
Nested Loop Reads and compares a set of values to another set of values, using a nested loop

style (slow)
Merge Merges two data sets (slow)
Sort Sorts a data set (slow)

In Table 11.3, note that a table access using a row ID is the fastest method. A row ID is a unique identification for every
row saved in permanent storage; it can be used to access the row directly. Conceptually, a row ID is similar to a parking
slip you get when you park your car in an airport parking lot. The parking slip contains the section number and lot
number. Using that information, you can go directly to your car without having to go through every section and lot.

452 C H A P T E R 1 1

11.2.2 SQL Execution Phase

In this phase, all I/O operations indicated in the access plan are executed. When the execution plan is run, the proper
locks—if needed—are acquired for the data to be accessed, and the data are retrieved from the data files and placed
in the DBMSs data cache. All transaction management commands are processed during the parsing and execution
phases of query processing.

11.2.3 SQL Fetching Phase

After the parsing and execution phases are completed, all rows that match the specified condition(s) are retrieved,
sorted, grouped, and/or aggregated (if required). During the fetching phase, the rows of the resulting query result set
are returned to the client. The DBMS might use temporary table space to store temporary data. In this stage, the
database server coordinates the movement of the result set rows from the server cache to the client cache. For
example, a given query result set might contain 9,000 rows; the server would send the first 100 rows to the client and
then wait for the client to request the next set of rows, until the entire result set is sent to the client.

11.2.4 Query Processing Bottlenecks

The main objective of query processing is to execute a given query in the fastest way possible with the least amount
of resources. As you have seen, the execution of a query requires the DBMS to break down the query into a series of
interdependent I/O operations to be executed in a collaborative manner. The more complex a query is, the more
complex the operations are, and the more likely it is that there will be bottlenecks. A query processing bottleneck
is a delay introduced in the processing of an I/O operation that causes the overall system to slow down. In the same
way, the more components a system has, the more interfacing among the components is required, and the more likely
it is that there will be bottlenecks. Within a DBMS, there are five components that typically cause bottlenecks:

� CPU. The CPU processing power of the DBMS should match the system’s expected work load. A high CPU
utilization might indicate that the processor speed is too slow for the amount of work performed. However,
heavy CPU utilization can be caused by other factors, such as a defective component, not enough RAM (the
CPU spends too much time swapping memory blocks), a badly written device driver, or a rogue process. A
CPU bottleneck will affect not only the DBMS but all processes running in the system.

� RAM. The DBMS allocates memory for specific usage, such as data cache and SQL cache. RAM must be
shared among all running processes (operating system, DBMS, and all other running processes). If there is not
enough RAM available, moving data among components that are competing for scarce RAM can create a
bottleneck.

� Hard disk. Another common cause of bottlenecks is hard disk speed and data transfer rates. Current hard disk
storage technology allows for greater storage capacity than in the past; however, hard disk space is used for
more than just storing end-user data. Current operating systems also use the hard disk for virtual memory,
which refers to copying areas of RAM to the hard disk as needed to make room in RAM for more urgent tasks.
Therefore, the greater the hard disk storage space and the faster the data transfer rates, the less the likelihood
of bottlenecks.

� Network. In a database environment, the database server and the clients are connected via a network. All
networks have a limited amount of bandwidth that is shared among all clients. When many network nodes
access the network at the same time, bottlenecks are likely.

� Application code. Not all bottlenecks are caused by limited hardware resources. One of the most common
sources of bottlenecks is badly written application code. No amount of coding will make a poorly designed
database perform better. We should also add: you can throw unlimited resources at a badly written application,
and it will still perform as a badly written application!

Learning how to avoid these bottlenecks and, thus, optimize database performance is the main focus of this chapter.

453D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

11.3 INDEXES AND QUERY OPTIMIZATION

Indexes are crucial in speeding up data access because they facilitate searching, sorting, and using aggregate functions
and even join operations. The improvement in data access speed occurs because an index is an ordered set of values
that contains the index key and pointers. The pointers are the row IDs for the actual table rows. Conceptually, a data
index is similar to a book index. When you use a book index, you look up the word, similar to the index key, which
is accompanied by the page number(s), similar to the pointer(s), which direct you to the appropriate page(s).

An index scan is more efficient than a full table scan because the index data are preordered and the amount of data
is usually much smaller. Therefore, when performing searches, it is almost always better for the DBMS to use the index
to access a table than to scan all rows in a table sequentially. For example, Figure 11.3 shows the index representation
of a CUSTOMER table with 14,786 rows and the index STATE_NDX on the CUS_STATE attribute.

Suppose you submit the following query:

SELECT CUS_NAME, CUS_STATE
FROM CUSTOMER
WHERE CUS_STATE = 'FL';

If there is no index, the DBMS will perform a full table scan, thus reading all 14,786 customer rows. Assuming that the
index STATE_NDX is created (and ANALYZED), the DBMS will automatically use the index to locate the first customer
with a state equal to 'FL' and then proceed to read all subsequent CUSTOMER rows, using the row IDs in the index as a
guide. Assuming that only five rows meet the condition CUS_STATE = 'FL', there are 5 accesses to the index and 5
accesses to the data, for a total of 10 I/O accesses. The DBMS would save approximately 14,776 I/O requests for
customer rows that do not meet the criteria. That’s a lot of CPU cycles!

If indexes are so important, why not index every column in every table? It’s not practical to do so. Indexing every
column in every table taxes the DBMS too much in terms of index-maintenance processing, especially if the table has
many attributes, has many rows, and/or requires many inserts, updates, and/or deletes.

One measure that determines the need for an index is the data sparsity of the column you want to index. Data
sparsity refers to the number of different values a column could possibly have. For example, a STU_SEX column in
a STUDENT table can have only two possible values, M or F; therefore, that column is said to have low sparsity. In

FIGURE
11.3

Index representation for the CUSTOMER table

STATE_NDX INDEX

CUSTOMER TABLE
(14,786 rows)

454 C H A P T E R 1 1

contrast, the STU_DOB column that stores the student date of birth can have many different date values; therefore,
that column is said to have high sparsity. Knowing the sparsity helps you decide whether the use of an index is
appropriate. For example, when you perform a search in a column with low sparsity, you are likely to read a high
percentage of the table rows anyway; therefore, index processing might be unnecessary work. In Section 11.5, you
learn how to determine when an index is recommended.

Most DBMSs implement indexes using one of the following data structures:

� Hash index. A hash index is based on an ordered list of hash values. A hash algorithm is used to create a hash
value from a key column. This value points to an entry in a hash table, which in turn points to the actual
location of the data row. This type of index is good for simple and fast lookup operations based on equality
conditions, for example, LNAME=“Scott” and FNAME=“Shannon”.

� B-tree index. The B-tree index is an ordered data structure organized as an upside-down tree. (See Figure
11.4.) The index tree is stored separate from the data. The lower-level leaves of the B-tree index contain the
pointers to the actual data rows. B-tree indexes are “self-balanced,” which means that it takes approximately
the same amount of time to access any given row in the index. This is the default and most common type of
index used in databases. The B-tree index is used mainly in tables in which column values repeat a relative
smaller number of times.

� Bitmap index. A bitmap index uses a bit array (0s and 1s) to represent the existence of a value or condition.
They are used mostly in data warehouse applications in tables with a large number of rows in which a small
number of column values repeat many times (See Figure 11.4.) Bitmap indexes tend to use less space than
B-tree indexes because they use bits (instead of bytes) to store their data.

Using the above index characteristics, a database designer can determine the best type of index to use. For example,
assume a CUSTOMER table with several thousand rows. The CUSTOMER table has two columns that are used
extensively for query purposes: CUS_LNAME, which represents a customer’s last name, and REGION_CODE, which
can have one of four values (NE, NW, SW, and, SE). Based on this information, you could conclude that:

� Because the CUS_LNAME column contains many different values that repeat a relatively small number of
times (compared to the total number of rows in the table), a B-tree index will be used.

� Because the REGION_CODE column contains only a few different values that repeat a relatively large number
of times (compared to the total number of rows in the table), a bitmap index will be used. Figure 11.4 shows
the B-tree and bitmap representations for a CUSTOMER table used in the previous discussion.

Current-generation DBMSs are intelligent enough to determine the best type of index to use under certain
circumstances (provided that the DBMS has updated database statistics). Whatever the index chosen, the DBMS
determines the best plan to execute a given query. The next section guides you through a simplified example of the
type of choices that the query optimizer must perform.

455D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

11.4 OPTIMIZER CHOICES

Query optimization is the central activity during the parsing phase in query processing. In this phase, the DBMS must
choose what indexes to use, how to perform join operations, which table to use first, and so on. Each DBMS has its
own algorithms for determining the most efficient way to access the data. The query optimizer can operate in one of
two modes:

� A rule-based optimizer uses preset rules and points to determine the best approach to execute a query. The
rules assign a “fixed cost” to each SQL operation; the costs are then added to yield the cost of the execution
plan. For example, a full table scan has a set cost of 10, while a table access by row ID has a set cost of 3.

� A cost-based optimizer uses sophisticated algorithms based on the statistics about the objects being accessed
to determine the best approach to execute a query. In this case, the optimizer process adds up the processing
cost, the I/O costs, and the resource costs (RAM and temporary space) to come up with the total cost of a given
execution plan.

The optimizer’s objective is to find alternative ways to execute a query—to evaluate the “cost” of each alternative and
then to choose the one with the lowest cost. To understand the function of the query optimizer, let’s use a simple

FIGURE
11.4

B-tree and bitmap index representation

456 C H A P T E R 1 1

example. Assume that you want to list all products provided by a vendor based in Florida. To acquire that information,
you could write the following query:

SELECT P_CODE, P_DESCRIPT, P_PRICE, V_NAME, V_STATE
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE

AND VENDOR.V_STATE = 'FL';

Furthermore, let’s assume that the database statistics indicate that:

� The PRODUCT table has 7,000 rows.

� The VENDOR table has 300 rows.

� Ten vendors are located in Florida.

� One thousand products come from vendors in Florida.

It’s important to point out that only the first two items are available to the optimizer. The second two items are assumed
to illustrate the choices that the optimizer must make. Armed with the information in the first two items, the optimizer
would try to find the most efficient way to access the data. The primary factor in determining the most efficient access
plan is the I/O cost. (Remember, the DBMS always tries to minimize I/O operations.) Table 11.4 shows two sample
access plans for the previous query and their respective I/O costs.

TABLE
11.4

Comparing Access Plans and I/O Costs

PLAN STEP OPERATION I/O
OPERATIONS

I/O COST RESULTING
SET ROWS

TOTAL I/O
COST

A A1 Cartesian product
(PRODUCT, VENDOR)

7,000 + 300 7,300 2,100,000 7,300

A2 Select rows in A1 with
matching vendor codes

2,100,000 2,100,000 7,000 2,107,300

A3 Select rows in A2 with
V_STATE = 'FL'

7,000 7,000 1,000 2,114,300

B B1 Select rows in VENDOR
with V_STATE = 'FL'

300 300 10 300

B2 Cartesian Product
(PRODUCT, B1)

7,000 + 10 7,010 70,000 7,310

B3 Select rows in B2 with
matching vendor codes

70,000 70,000 1,000 77,310

To make the example easier to understand, the I/O Operations and I/O Cost columns in Table 11.4 estimate only the
number of I/O disk reads the DBMS must perform. For simplicity’s sake, it is assumed that there are no indexes and
that each row read has an I/O cost of 1. For example, in step A1, the DBMS must calculate the Cartesian product
of PRODUCT and VENDOR. To do that, the DBMS must read all rows from PRODUCT (7,000) and all rows from
VENDOR (300), yielding a total of 7,300 I/O operations. The same computation is done in all steps. In Table 11.4,
you can see how plan A has a total I/O cost that is almost 30 times higher than plan B. In this case, the optimizer
will choose plan B to execute the SQL.

Note

Not all DBMSs optimize SQL queries the same way. As a matter of fact, Oracle parses queries differently than
what is described in several sections in this chapter. Always read the documentation to examine the optimiza-
tion requirements for your DBMS implementation.

457D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

Given the right conditions, some queries could be answered entirely by using only an index. For example, assume that
you are using the PRODUCT table and the index P_QOH_NDX in the P_QOH attribute. Then a query such as
SELECT MIN(P_QOH) FROM PRODUCT could be resolved by reading only the first entry in the P_QOH_NDX index,
without the need to access any of the data blocks for the PRODUCT table. (Remember that the index defaults to
ascending order.)

You learned in Section 11.3 that columns with low sparsity are not good candidates for index creation. However, there
are cases where an index in a low-sparsity column would be helpful. For example, assume that the EMPLOYEE table
has 122,483 rows. If you want to find out how many female employees there are in the company, you would write
a query such as:

SELECT COUNT(EMP_SEX) FROM EMPLOYEE WHERE EMP_SEX = 'F';

If you do not have an index for the EMP_SEX column, the query would have to perform a full table scan to read all
EMPLOYEE rows—and each full row includes attributes you do not need. However, if you have an index on EMP_SEX,
the query can be answered by reading only the index data, without the need to access the employee data at all.

11.4.1 Using Hints to Affect Optimizer Choices

Although the optimizer generally performs very well under most circumstances, in some instances the optimizer might
not choose the best execution plan. Remember, the optimizer makes decisions based on the existing statistics. If the
statistics are old, the optimizer might not do a good job in selecting the best execution plan. Even with current statistics,
the optimizer’s choice might not be the most efficient one. There are some occasions when the end user would like
to change the optimizer mode for the current SQL statement. In order to do that, you need to use hints. Optimizer
hints are special instructions for the optimizer that are embedded inside the SQL command text. Table 11.5
summarizes a few of the most common optimizer hints used in standard SQL.

TABLE
11.5

Optimizer Hints

HINT USAGE
ALL_ROWS Instructs the optimizer to minimize the overall execution time, that is, to minimize the time it

takes to return all rows in the query result set. This hint is generally used for batch mode
processes. For example:
SELECT /*+ ALL_ROWS */ *
FROM PRODUCT
WHERE P_QOH < 10;

FIRST_ROWS Instructs the optimizer to minimize the time it takes to process the first set of rows, that is, to
minimize the time it takes to return only the first set of rows in the query result set. This hint
is generally used for interactive mode processes. For example:
SELECT /*+ FIRST_ROWS */ *
FROM PRODUCT
WHERE P_QOH < 10;

INDEX(name) Forces the optimizer to use the P_QOH_NDX index to process this query. For example:
SELECT /*+ INDEX(P_QOH_NDX) */ *
FROM PRODUCT
WHERE P_QOH < 10;

Now that you are familiar with the way the DBMS processes SQL queries, let’s turn our attention to some general SQL
coding recommendations to facilitate the work of the query optimizer.

458 C H A P T E R 1 1

11.5 SQL PERFORMANCE TUNING

SQL performance tuning is evaluated from the client perspective. Therefore, the goal is to illustrate some common
practices used to write efficient SQL code. A few words of caution are appropriate:

� Most current-generation relational DBMSs perform automatic query optimization at the server end.

� Most SQL performance optimization techniques are DBMS-specific and, therefore, are rarely portable, even
across different versions of the same DBMS. Part of the reason for this behavior is the constant advancement
in database technologies.

Does this mean that you should not worry about how a SQL query is written because the DBMS will always optimize
it? No, because there is considerable room for improvement. (The DBMS uses general optimization techniques, rather
than focusing on specific techniques dictated by the special circumstances of the query execution.) A poorly written
SQL query can, and usually will, bring the database system to its knees from a performance point of view. The
majority of current database performance problems are related to poorly written SQL code. Therefore, although a
DBMS provides general optimizing services, a carefully written query almost always outperforms a poorly written one.

Although SQL data manipulation statements include many different commands (such as INSERT, UPDATE, DELETE,
and SELECT), most recommendations in this section are related to the use of the SELECT statement, and in particular,
the use of indexes and how to write conditional expressions.

11.5.1 Index Selectivity

Indexes are the most important technique used in SQL performance optimization. The key is to know when an index
is used. As a general rule, indexes are likely to be used:

� When an indexed column appears by itself in a search criteria of a WHERE or HAVING clause.

� When an indexed column appears by itself in a GROUP BY or ORDER BY clause.

� When a MAX or MIN function is applied to an indexed column.

� When the data sparsity on the indexed column is high.

Indexes are very useful when you want to select a small subset of rows from a large table based on a given condition.
If an index exists for the column used in the selection, the DBMS may choose to use it. The objective is to create
indexes with high selectivity. Index selectivity is a measure of how likely an index will be used in query processing.
Here are some general guidelines for creating and using indexes:

� Create indexes for each single attribute used in a WHERE, HAVING, ORDER BY, or GROUP BY clause.
If you create indexes in all single attributes used in search conditions, the DBMS will access the table using
an index scan instead of a full table scan. For example, if you have an index for P_PRICE, the condition
P_PRICE > 10.00 can be solved by accessing the index instead of sequentially scanning all table rows and
evaluating P_PRICE for each row. Indexes are also used in join expressions, such as in CUSTOMER.CUS_
CODE = INVOICE.CUS_CODE.

� Do not use indexes in small tables or tables with low sparsity. Remember, small tables and low-sparsity
tables are not the same thing. A search condition in a table with low sparsity may return a high percentage of
table rows anyway, making the index operation too costly and making the full table scan a viable option. Using
the same logic, do not create indexes for tables with few rows and few attributes—unless you must ensure the
existence of unique values in a column.

� Declare primary and foreign keys so the optimizer can use the indexes in join operations. All natural joins
and old-style joins will benefit if you declare primary keys and foreign keys because the optimizer will use the
available indexes at join time. (The declaration of a PK or FK will automatically create an index for the declared
column.) Also, for the same reason, it is better to write joins using the SQL JOIN syntax. (See Chapter 8,
Advanced SQL.)

459D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

� Declare indexes in join columns other than PK or FK. If you do join operations on columns other than the
primary and foreign keys, you might be better off declaring indexes in those columns.

You cannot always use an index to improve performance. For example, using the data shown in Table 11.6 in the next
section, the creation of an index for P_MIN will not help the search condition P_QOH > P_MIN * 1.10. The reason
is that in some DBMSs, indexes are ignored when you use functions in the table attributes. However, major
databases (such as Oracle, SQL Server, and DB2) now support function-based indexes. A function-based index is
an index based on a specific SQL function or expression. For example, you could create an index on YEAR(INV_
DATE). Function-based indexes are especially useful when dealing with derived attributes. For example, you could
create an index on EMP_SALARY + EMP_COMMISSION.

How many indexes should you create? It bears repeating that you should not create an index for every column in a
table. Too many indexes will slow down INSERT, UPDATE, and DELETE operations, especially if the table contains
many thousands of rows. Furthermore, some query optimizers will choose only one index to be the driving index for
a query, even if your query uses conditions in many different indexed columns. Which index does the optimizer use?
If you use the cost-based optimizer, the answer will change with time as new rows are added to or deleted from the
tables. In any case, you should create indexes in all search columns and then let the optimizer choose. It’s important
to constantly evaluate the index usage—monitor, test, evaluate, and improve it if performance is not adequate.

11.5.2 Conditional Expressions

A conditional expression is normally placed within the WHERE or HAVING clauses of a SQL statement. Also known
as conditional criteria, a conditional expression restricts the output of a query to only the rows matching the conditional
criteria. Generally, the conditional criteria have the form shown in Table 11.6.

TABLE
11.6

Conditional Criteria

OPERAND1 CONDITIONAL OPERATOR OPERAND2
P_PRICE > 10.00
V_STATE = FL
V_CONTACT LIKE Smith%
P_QOH > P_MIN * 1.10

In Table 11.6, note that an operand can be:

� A simple column name such as P_PRICE or V_STATE.

� A literal or a constant such as the value 10.00 or the text 'FL'.

� An expression such as P_MIN * 1.10.

Most of the query optimization techniques mentioned next are designed to make the optimizer’s work easier. Let’s
examine some common practices used to write efficient conditional expressions in SQL code.

� Use simple columns or literals as operands in a conditional expression—avoid the use of conditional
expressions with functions whenever possible. Comparing the contents of a single column to a literal is faster
than comparing to expressions. For example, P_PRICE > 10.00 is faster than P_QOH > P_MIN * 1.10
because the DBMS must evaluate the P_MIN * 1.10 expression first. The use of functions in expressions also
adds to the total query execution time. For example, if your condition is UPPER (V_NAME) = 'JIM', try to use
V_NAME = 'Jim' if all names in the V_NAME column are stored with proper capitalization.

� Note that numeric field comparisons are faster than character, date, and NULL comparisons. In search
conditions, comparing a numeric attribute to a numeric literal is faster than comparing a character attribute to
a character literal. In general, the CPU handles numeric comparisons (integer and decimal) faster than

460 C H A P T E R 1 1

character and date comparisons. Because indexes do not store references to null values, NULL conditions
involve additional processing, and therefore, tend to be the slowest of all conditional operands.

� Note that equality comparisons are faster than inequality comparisons. As a general rule, equality
comparisons are processed faster than inequality comparisons. For example, P_PRICE = 10.00 is processed
faster because the DBMS can do a direct search using the index in the column. If there are no exact matches,
the condition is evaluated as false. However, if you use an inequality symbol (>, >=, <, <=), the DBMS must
perform additional processing to complete the request. The reason is that there will almost always be more
“greater than” or “less than” values than exactly “equal” values in the index. With the exception of NULL, the
slowest of all comparison operators is LIKE with wildcard symbols, as in V_CONTACT LIKE “%glo%”. Also,
using the “not equal” symbol (<>) yields slower searches, especially when the sparsity of the data is high, that
is, when there are many more different values than there are equal values.

� Whenever possible, transform conditional expressions to use literals. For example, if your condition is
P_PRICE − 10 = 7, change it to read P_PRICE = 17. Also, if you have a composite condition such as:

P_QOH < P_MIN AND P_MIN = P_REORDER AND P_QOH = 10

change it to read:

P_QOH = 10 AND P_MIN = P_REORDER AND P_MIN > 10

� When using multiple conditional expressions, write the equality conditions first. Note that this was done
in the previous example. Remember, equality conditions are faster to process than inequality conditions.
Although most RDBMSs will automatically do this for you, paying attention to this detail lightens the load for
the query optimizer. The optimizer won’t have to do what you have already done.

� If you use multiple AND conditions, write the condition most likely to be false first. If you use this
technique, the DBMS will stop evaluating the rest of the conditions as soon as it finds a conditional expression
that is evaluated as false. Remember, for multiple AND conditions to be found true, all conditions must be
evaluated as true. If one of the conditions evaluates to false, the whole set of conditions will be evaluated as
false. If you use this technique, the DBMS won’t waste time unnecessarily evaluating additional conditions.
Naturally, the use of this technique implies an implicit knowledge of the sparsity of the data set. For example,
look at the following condition list:

P_PRICE > 10 AND V_STATE = 'FL'

If you know that only a few vendors are located in Florida, you could rewrite this condition as:

V_STATE = 'FL' AND P_PRICE > 10

� When using multiple OR conditions, put the condition most likely to be true first. By doing this, the DBMS
will stop evaluating the remaining conditions as soon as it finds a conditional expression that is evaluated as
true. Remember, for multiple OR conditions to evaluate to true, only one of the conditions must be evaluated
as true.

� Whenever possible, try to avoid the use of the NOT logical operator. It is best to transform a SQL
expression containing a NOT logical operator into an equivalent expression. For example:

NOT (P_PRICE > 10.00) can be written as P_PRICE <= 10.00.

Also, NOT (EMP_SEX = 'M') can be written as EMP_SEX = 'F'.

Note

Oracle does not evaluate queries as described here. Instead, Oracle evaluates conditions from last to first.

461D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

11.6 QUERY FORMULATION

Queries are usually written to answer questions. For example, if an end user gives you a sample output and tells you
to match that output format, you must write the corresponding SQL. To get the job done, you must carefully evaluate
what columns, tables, and computations are required to generate the desired output. And to do that, you must have
a good understanding of the database environment and of the database that will be the focus of your SQL code.

This section focuses on SELECT queries because they are the queries you will find in most applications. To formulate
a query, you would normally follow the steps outlined below.

1. Identify what columns and computations are required. The first step is to clearly determine what data values
you want to return. Do you want to return just the names and addresses, or do you also want to include some
computations? Remember that all columns in the SELECT statement should return single values.

a. Do you need simple expressions? That is, do you need to multiply the price times the quantity on hand to
generate the total inventory cost? You might need some single attribute functions such as DATE(),
SYSDATE(), or ROUND().

b. Do you need aggregate functions? If you need to compute the total sales by product, you should use a
GROUP BY clause. In some cases, you might need to use a subquery.

c. Determine the granularity of the raw data required for your output. Sometimes, you might need to
summarize data that are not readily available on any table. In such cases, you might consider breaking the
query into multiple subqueries and storing those subqueries as views. Then you could create a top-level
query that joins those views and generates the final output.

2. Identify the source tables. Once you know what columns are required, you can determine the source tables
used in the query. Some attributes appear in more than one table. In those cases, try to use the least number
of tables in your query to minimize the number of join operations.

3. Determine how to join the tables. Once you know what tables you need in your query statement, you must
properly identify how to join the tables. In most cases, you will use some type of natural join, but in some
instances, you might need to use an outer join.

4. Determine what selection criteria is needed. Most queries involve some type of selection criteria. In this case,
you must determine what operands and operators are needed in your criteria. Ensure that the data type and
granularity of the data in the comparison criteria are correct.

a. Simple comparison. In most cases, you will be comparing single values. For example, P_PRICE > 10.

b. Single value to multiple values. If you are comparing a single value to multiple values, you might need
to use an IN comparison operator. For example, V_STATE IN ('FL', 'TN', 'GA').

c. Nested comparisons. In other cases, you might need to have some nested selection criteria involving
subqueries. For example: P_PRICE >= (SELECT AVG(P_PRICE) FROM PRODUCT).

d. Grouped data selection. On other occasions, the selection criteria might apply not to the raw data but to
the aggregate data. In those cases, you need to use the HAVING clause.

5. Determine in what order to display the output. Finally, the required output might be ordered by one or more
columns. In those cases, you need to use the ORDER BY clause. Remember that the ORDER BY clause is one
of the most resource-intensive operations for the DBMS.

462 C H A P T E R 1 1

11.7 DBMS PERFORMANCE TUNING

DBMS performance tuning includes global tasks such as managing the DBMS processes in primary memory (allocating
memory for caching purposes) and managing the structures in physical storage (allocating space for the data files).

Fine-tuning the performance of the DBMS also includes applying several practices examined in the previous section.
For example, the DBA must work with developers to ensure that the queries perform as expected—creating the
indexes to speed up query response time and generating the database statistics required by cost-based optimizers.

DBMS performance tuning at the server end focuses on setting the parameters used for:

� Data cache. The data cache size must be set large enough to permit as many data requests as possible to be
serviced from the cache. Each DBMS has settings that control the size of the data cache; some DBMSs might
require a restart. This cache is shared among all database users. The majority of primary memory resources
will be allocated to the data cache.

� SQL cache. The SQL cache stores the most recently executed SQL statements (after the SQL statements have
been parsed by the optimizer). Generally, if you have an application with multiple users accessing a database,
the same query will likely be submitted by many different users. In those cases, the DBMS will parse the query
only once and execute it many times, using the same access plan. In that way, the second and subsequent SQL
requests for the same query are served from the SQL cache, skipping the parsing phase.

� Sort cache. The sort cache is used as a temporary storage area for ORDER BY or GROUP BY operations,
as well as for index-creation functions.

� Optimizer mode. Most DBMSs operate in one of two optimization modes: cost-based or rule-based. Others
automatically determine the optimization mode based on whether database statistics are available. For
example, the DBA is responsible for generating the database statistics that are used by the cost-based
optimizer. If the statistics are not available, the DBMS uses a rule-based optimizer.

Managing the physical storage details of the data files also plays an important role in DBMS performance tuning.
Following are some general recommendations for physical storage of databases:

� Use RAID (redundant array of independent disks) to provide balance between performance and fault tolerance.
RAID systems use multiple disks to create virtual disks (storage volumes) formed by several individual
disks. RAID systems provide performance improvement and fault tolerance. Table 11.7 shows the most
common RAID configurations.

TABLE
11.7

Common RAID Levels

RAID
LEVEL

DESCRIPTION

0 The data blocks are spread over separate drives. Also known as striped array. Provides increased perfor-
mance but no fault tolerance. (Fault tolerance means that in case of failure, data could be reconstructed
and retrieved.) Requires a minimum of two drives.

1 The same data blocks are written (duplicated) to separate drives. Also referred to as mirroring or
duplexing. Provides increased read performance and fault tolerance via data redundancy. Requires a
minimum of two drives.

3 The data are striped across separate drives, and parity data are computed and stored in a dedicated
drive. (Parity data are specially generated data that permit the reconstruction of corrupted or missing
data.) Provides good read performance and fault tolerance via parity data. Requires a minimum of
three drives.

5 The data and the parity are striped across separate drives. Provides good read performance and fault
tolerance via parity data. Requires a minimum of three drives.

463D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

� Minimize disk contention. Use multiple, independent storage volumes with independent spindles (a spindle is
a rotating disk) to minimize hard disk cycles. Remember, a database is composed of many table spaces, each
with a particular function. In turn, each table space is composed of several data files in which the data are
actually stored. A database should have at least the following table spaces:

- System table space. This is used to store the data dictionary tables. It is the most frequently accessed table
space and should be stored in its own volume.

- User data table space. This is used to store end-user data. You should create as many user data table spaces
and data files as are required to balance performance and usability. For example, you can create and assign
a different user data table space for each application and/or for each distinct group of users; but this is not
necessary for each user.

- Index table space. This is used to store indexes. You can create and assign a different index table space for
each application and/or for each group of users. The index table space data files should be stored on a
storage volume that is separate from user data files or system data files.

- Temporary table space. This is used as a temporary storage area for merge, sort, or set aggregate
operations. You can create and assign a different temporary table space for each application and/or for
each group of users.

- Rollback segment table space. This is used for transaction-recovery purposes.

� Put high-usage tables in their own table spaces. By doing this, the database minimizes conflict with other tables.

� Assign separate data files in separate storage volumes for the indexes, system, and high-usage tables. This
ensures that index operations will not conflict with end-user data or data dictionary table access operations.
Another advantage of this approach is that you can use different disk block sizes in different volumes. For
example, the data volume can use a 16K block size, while the index volume can use an 8K block size.
Remember that the index record size is generally smaller, and by changing the block size you will be reducing
contention and/or minimizing I/O operations. This is very important; many database administrators overlook
indexes as a source of contention. By using separate storage volumes and different block sizes, the I/O
operations on data and indexes will happen asynchronously (at different times), and more importantly, the
likelihood of write operations blocking read operations is reduced (as page locks tend to lock less records).

� Take advantage of the various table storage organizations available in the database. For example, in Oracle
consider the use of index organized tables (IOT); in SQL Server consider clustered index tables. An index
organized table (or clustered index table) is a table that stores the end-user data and the index data in
consecutive locations on permanent storage. This type of storage organization provides a performance
advantage to tables that are commonly accessed through a given index order. This is due to the fact that the
index contains the index key as well as the data rows, and, therefore, the DBMS tends to perform fewer I/O
operations.

� Partition tables based on usage. Some RDBMSs support the horizontal partitioning of tables based on
attributes. (See Chapter 12, Distributed Database Management Systems.) By doing so, a single SQL request
could be processed by multiple data processors. Put the table partitions closest to where they are used the most.

� Use denormalized tables where appropriate. Another performance-improving technique involves taking a table
from a higher normal form to a lower normal form—typically, from third to second normal form. This
technique adds data duplication, but it minimizes join operations. (Denormalization was discussed in Chapter 6,
Normalization of Database Tables.)

� Store computed and aggregate attributes in tables. In short, use derived attributes in your tables. For example,
you might add the invoice subtotal, the amount of tax, and the total in the INVOICE table. Using derived
attributes minimizes computations in queries and join operations.

464 C H A P T E R 1 1

11.8 QUERY OPTIMIZATION EXAMPLE

Now that you have learned the basis of query optimization, you are ready to test your new knowledge. Let’s use a
simple example to illustrate how the query optimizer works and how you can help it do its work. The example is based
on the QOVENDOR and QOPRODUCT tables. Those tables are similar to the ones you used in previous chapters.
However, the QO prefix is used for the table name to ensure that you do not overwrite previous tables.

To perform this query optimization illustration, you will be using the Oracle SQL*Plus interface. Some preliminary
work must be done before you can start testing query optimization. The following steps will guide you through this
preliminary work:

1. Log in to Oracle SQL*Plus using the username and password provided by your instructor.

2. Create a fresh set of tables, using the QRYOPTDATA.SQL script file located on the Premium Website for this
book. This step is necessary so that Oracle has a new set of tables and the new tables contain no statistics. At
the SQL> prompt, type:

@path\QRYOPTDATA.SQL

where path is the location of the file in your computer.

3. Create the PLAN_TABLE. The PLAN_TABLE is a special table used by Oracle to store the access plan
information for a given query. End users can then query the PLAN_TABLE to see how Oracle will execute the
query. To create the PLAN_TABLE, run the UTLXPLAN.SQL script file located in the RDBMS\ADMIN folder
of your Oracle RDBMS installation. The UTLXPLAN.SQL script file is also found in the Premium Website for
this book. At the SQL prompt, type:

@path\UTLXPLAN.SQL

You use the EXPLAIN PLAN command to store the execution plan of a SQL query in the PLAN_TABLE. Then, you
use the SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY) command to display the access plan for a given SQL
statement.

To see the access plan used by the DBMS to execute your query, use the EXPLAIN PLAN and SELECT statements,
as shown in Figure 11.5. Note that the first SQL statement in Figure 11.5 generates the statistics for the QOVENDOR
table. Also note that the initial access plan in Figure 11.5 uses a full table scan on the QOVENDOR table and that the
cost of the plan is 4.

O n l i n e C o n t e n t

The databases and scripts used in this chapter can be found in the Premium Website for this book.

Note

Oracle 11g automatically defaults to cost-based optimization without giving you a choice. Oracle versions prior
to Oracle 10g default to the Choose optimization mode, which implies that the DBMS will choose either
rule-based or cost-based optimization, depending on the availability of table statistics.

465D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

Now let’s create an index on V_AREACODE (note that V_AREACODE is used in the ORDER BY clause) and see how
that affects the access plan generated by the cost-based optimizer. The results are shown in Figure 11.6.

FIGURE
11.5

Initial explain plan

466 C H A P T E R 1 1

C o p y r i g h t 2 0 1 0 C e n g a g e L e a r n i n g . A l l R i g h t s R e s e r v e d . M

In Figure 11.6, note that the new access plan cuts the cost of executing the query by half! Also note that this new plan
scans the QOV_NDX1 index and accesses the QOVENDOR rows, using the index row ID. (Remember that access by
row ID is one of the fastest access methods.) In this case, the creation of the QOV_NDX1 index had a positive impact
on overall query optimization results.

At other times, indexes do not necessarily help in query optimization. This is the case when you have indexes on small
tables or when the query accesses a great percentage of table rows anyway. Let’s see what happens when you create
an index on V_NAME. The new access plan is shown in Figure 11.7. (Note that V_NAME is used on the WHERE
clause as a conditional expression operand.)

FIGURE
11.6

Explain plan after index on V_AREACODE

467D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

As you can see in Figure 11.7, creation of the second index did not help the query optimization. However, there are
occasions when an index might be used by the optimizer, but it is not executed because of the way in which the query
is written. For example, Figure 11.8 shows the access plan for a different query using the V_NAME column.

FIGURE
11.7

Explain plan after index on V_NAME

468 C H A P T E R 1 1

In Figure 11.8, note that the access plan for this new query uses the QOV_NDX2 index on the V_NAME column.
What would happen if you wrote the same query, using the UPPER function on V_NAME? The results of that action
are illustrated in Figure 11.9.

FIGURE
11.8

Access plan using index on V_NAME

469D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

As Figure 11.9 shows, the use of a function on an indexed column caused the DBMS to perform additional operations
that increased the cost of the query. Note that the same query might produce different costs if your tables contain many
more rows and if the index sparsity is different.

Now let’s use the table QOPRODUCT to demonstrate how an index can help when aggregate function queries are
being run. For example, Figure 11.10 shows the access plan for a SELECT statement using the MAX(P_PRICE)
aggregate function. Note that this plan uses a full table scan with a total cost of 3.

FIGURE
11.9

Access plan using functions on indexed columns

470 C H A P T E R 1 1

A cost of 3 is very low already, but could you improve it? Yes, you could improve the previous query performance by
creating an index on P_PRICE. Figure 11.11 shows how the plan cost is reduced by two-thirds after the index is
created and the QOPRODUCT table is analyzed. Also note that the second version of the access plan uses only the
index QOP_NDX2 to answer the query; the QOPRODUCT table is never accessed.

FIGURE
11.10

First explain plan: aggregate function on a non-indexed column

471D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

Although the few examples in this section show how important proper index selection is for query optimization, you
also saw examples in which index creation does not improve query performance. As a DBA, you should be aware that
the main goal is to optimize overall database performance—not just for a single query but for all requests and query
types. Most database systems provide advanced graphical tools for performance monitoring and testing. For example,
Figure 11.12 shows the graphical representation of the access plan using the Oracle 9i graphical tools. (Oracle 11g
does not include this interface.)

FIGURE
11.11

Second explain plan: aggregate function on an indexed column

472 C H A P T E R 1 1

FIGURE
11.12

Oracle 9i tools for query optimization

473D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

S u m m a r y

◗ Database performance tuning refers to a set of activities and procedures designed to ensure that an end-user query
is processed by the DBMS in the least amount of time.

◗ SQL performance tuning refers to the activities on the client side that are designed to generate SQL code that
returns the correct answer in the least amount of time, using the minimum amount of resources at the server end.

◗ DBMS performance tuning refers to activities on the server side that are oriented to ensure that the DBMS is properly
configured to respond to clients’ requests in the fastest way possible while making optimum use of existing resources.

◗ The DBMS architecture is represented by the many processes and structures (in memory and in permanent storage)
used to manage a database.

◗ Database statistics refers to a number of measurements gathered by the DBMS that describe a snapshot of the
database objects’ characteristics. The DBMS gathers statistics about objects such as tables, indexes, and available
resources such as number of processors used, processor speed, and temporary space available. The DBMS uses
the statistics to make critical decisions about improving the query processing efficiency.

◗ DBMSs process queries in three phases:

� Parsing. The DBMS parses the SQL query and chooses the most efficient access/execution plan.

� Execution. The DBMS executes the SQL query, using the chosen execution plan.

� Fetching. The DBMS fetches the data and sends the result set back to the client.

◗ Indexes are crucial in the process that speeds up data access. Indexes facilitate searching, sorting, and using
aggregate functions and join operations. The improvement in data access speed occurs because an index is an
ordered set of values that contains the index key and pointers. Data sparsity refers to the number of different values
a column could possibly have. Indexes are recommended in high-sparsity columns used in search conditions.

◗ During query optimization, the DBMS must choose what indexes to use, how to perform join operations, which
table to use first, and so on. Each DBMS has its own algorithms for determining the most efficient way to access
the data. The two most common approaches are rule-based and cost-based optimization.

� A rule-based optimizer uses preset rules and points to determine the best approach to execute a query. The rules
assign a “fixed cost” to each SQL operation; the costs are then added to yield the cost of the execution plan.

� A cost-based optimizer uses sophisticated algorithms based on the statistics about the objects being accessed
to determine the best approach to execute a query. In this case, the optimizer process adds up the processing
cost, the I/O costs, and the resource costs (RAM and temporary space) to come up with the total cost of a
given execution plan.

◗ Hints are used to change the optimizer mode for the current SQL statement. Hints are special instructions for the
optimizer that are embedded inside the SQL command text.

◗ SQL performance tuning deals with writing queries that make good use of the statistics. In particular, queries should
make good use of indexes. Indexes are very useful when you want to select a small subset of rows from a large table
based on a condition. When an index exists for the column used in the selection, the DBMS may choose to use
it. The objective is to create indexes with high selectivity. Index selectivity is a measure of how likely an index will
be used in query processing. It is also important to write conditional statements using some common principles.

◗ Query formulation deals with how to translate business questions into specific SQL code to generate the required
results. To do this, you must carefully evaluate what columns, tables, and computations are required to generate the
desired output.

◗ DBMS performance tuning includes tasks such as managing the DBMS processes in primary memory (allocating
memory for caching purposes) and managing the structures in physical storage (allocating space for the data files).

474 C H A P T E R 1 1

K e y T e r m s

access plan, 452

bitmap index, 455

b-tree index, 455

buffer cache, 448

clustered index table, 464

cost-based optimizer, 456

database performance tuning, 446

database statistics, 449

data cache, 448

data files, 448

data sparsity, 454

DBMS performance tuning, 447

extends, 448

file group, 448

function-based index, 460

hash index, 455

index organized table, 464

index selectivity, 459

input/output (I/O) request, 449

optimizer hints, 458

procedure cache, 448

query optimizer, 452

query processing bottleneck, 453

RAID, 463

rule-based optimizer, 456

SQL cache, 448

SQL performance tuning, 447

table space, 448

R e v i e w Q u e s t i o n s

1. What is SQL performance tuning?

2. What is database performance tuning?

3. What is the focus of most performance-tuning activities, and why does that focus exist?

4. What are database statistics, and why are they important?

5. How are database statistics obtained?

6. What database statistics measurements are typical of tables, indexes, and resources?

7. How is the processing of SQL DDL statements (such as CREATE TABLE) different from the processing required
by DML statements?

8. In simple terms, the DBMS processes query in three phases. What are those phases, and what is accomplished
in each phase?

9. If indexes are so important, why not index every column in every table? (Include a brief discussion of the role
played by data sparsity.)

10. What is the difference between a rule-based optimizer and a cost-based optimizer?

11. What are optimizer hints, and how are they used?

12. What are some general guidelines for creating and using indexes?

13. Most query optimization techniques are designed to make the optimizer’s work easier. What factors should you
keep in mind if you intend to write conditional expressions in SQL code?

14. What recommendations would you make for managing the data files in a DBMS with many tables and indexes?

15. What does RAID stand for, and what are some commonly used RAID levels?

O n l i n e C o n t e n t

Answers to selected ReviewQuestions and Problems for this chapter are contained in the PremiumWebsite for
this book.

475D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

P r o b l e m s

Problems 1 and 2 are based on the following query:

SELECT EMP_LNAME, EMP_FNAME, EMP_AREACODE, EMP_SEX
FROM EMPLOYEE
WHERE EMP_SEX = 'F' AND EMP_AREACODE = '615'
ORDER BY EMP_LNAME, EMP_FNAME;

1. What is the likely data sparsity of the EMP_SEX column?

2. What indexes should you create? Write the required SQL commands.

3. Using Table 11.4 as an example, create two alternative access plans. Use the following assumptions:

a. There are 8,000 employees.

b. There are 4,150 female employees.

c. There are 370 employees in area code 615.

d. There are 190 female employees in area code 615.

Problems 4−6 are based on the following query:

SELECT EMP_LNAME, EMP_FNAME, EMP_DOB, YEAR(EMP_DOB) AS YEAR
FROM EMPLOYEE
WHERE YEAR(EMP_DOB) = 1966;

4. What is the likely data sparsity of the EMP_DOB column?

5. Should you create an index on EMP_DOB? Why or why not?

6. What type of database I/O operations will likely be used by the query? (See Table 11.3.)

Problems 7−10 are based on the ER model shown in Figure P11.7 and on the query shown after the figure. Given
the following query:

SELECT P_CODE, P_PRICE
FROM PRODUCT
WHERE P_PRICE >= (SELECT AVG(P_PRICE) FROM PRODUCT);

476 C H A P T E R 1 1

7. Assuming that there are no table statistics, what type of optimization will the DBMS use?

8. What type of database I/O operations will likely be used by the query? (See Table 11.3.)

9. What is the likely data sparsity of the P_PRICE column?

10. Should you create an index? Why or why not?

Problems 11−14 are based on the following query:

SELECT P_CODE, SUM(LINE_UNITS)
FROM LINE
GROUP BY P_CODE
HAVING SUM(LINE_UNITS) > (SELECT MAX(LINE_UNITS) FROM LINE);

11. What is the likely data sparsity of the LINE_UNITS column?

12. Should you create an index? If so, what would the index column(s) be, and why would you create that index? If
not, explain your reasoning.

13. Should you create an index on P_CODE? If so, write the SQL command to create that index. If not, explain your
reasoning.

14. Write the command to create statistics for this table.

Problems 15 and 16 are based on the following query:

SELECT P_CODE, P_QOH*P_PRICE
FROM PRODUCT
WHERE P_QOH*P_PRICE > (SELECT AVG(P_QOH*P_PRICE) FROM PRODUCT);

15. What is the likely data sparsity of the P_QOH and P_PRICE columns?

16. Should you create an index, what would the index column(s) be, and why should you create that index?

FIGURE
P11.7

The Ch11_SaleCo ER model

477D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

Problems 17−21 are based on the following query:

SELECT V_CODE, V_NAME, V_CONTACT, V_STATE
FROM VENDOR
WHERE V_STATE = 'TN'
ORDER BY V_NAME;

17. What indexes should you create and why? Write the SQL command to create the indexes.

18. Assume that 10,000 vendors are distributed as shown in Table P11.18. What percentage of rows will be returned
by the query?

TABLE P11.18

STATE NUMBER OF VENDORS STATE NUMBER OF VENDORS
AK 15 MS 47
AL 55 NC 358
AZ 100 NH 25
CA 3244 NJ 645
CO 345 NV 16
FL 995 OH 821
GA 75 OK 62
HI 68 PA 425
IL 89 RI 12
IN 12 SC 65
KS 19 SD 74
KY 45 TN 113
LA 29 TX 589
MD 208 UT 36
MI 745 VA 375
MO 35 WA 258

19. What type of I/O database operations would most likely be used to execute that query?

20. Using Table 11.4 as an example, create two alternative access plans.

21. Assume that you have 10,000 different products stored in the PRODUCT table and that you are writing a
Web-based interface to list all products with a quantity on hand (P_QOH) that is less than or equal to the minimum
quantity, P_MIN. What optimizer hint would you use to ensure that your query returns the result set to the Web
interface in the least time possible? Write the SQL code.

Problems 22−24 are based on the following query:

SELECT P_CODE, P_DESCRIPT, P_PRICE, P.V_CODE, V_STATE
FROM PRODUCT P, VENDOR V
WHERE P.V_CODE = V.V_CODE

AND V_STATE = 'NY'
AND V_AREACODE = '212'

ORDER BY P_PRICE;

22. What indexes would you recommend?

23. Write the commands required to create the indexes you recommended in Problem 22.

24. Write the command(s) used to generate the statistics for the PRODUCT and VENDOR tables.

478 C H A P T E R 1 1

Problems 25 and 26 are based on the following query:
SELECT P_CODE, P_DESCRIPT, P_QOH, P_PRICE, V_CODE
FROM PRODUCT
WHERE V_CODE = '21344'
ORDER BY P_CODE;

25. What index would you recommend, and what command would you use?

26. How should you rewrite the query to ensure that it uses the index you created in your solution to Problem 25?

Problems 27 and 28 are based on the following query:

SELECT P_CODE, P_DESCRIPT, P_QOH, P_PRICE, V_CODE
FROM PRODUCT
WHERE P_QOH < P_MIN

AND P_MIN = P_REORDER
AND P_REORDER = 50

ORDER BY P_QOH;

27. Use the recommendations given in Section 11.5.2 to rewrite the query to produce the required results more
efficiently.

28. What indexes would you recommend? Write the commands to create those indexes.

Problems 29−32 are based on the following query:

SELECT CUS_CODE, MAX(LINE_UNITS*LINE_PRICE)
FROM CUSTOMER NATURAL JOIN INVOICE NATURAL JOIN LINE
WHERE CUS_AREACODE = '615'
GROUP BY CUS_CODE;

29. Assuming that you generate 15,000 invoices per month, what recommendation would you give the designer
about the use of derived attributes?

30. Assuming that you follow the recommendations you gave in Problem 29, how would you rewrite the query?

31. What indexes would you recommend for the query you wrote in Problem 30, and what SQL commands would
you use?

32. How would you rewrite the query to ensure that the index you created in Problem 31 is used?

479D A T A B A S E P E R F O R M A N C E T U N I N G A N D Q U E R Y O P T I M I Z A T I O N

Preview

Distributed Database Management Systems

In this chapter, you will learn:

� What a distributed database management system (DDBMS) is and what its components are

� How database implementation is affected by different levels of data and process distribution

� How transactions are managed in a distributed database environment

� How database design is affected by the distributed database environment

In this chapter, you will learn that a single database can be divided into several fragments.

The fragments can be stored on different computers within a network. Processing, too, can

be dispersed among several different network sites, or nodes.The multisite database forms

the core of the distributed database system.

The growth of distributed database systems has been fostered by the dispersion of business

operations across the country and around the world, along with the rapid pace of

technological change that has made local and wide area networks practical and more

reliable. The network-based distributed database system is very flexible: it can serve the

needs of a small business operating two stores in the same town while at the same time

meeting the needs of a global business.

Although a distributed database system requires a more sophisticated DBMS, the end user

should not be burdened by increased operational complexity.That is, the greater complexity

of a distributed database system should be transparent to the end user.

The distributed database management system (DDBMS) treats a distributed database as a

single logical database; therefore, the basic design concepts you learned in earlier chapters

apply. However, although the end user need not be aware of the distributed database’s

special characteristics, the distribution of data among different sites in a computer network

clearly adds to a system’s complexity. For example, the design of a distributed database must

consider the location of the data and the partitioning of the data into database fragments.

You will examine such issues in this chapter.

12
T

W
E

L
V

E

12.1 THE EVOLUTION OF DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

A distributed database management system (DDBMS) governs the storage and processing of logically related
data over interconnected computer systems in which both data and processing are distributed among several sites. To
understand how and why the DDBMS is different from the DBMS, it is useful to briefly examine the changes in the
business environment that set the stage for the development of the DDBMS.

During the 1970s, corporations implemented centralized database management systems to meet their structured
information needs. Structured information is usually presented as regularly issued formal reports in a standard format.
Such information, generated by procedural programming languages, is created by specialists in response to precisely
channeled requests. Thus, structured information needs are well served by centralized systems.

The use of a centralized database required that corporate data be stored in a single central site, usually a mainframe
computer. Data access was provided through dumb terminals. The centralized approach, illustrated in Figure 12.1,
worked well to fill the structured information needs of corporations, but it fell short when quickly moving events
required faster response times and equally quick access to information. The slow progression from information request
to approval to specialist to user simply did not serve decision makers well in a dynamic environment. What was needed
was quick, unstructured access to databases, using ad hoc queries to generate on-the-spot information.

Database management systems based on the relational model could provide the environment in which unstructured
information needs would be met by employing ad hoc queries. End users would be given the ability to access data when
needed. Unfortunately, the early relational model implementations did not yet deliver acceptable throughput when
compared to the well-established hierarchical or network database models.

The last two decades gave birth to a series of crucial social and technological changes that affected database
development and design. Among those changes were:

� Business operations became decentralized.

� Competition increased at the global level.

� Customer demands and market needs favored a decentralized management style.

� Rapid technological change created low-cost computers with mainframe-like power, impressive multifunction
handheld portable wireless devices with cellular phone and data services, and increasingly complex and fast
networks to connect them. As a consequence, corporations have increasingly adopted advanced network
technologies as the platform for their computerized solutions.

Local database

FIGURE
12.1

Centralized database management system

DBMS

Data

Request

Reply

Read

End userApplication
issues

a data request
to the DBMS

481D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

� The large number of applications based on DBMSs and the need to protect investments in centralized DBMS
software made the notion of data sharing attractive. Data realms are converging in the digital world more and
more. As a result, single applications manage multiple different types of data (voice, video, music, images, etc.),
and such data are accessed from multiple geographically dispersed locations.

Those factors created a dynamic business environment in which companies had to respond quickly to competitive and
technological pressures. As large business units restructured to form leaner, quickly reacting, dispersed operations, two
database requirements became obvious:

� Rapid ad hoc data access became crucial in the quick-response decision-making environment.

� The decentralization of management structures based on the decentralization of business units made
decentralized multiple-access and multiple-location databases a necessity.

During recent years, the factors just described became even more firmly entrenched. However, the way those factors
were addressed was strongly influenced by:

� The growing acceptance of the Internet as the platform for data access and distribution. The World Wide
Web (the Web) is, in effect, the repository for distributed data.

� The wireless revolution. The widespread use of wireless digital devices, such as smart phones like the iPhone
and BlackBerry and personal digital assistants (PDAs), has created high demand for data access. Such devices
access data from geographically dispersed locations and require varied data exchanges in multiple formats
(data, voice, video, music, pictures, etc.) Although distributed data access does not necessarily imply distributed
databases, performance and failure tolerance requirements often make use of data replication techniques
similar to the ones found in distributed databases.

� The accelerated growth of companies providing “application as a service” type of services. This new type
of service provides remote application services to companies wanting to outsource their application develop-
ment, maintenance, and operations. The company data is generally stored on central servers and is not
necessarily distributed. Just as with wireless data access, this type of service may not require fully distributed
data functionality; however, other factors such as performance and failure tolerance often require the use of
data replication techniques similar to the ones found in distributed databases.

� The increased focus on data analysis that led to data mining and data warehousing. Although a data
warehouse is not usually a distributed database, it does rely on techniques such as data replication and
distributed queries that facilitate data extraction and integration. (Data warehouse design, implementation, and
use are discussed in Chapter 13, Business Intelligence and Data Warehouses.)

At this point, the long-term impact of the Internet and the wireless revolution on distributed database design and
management is still unclear. Perhaps the success of the Internet and wireless technologies will foster the use of
distributed databases as bandwidth becomes a more troublesome bottleneck. Perhaps the resolution of bandwidth
problems will simply confirm the centralized database standard. In any case, distributed databases exist today and many
distributed database operating concepts and components are likely to find a place in future database developments.

The decentralized database is especially desirable because centralized database management is subject to problems
such as:

� Performance degradation because of a growing number of remote locations over greater distances.

� High costs associated with maintaining and operating large central (mainframe) database systems.

O n l i n e C o n t e n t

To learn more about the Internet's impact on data access and distribution, see Appendix I, Databases in
Electronic Commerce, in the Premium Website for this book.

482 C H A P T E R 1 2

� Reliability problems created by dependence on a central site (single point of failure syndrome) and the need
for data replication.

� Scalability problems associated with the physical limits imposed by a single location (power, temperature
conditioning, and power consumption.)

� Organizational rigidity imposed by the database might not support the flexibility and agility required by
modern global organizations.

The dynamic business environment and the centralized database’s shortcomings spawned a demand for applications
based on accessing data from different sources at multiple locations. Such a multiple-source/multiple-location database
environment is best managed by a distributed database management system (DDBMS).

12.2 DDBMS ADVANTAGES AND DISADVANTAGES

Distributed database management systems deliver several advantages over traditional systems. At the same time, they
are subject to some problems. Table 12.1 summarizes the advantages and disadvantages associated with a DDBMS.

TABLE
12.1

Distributed DBMS Advantages and Disadvantages

ADVANTAGES DISADVANTAGES
• Data are located near the greatest demand site.
The data in a distributed database system are
dispersed to match business requirements.

• Faster data access. End users often work with only
a locally stored subset of the company’s data.

• Faster data processing. A distributed database
system spreads out the systems workload by
processing data at several sites.

• Growth facilitation. New sites can be added to
the network without affecting the operations of
other sites.

• Improved communications. Because local sites are
smaller and located closer to customers, local sites
foster better communication among departments
and between customers and company staff.

• Reduced operating costs. It is more cost-effective
to add workstations to a network than to update
a mainframe system. Development work is done
more cheaply and more quickly on low-cost PCs
than on mainframes.

• User-friendly interface. PCs and workstations are
usually equipped with an easy-to-use graphical
user interface (GUI). The GUI simplifies training
and use for end users.

• Less danger of a single-point failure. When one of
the computers fails, the workload is picked up by
other workstations. Data are also distributed at
multiple sites.

• Processor independence. The end user is able to
access any available copy of the data, and an end
user's request is processed by any processor at
the data location.

• Complexity of management and control. Applications
must recognize data location, and they must be able
to stitch together data from various sites. Database
administrators must have the ability to coordinate
database activities to prevent database degradation
due to data anomalies.

• Technological difficulty. Data integrity, transaction
management, concurrency control, security, backup,
recovery, query optimization, access path selection,
and so on, must all be addressed and resolved.

• Security. The probability of security lapses increases
when data are located at multiple sites. The responsi-
bility of data management will be shared by different
people at several sites.

• Lack of standards. There are no standard communi-
cation protocols at the database level. (Although
TCP/IP is the de facto standard at the network level,
there is no standard at the application level.) For
example, different database vendors employ
different—and often incompatible—techniques to
manage the distribution of data and processing in a
DDBMS environment.

• Increased storage and infrastructure requirements.
Multiple copies of data are required at different sites,
thus requiring additional disk storage space.

• Increased training cost. Training costs are generally
higher in a distributed model than they would be in
a centralized model, sometimes even to the extent of
offsetting operational and hardware savings.

• Costs. Distributed databases require duplicated infra-
structure to operate (physical location, environment,
personnel, software, licensing, etc.)

483D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

Distributed databases are used successfully but have a long way to go before they will yield the full flexibility and power
of which they are theoretically capable. The inherently complex distributed data environment increases the urgency for
standard protocols governing transaction management, concurrency control, security, backup, recovery, query
optimization, access path selection, and so on. Such issues must be addressed and resolved before DDBMS technology
is widely embraced.

The remainder of this chapter explores the basic components and concepts of the distributed database. Because the
distributed database is usually based on the relational database model, relational terminology is used to explain the basic
concepts and components of a distributed database.

12.3 DISTRIBUTED PROCESSING AND DISTRIBUTED DATABASES

In distributed processing, a database’s logical processing is shared among two or more physically independent sites
that are connected through a network. For example, the data input/output (I/O), data selection, and data validation
might be performed on one computer, and a report based on that data might be created on another computer.

A basic distributed processing environment is illustrated in Figure 12.2, which shows that a distributed processing
system shares the database processing chores among three sites connected through a communications network.
Although the database resides at only one site (Miami), each site can access the data and update the database. The
database is located on Computer A, a network computer known as the database server.

A distributed database, on the other hand, stores a logically related database over two or more physically
independent sites. The sites are connected via a computer network. In contrast, the distributed processing system uses
only a single-site database but shares the processing chores among several sites. In a distributed database system, a
database is composed of several parts known as database fragments. The database fragments are located at
different sites and can be replicated among various sites. Each database fragment is, in turn, managed by its local
database process. An example of a distributed database environment is shown in Figure 12.3.

Employee database

FIGURE
12.2

Distributed processing environment

Site 2
New York user Donna

Computer B

Database records are processed in different locations

Site 3
Atlanta user Victor

Computer C

Generate
payroll
report

DBMS

Computer A
Site 1

Miami user Joe

Communications network

Update
payroll

data

484 C H A P T E R 1 2

The database in Figure 12.3 is divided into three database fragments (E1, E2, and E3) located at different sites. The
computers are connected through a network system. In a fully distributed database, the users Alan, Betty, and Hernando
do not need to know the name or location of each database fragment in order to access the database. Also, the users might
be located at sites other than Miami, New York, or Atlanta and still be able to access the database as a single logical unit.

As you examine Figures 12.2 and 12.3, you should keep the following points in mind:

� Distributed processing does not require a distributed database, but a distributed database requires distributed
processing (each database fragment is managed by its own local database process).

� Distributed processing may be based on a single database located on a single computer. For the management
of distributed data to occur, copies or parts of the database processing functions must be distributed to all data
storage sites.

� Both distributed processing and distributed databases require a network to connect all components.

12.4 CHARACTERISTICS OF DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

A DDBMS governs the storage and processing of logically related data over interconnected computer systems in which
both data and processing functions are distributed among several sites. A DBMS must have at least the following
functions to be classified as distributed:

� Application interface to interact with the end user, application programs, and other DBMSs within the
distributed database.

� Validation to analyze data requests for syntax correctness.

� Transformation to decompose complex requests into atomic data request components.

E1

E3E2

FIGURE
12.3

Distributed database environment

Site 2
New York user Betty

Site 3
Atlanta user Hernando

DBMS

Computer A

Site 1
Miami user Alan

Communications network

DBMS

Computer B

DBMS

Computer C

485D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

� Query optimization to find the best access strategy. (Which database fragments must be accessed by the query,
and how must data updates, if any, be synchronized?)

� Mapping to determine the data location of local and remote fragments.

� I/O interface to read or write data from or to permanent local storage.

� Formatting to prepare the data for presentation to the end user or to an application program.

� Security to provide data privacy at both local and remote databases.

� Backup and recovery to ensure the availability and recoverability of the database in case of a failure.

� DB administration features for the database administrator.

� Concurrency control to manage simultaneous data access and to ensure data consistency across database
fragments in the DDBMS.

� Transaction management to ensure that the data moves from one consistent state to another. This activity
includes the synchronization of local and remote transactions as well as transactions across multiple distributed
segments.

A fully distributed database management system must perform all of the functions of a centralized DBMS, as follows:

1. Receive an application’s (or an end user’s) request.

2. Validate, analyze, and decompose the request. The request might include mathematical and/or logical
operations such as the following: Select all customers with a balance greater than $1,000. The request might
require data from only a single table, or it might require access to several tables.

3. Map the request’s logical-to-physical data components.

4. Decompose the request into several disk I/O operations.

5. Search for, locate, read, and validate the data.

6. Ensure database consistency, security, and integrity.

7. Validate the data for the conditions, if any, specified by the request.

8. Present the selected data in the required format.

In addition, a distributed DBMS must handle all necessary functions imposed by the distribution of data and processing,
and it must perform those additional functions transparently to the end user. The DDBMS’s transparent data access
features are illustrated in Figure 12.4.

The single logical database in Figure 12.4 consists of two database fragments, A1 and A2, located at sites 1 and 2,
respectively. Mary can query the database as if it were a local database; so can Tom. Both users “see” only one logical
database and do not need to know the names of the fragments. In fact, the end users do not even need to know
that the database is divided into fragments, nor do they need to know where the fragments are located.

To better understand the different types of distributed database scenarios, let’s first define the distributed database
system’s components.

12.5 DDBMS COMPONENTS

The DDBMS must include at least the following components:

� Computer workstations or remote devices (sites or nodes) that form the network system. The distributed
database system must be independent of the computer system hardware.

� Network hardware and software components that reside in each workstation or device. The network
components allow all sites to interact and exchange data. Because the components—computers, operating
systems, network hardware, and so on—are likely to be supplied by different vendors, it is best to ensure that
distributed database functions can be run on multiple platforms.

486 C H A P T E R 1 2

� Communications media that carry the data from one node to another. The DDBMS must be communications-
media-independent; that is, it must be able to support several types of communications media.

� The transaction processor (TP), which is the software component found in each computer or device that
requests data. The transaction processor receives and processes the application’s data requests (remote and
local). The TP is also known as the application processor (AP) or the transaction manager (TM).

� The data processor (DP), which is the software component residing on each computer or device that stores
and retrieves data located at the site. The DP is also known as the data manager (DM). A data processor may
even be a centralized DBMS.

Figure 12.5 illustrates the placement of the components and the interaction among them. The communication among
TPs and DPs shown in Figure 12.5 is made possible through a specific set of rules, or protocols, used by the DDBMS.

The protocols determine how the distributed database system will:

� Interface with the network to transport data and commands between data processors (DPs) and transaction
processors (TPs).

� Synchronize all data received from DPs (TP side) and route retrieved data to the appropriate TPs (DP side).

� Ensure common database functions in a distributed system. Such functions include security, concurrency
control, backup, and recovery.

DPs and TPs can be added to the system without affecting the operation of the other components. A TP and a DP
can reside on the same computer, allowing the end user to access local as well as remote data transparently. In theory,
a DP can be an independent centralized DBMS with proper interfaces to support remote access from other
independent DBMSs in the network.

Database Fragment
A1

Database Fragment
A2

FIGURE
12.4

A fully distributed database management system

Distributed processingSite 1 Site 2

Single logical database

User Mary User Tom

Communication network

487D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

12.6 LEVELS OF DATA AND PROCESS DISTRIBUTION

Current database systems can be classified on the basis of how process distribution and data distribution are supported.
For example, a DBMS may store data in a single site (centralized DB) or in multiple sites (distributed DB) and may
support data processing at a single site or at multiple sites. Table 12.2 uses a simple matrix to classify database systems
according to data and process distribution. These types of processes are discussed in the sections that follow.

TABLE
12.2

Database Systems: Levels of Data and Process Distribution

SINGLE-SITE DATA MULTIPLE-SITE DATA
Single-site process Host DBMS Not applicable

(Requires multiple processes)
Multiple-site process File server

Client/server DBMS (LAN DBMS)
Fully distributed
Client/server DDBMS

12.6.1 Single-Site Processing, Single-Site Data (SPSD)

In the single-site processing, single-site data (SPSD) scenario, all processing is done on a single host computer
(single-processor server, multiprocessor server, mainframe system) and all data are stored on the host computer’s local
disk system. Processing cannot be done on the end user’s side of the system. Such a scenario is typical of most
mainframe and midrange server computer DBMSs. The DBMS is located on the host computer, which is accessed by
dumb terminals connected to it. (See Figure 12.6.) This scenario is also typical of the first generation of single-user
microcomputer databases.

FIGURE
12.5

Distributed database system management components

Note: Each TP can access data on any DP, and
each DP handles all requests for local data from any TP.

José

TP TP DP

Peter Mary
Dedicated

data processor

Amy Chantal Dedicated
data processor

DPTP
DP

TP
DP

TP
DP

488 C H A P T E R 1 2

Using Figure 12.6 as an example, you can see that the functions of the TP and the DP are embedded within the DBMS
located on a single computer. The DBMS usually runs under a time-sharing, multitasking operating system, which
allows several processes to run concurrently on a host computer accessing a single DP. All data storage and data
processing are handled by a single host computer.

12.6.2 Multiple-Site Processing, Single-Site Data (MPSD)

Under the multiple-site processing, single-site data (MPSD) scenario, multiple processes run on different
computers sharing a single data repository. Typically, the MPSD scenario requires a network file server running
conventional applications that are accessed through a network. Many multiuser accounting applications running under
a personal computer network fit such a description. (See Figure 12.7.)

As you examine Figure 12.7, Note that:

� The TP on each workstation acts only as a redirector to route all network data requests to the file server.

� The end user sees the file server as just another hard disk. Because only the data storage input/output (I/O)
is handled by the file server’s computer, the MPSD offers limited capabilities for distributed processing.

� The end user must make a direct reference to the file server in order to access remote data. All record- and
file-locking activities are done at the end-user location.

� All data selection, search, and update functions take place at the workstation, thus requiring that entire files
travel through the network for processing at the workstation. Such a requirement increases network traffic,
slows response time, and increases communication costs.

FIGURE
12.6

Single-site processing, single-site data (centralized)

Dumb
terminals

Remote
dumb

terminal

DBMS

Front-end
processor

T1

T3

T2

Communication through
DSL or T-1 line

Database

489D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

The inefficiency of the last condition can be illustrated easily. For example, suppose that the file server computer stores
a CUSTOMER table containing 10,000 data rows, 50 of which have balances greater than $1,000. Suppose that site
A issues the following SQL query:

SELECT *
FROM CUSTOMER
WHERE CUS_BALANCE > 1000;

All 10,000 CUSTOMER rows must travel through the network to be evaluated at site A. A variation of the multiple-site
processing, single-site data approach is known as client/server architecture. Client/server architecture is similar to
that of the network file server except that all database processing is done at the server site, thus reducing network
traffic. Although both the network file server and the client/server systems perform multiple-site processing, the
latter’s processing is distributed. Note that the network file server approach requires the database to be located at a
single site. In contrast, the client/server architecture is capable of supporting data at multiple sites.

12.6.3 Multiple-Site Processing, Multiple-Site Data (MPMD)

The multiple-site processing, multiple-site data (MPMD) scenario describes a fully distributed DBMS with
support for multiple data processors and transaction processors at multiple sites. Depending on the level of support
for various types of centralized DBMSs, DDBMSs are classified as either homogeneous or heterogeneous.

Homogeneous DDBMSs integrate only one type of centralized DBMS over a network. Thus, the same DBMS will
be running on different server platforms (single processor server, multiprocessor server, server farms, or server blades).
In contrast, heterogeneous DDBMSs integrate different types of centralized DBMSs over a network. Table 12.3 lists
several systems that could be integrated within a single heterogeneous DDBMS over a network. A fully
heterogeneous DDBMS will support different DBMSs that may even support different data models (relational,
hierarchical, or network) running under different computer systems, such as mainframes and PCs.

FIGURE
12.7

Multiple-site processing, single-site data

Site A

TP

File Server

Communications network

DP

Site B

TP

Site C

TP

O n l i n e C o n t e n t

Appendix F, Client/Server Systems, is located in the Premium Website for this book.

490 C H A P T E R 1 2

TABLE
12.3

Heterogeneous Distributed Database scenario

PLATFORM DBMS OPERATING SYSTEM NETWORK
COMMUNICATIONS
PROTOCOL

IBM 3090 DB2 MVS APPC LU 6.2
DEC/VAX VAX rdb OpenVMS DECnet
IBM AS/400 SQL/400 OS/400 3270
RISC Computer Informix UNIX TCP/IP
Pentium CPU Oracle Windows Server 2008 TCP/IP

Some DDBMS implementations support several platforms, operating systems, and networks and allow remote data
access to another DBMS. However, such DDBMSs are still subject to certain restrictions. For example:

� Remote access is provided on a read-only basis and does not support write privileges.

� Restrictions are placed on the number of remote tables that may be accessed in a single transaction.

� Restrictions are placed on the number of distinct databases that may be accessed.

� Restrictions are placed on the database model that may be accessed. Thus, access may be provided to relational
databases but not to network or hierarchical databases.

The preceding list of restrictions is by no means exhaustive. The DDBMS technology continues to change rapidly, and
new features are added frequently. Managing data at multiple sites leads to a number of issues that must be addressed
and understood. The next section will examine several key features of distributed database management systems.

12.7 DISTRIBUTED DATABASE TRANSPARENCY FEATURES

A distributed database system requires functional characteristics that can be grouped and described as transparency
features. DDBMS transparency features have the common property of allowing the end user to feel like the database’s
only user. In other words, the user believes that (s)he is working with a centralized DBMS; all complexities of a
distributed database are hidden, or transparent, to the user.

The DDBMS transparency features are:

� Distribution transparency, which allows a distributed database to be treated as a single logical database. If
a DDBMS exhibits distribution transparency, the user does not need to know:

- That the data are partitioned—meaning the table’s rows and columns are split vertically or horizontally and
stored among multiple sites.

- That the data can be replicated at several sites.

- The data location.

� Transaction transparency, which allows a transaction to update data at more than one network site.
Transaction transparency ensures that the transaction will be either entirely completed or aborted, thus
maintaining database integrity.

� Failure transparency, which ensures that the system will continue to operate in the event of a node failure.
Functions that were lost because of the failure will be picked up by another network node.

� Performance transparency, which allows the system to perform as if it were a centralized DBMS. The
system will not suffer any performance degradation due to its use on a network or due to the network’s
platform differences. Performance transparency also ensures that the system will find the most cost-effective
path to access remote data.

491D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

� Heterogeneity transparency, which allows the integration of several different local DBMSs (relational,
network, and hierarchical) under a common, or global, schema. The DDBMS is responsible for translating the
data requests from the global schema to the local DBMS schema.

Distribution, transaction, and performance transparency will be examined in greater detail in the next few sections.

12.8 DISTRIBUTION TRANSPARENCY

Distribution transparency allows a physically dispersed database to be managed as though it were a centralized
database. The level of transparency supported by the DDBMS varies from system to system. Three levels of distribution
transparency are recognized:

� Fragmentation transparency is the highest level of transparency. The end user or programmer does not
need to know that a database is partitioned. Therefore, neither fragment names nor fragment locations are
specified prior to data access.

� Location transparency exists when the end user or programmer must specify the database fragment names
but does not need to specify where those fragments are located.

� Local mapping transparency exists when the end user or programmer must specify both the fragment
names and their locations.

Transparency features are summarized in Table 12.4.

As you examine Table 12.4, you might ask why there is no reference to a situation in which the fragment name is “No”
and the location name is “Yes.” The reason for not including that scenario is simple: you cannot have a location name
that fails to reference an existing fragment. (If you don’t need to specify a fragment name, its location is clearly
irrelevant.)

To illustrate the use of various transparency levels, suppose you have an EMPLOYEE table containing the attributes
EMP_NAME, EMP_DOB, EMP_ADDRESS, EMP_DEPARTMENT, and EMP_SALARY. The EMPLOYEE data are
distributed over three different locations: New York, Atlanta, and Miami. The table is divided by location; that is, New
York employee data are stored in fragment E1, Atlanta employee data are stored in fragment E2, and Miami employee
data are stored in fragment E3. (See Figure 12.8.)

Now suppose that the end user wants to list all employees with a date of birth prior to January 1, 1960. To focus on
the transparency issues, also suppose that the EMPLOYEE table is fragmented and each fragment is unique. The
unique fragment condition indicates that each row is unique, regardless of the fragment in which it is located. Finally,
assume that no portion of the database is replicated at any other site on the network.

Depending on the level of distribution transparency support, you may examine three query cases.

TABLE
12.4

A Summary of Transparency Features

IF THE SQL STATEMENT REQUIRES:
FRAGMENT NAME? LOCATION NAME? THEN THE DBMS

SUPPORTS
LEVEL OF DISTRIBUTON
TRANSPARENCY

Yes Yes Local mapping Low
Yes No Location transparency Medium
No No Fragmentation transparency High

492 C H A P T E R 1 2

Case 1: The Database Supports Fragmentation Transparency
The query conforms to a nondistributed database query format; that is, it does not specify fragment names or locations.
The query reads:

SELECT *
FROM EMPLOYEE
WHERE EMP_DOB < '01-JAN-196';

Case 2: The Database Supports Location Transparency
Fragment names must be specified in the query, but the fragment’s location is not specified. The query reads:

SELECT *
FROM E1
WHERE EMP_DOB < '01-JAN-1960';
UNION
SELECT *
FROM E2
WHERE EMP_DOB < '01-JAN-1960';
UNION
SELECT *
FROM E 3
WHERE EMP_DOB < '01-JAN-1960';

Case 3: The Database Supports Local Mapping Transparency
Both the fragment name and its location must be specified in the query. Using pseudo-SQL:

SELECT *
FROM El NODE NY
WHERE EMP_DOB < '01-JAN-1960';
UNION
SELECT *
FROM E2 NODE ATL
WHERE EMP_DOB < '01-JAN-1960';
UNION
SELECT *

FIGURE
12.8

Fragment locations

Distributed DBMS

Fragment

Location

EMPLOYEE table

E1 E2 E3

New York Atlanta Miami

493D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

FROM E3 NODE MIA
WHERE EMP_DOB < '01-JAN-1960';

As you examine the preceding query formats, you can see how distribution transparency affects the way end users and
programmers interact with the database.

Distribution transparency is supported by a distributed data dictionary (DDD), or a distributed data catalog
(DDC). The DDC contains the description of the entire database as seen by the database administrator. The database
description, known as the distributed global schema, is the common database schema used by local TPs to translate
user requests into subqueries (remote requests) that will be processed by different DPs. The DDC is itself distributed,
and it is replicated at the network nodes. Therefore, the DDC must maintain consistency through updating at all sites.

Keep in mind that some of the current DDBMS implementations impose limitations on the level of transparency
support. For instance, you might be able to distribute a database, but not a table, across multiple sites. Such a condition
indicates that the DDBMS supports location transparency but not fragmentation transparency.

12.9 TRANSACTION TRANSPARENCY

Transaction transparency is a DDBMS property that ensures that database transactions will maintain the distributed
database’s integrity and consistency. Remember that a DDBMS database transaction can update data stored in many
different computers connected in a network. Transaction transparency ensures that the transaction will be completed
only when all database sites involved in the transaction complete their part of the transaction.

Distributed database systems require complex mechanisms to manage transactions and to ensure the database’s
consistency and integrity. To understand how the transactions are managed, you should know the basic concepts
governing remote requests, remote transactions, distributed transactions, and distributed requests.

12.9.1 Distributed Requests and Distributed Transactions1

Whether or not a transaction is distributed, it is formed by one or more database requests. The basic difference
between a nondistributed transaction and a distributed transaction is that the latter can update or request data from
several different remote sites on a network. To better illustrate the distributed transaction concepts, let’s begin by
establishing the difference between remote and distributed transactions, using the BEGIN WORK and COMMIT
WORK transaction format. Assume the existence of location transparency to avoid having to specify the data location.

A remote request, illustrated in Figure 12.9, lets a single SQL statement access the data that are to be processed
by a single remote database processor. In other words, the SQL statement (or request) can reference data at only one
remote site.

Similarly, a remote transaction, composed of several requests, accesses data at a single remote site. A remote
transaction is illustrated in Figure 12.10.

1 The details of distributed requests and transactions were originally described in David McGoveran and Colin White, “Clarifying Client/Server,”
DBMS 3(12), November 1990, pp. 78−89.

Note

NODE indicates the location of the database fragment. NODE is used for illustration purposes and is not part
of the standard SQL syntax.

494 C H A P T E R 1 2

As you examine Figure 12.10, Note the following remote transaction features:

� The transaction updates the PRODUCT and INVOICE tables (located at site B).

� The remote transaction is sent to and executed at the remote site B.

� The transaction can reference only one remote DP.

� Each SQL statement (or request) can reference only one (the same) remote DP at a time, and the entire
transaction can reference and be executed at only one remote DP.

A distributed transaction allows a transaction to reference several different local or remote DP sites. Although each
single request can reference only one local or remote DP site, the transaction as a whole can reference multiple DP
sites because each request can reference a different site. The distributed transaction process is illustrated in
Figure 12.11.

FIGURE
12.9

A remote request

CUSTOMER
Network

SELECT *
 FROM CUSTOMER
 WHERE CUS_STATE = ‘AL’;

Comment: The request is
directed to the CUSTOMER
table at site B.

Site A Site B

TP DP

INVOICE

PRODUCT

FIGURE
12.10

A remote transaction

BEGIN WORK;
UPDATE PRODUCT
 SET PROD_QTY = PROD_QTY – 1
 WHERE PROD_NUM = ‘231785’;
INSERT INTO INVOICE (CUS_NUM, INV_DATE, INV_TOTAL)
 VALUES ‘100’, ‘15-FEB-2010’, 120.00;
COMMIT WORK;

Network

Site A Site B

TP DP

495D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

Note the following features in Figure 12.11:

� The transaction references two remote sites (B and C).

� The first two requests (UPDATE PRODUCT and INSERT INTO INVOICE) are processed by the DP at the
remote site C, and the last request (UPDATE CUSTOMER) is processed by the DP at the remote site B.

� Each request can access only one remote site at a time.

The third characteristic may create problems. For example, suppose the table PRODUCT is divided into two
fragments, PRODl and PROD2, located at sites B and C, respectively. Given that scenario, the preceding distributed
transaction cannot be executed because the request:

SELECT *
FROM PRODUCT
WHERE PROD_NUM = '231785';

cannot access data from more than one remote site. Therefore, the DBMS must be able to support a distributed
request.

A distributed request lets a single SQL statement reference data located at several different local or remote DP sites.
Because each request (SQL statement) can access data from more than one local or remote DP site, a transaction can
access several sites. The ability to execute a distributed request provides fully distributed database processing
capabilities because of the ability to:

� Partition a database table into several fragments.

� Reference one or more of those fragments with only one request. In other words, there is fragmentation
transparency.

The location and partition of the data should be transparent to the end user. Figure 12.12 illustrates a distributed
request. As you examine Figure 12.12, Note that the transaction uses a single SELECT statement to reference two
tables, CUSTOMER and INVOICE. The two tables are located at two different sites, B and C.

INVOICE

FIGURE
12.11

A distributed transaction

PRODUCT

BEGIN WORK;
UPDATE PRODUCT
 SET PROD_QTY=PROD_QTY – 1
 WHERE PROD_NUM = ‘231785’;
INSERT INTO INVOICE (CUS_NUM, INV_DATE,
 INV_TOTAL)
 VALUES (‘100’, ‘15-FEB-2010’, 120.00);
UPDATE CUSTOMER
 SET CUS_BALANCE = CUS_BALANCE + 120
 WHERE CUS_NUM = ‘100’;
COMMIT WORK;

Network

Site A Site B

TP DP

DP

Site C

CUSTOMER

496 C H A P T E R 1 2

The distributed request feature also allows a single request to reference a physically partitioned table. For example,
suppose that a CUSTOMER table is divided into two fragments, C1 and C2, located at sites B and C, respectively.
Further suppose that the end user wants to obtain a list of all customers whose balances exceed $250. The request
is illustrated in Figure 12.13. Full fragmentation transparency support is provided only by a DDBMS that supports
distributed requests.

FIGURE
12.12

A distributed request

CUSTOMER

INVOICE

PRODUCT

BEGIN WORK;
 SELECT CUS_NUM, INV_TOTAL
 FROM CUSTOMER, INVOICE
 WHERE CUS_NUM = ‘100’ AND
 INVOICE.CUS_NUM = CUSTOMER.CUS_NUM;
COMMIT WORK;

Network

Site A Site B

TP DP

DP

Site C

FIGURE
12.13

Another distributed request

C1

C2

SELECT *
 FROM CUSTOMER
 WHERE CUS_BALANCE > 250;

Network

Site A Site B

TP DP

DP

Site C

497D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

Understanding the different types of database requests in distributed database systems helps you address the
transaction transparency issue more effectively. Transaction transparency ensures that distributed transactions are
treated as centralized transactions, ensuring the serializability of transactions. (Review Chapter 10, Transaction
Management and Concurrency Control, if necessary.) That is, the execution of concurrent transactions, whether or not
they are distributed, will take the database from one consistent state to another.

12.9.2 Distributed Concurrency Control

Concurrency control becomes especially important in the distributed database environment because multisite,
multiple-process operations are more likely to create data inconsistencies and deadlocked transactions than single-site
systems are. For example, the TP component of a DDBMS must ensure that all parts of the transaction are completed
at all sites before a final COMMIT is issued to record the transaction.

Suppose that each transaction operation was committed by each local DP, but one of the DPs could not commit the
transaction’s results. Such a scenario would yield the problems illustrated in Figure 12.14: the transaction(s) would yield
an inconsistent database, with its inevitable integrity problems, because committed data cannot be uncommitted! The
solution for the problem illustrated in Figure 12.14 is a two-phase commit protocol, which you will explore next.

12.9.3 Two-Phase Commit Protocol

Centralized databases require only one DP. All database operations take place at only one site, and the consequences
of database operations are immediately known to the DBMS. In contrast, distributed databases make it possible for a
transaction to access data at several sites. A final COMMIT must not be issued until all sites have committed their parts
of the transaction. The two-phase commit protocol guarantees that if a portion of a transaction operation cannot

FIGURE
12.14

The effect of a premature COMMIT

Data are
committed

Rollback at
site C

Site A

Site B

Site C

Can’t roll back
sites A and B

DP

DP

LOCK (Z)
...
...
ROLLBACK

DP

LOCK (X)
WRITE (X)
COMMIT

LOCK (Y)
WRITE (Y)
COMMIT

498 C H A P T E R 1 2

be committed; all changes made at the other sites participating in the transaction will be undone to maintain a
consistent database state.

Each DP maintains its own transaction log. The two-phase commit protocol requires that the transaction entry log for
each DP be written before the database fragment is actually updated. (See Chapter 10.) Therefore, the two-phase
commit protocol requires a DO-UNDO-REDO protocol and a write-ahead protocol.

The DO-UNDO-REDO protocol is used by the DP to roll back and/or roll forward transactions with the help of the
system’s transaction log entries. The DO-UNDO-REDO protocol defines three types of operations:

� DO performs the operation and records the “before” and “after” values in the transaction log.

� UNDO reverses an operation, using the log entries written by the DO portion of the sequence.

� REDO redoes an operation, using the log entries written by the DO portion of the sequence.

To ensure that the DO, UNDO, and REDO operations can survive a system crash while they are being executed, a
write-ahead protocol is used. The write-ahead protocol forces the log entry to be written to permanent storage
before the actual operation takes place.

The two-phase commit protocol defines the operations between two types of nodes: the coordinator and one or
more subordinates, or cohorts. The participating nodes agree on a coordinator. Generally, the coordinator role is
assigned to the node that initiates the transaction. However, different systems implement various, more sophisticated
election methods. The protocol is implemented in two phases:

Phase 1: Preparation
The coordinator sends a PREPARE TO COMMIT message to all subordinates.

1. The subordinates receive the message; write the transaction log, using the write-ahead protocol; and send an
acknowledgment (YES/PREPARED TO COMMIT or NO/NOT PREPARED) message to the coordinator.

2. The coordinator makes sure that all nodes are ready to commit, or it aborts the action.

If all nodes are PREPARED TO COMMIT, the transaction goes to Phase 2. If one or more nodes reply NO or NOT
PREPARED, the coordinator broadcasts an ABORT message to all subordinates.

Phase 2: The Final COMMIT
1. The coordinator broadcasts a COMMIT message to all subordinates and waits for the replies.

2. Each subordinate receives the COMMIT message, and then updates the database using the DO protocol.

3. The subordinates reply with a COMMITTED or NOT COMMITTED message to the coordinator.

If one or more subordinates did not commit, the coordinator sends an ABORT message, thereby forcing them to
UNDO all changes.

The objective of the two-phase commit is to ensure that each node commits its part of the transaction; otherwise, the
transaction is aborted. If one of the nodes fails to commit, the information necessary to recover the database is in the
transaction log, and the database can be recovered with the DO-UNDO-REDO protocol. (Remember that the log
information was updated using the write-ahead protocol.)

12.10 PERFORMANCE TRANSPARENCY AND QUERY OPTIMIZATION

One of the most important functions of a database is its ability to make data available. Because all data reside at a single
site in a centralized database, the DBMS must evaluate every data request and find the most efficient way to access the
local data. In contrast, the DDBMS makes it possible to partition a database into several fragments, thereby rendering

499D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

the query translation more complicated, because the DDBMS must decide which fragment of the database to access.
In addition, the data may also be replicated at several different sites. The data replication makes the access problem
even more complex, because the database must decide which copy of the data to access. The DDBMS uses query
optimization techniques to deal with such problems and to ensure acceptable database performance.

The objective of a query optimization routine is to minimize the total cost associated with the execution of a request.
The costs associated with a request are a function of the:

� Access time (I/O) cost involved in accessing the physical data stored on disk.

� Communication cost associated with the transmission of data among nodes in distributed database systems.

� CPU time cost associated with the processing overhead of managing distributed transactions.

Although costs are often classified as either communication or processing costs, it is difficult to separate the two. Not
all query optimization algorithms use the same parameters, and all algorithms do not assign the same weight to each
parameter. For example, some algorithms minimize total time; others minimize the communication time, and still
others do not factor in the CPU time, considering it insignificant relative to other cost sources.

To evaluate query optimization, keep in mind that the TP must receive data from the DP, synchronize it, assemble the
answer, and present it to the end user or an application. Although that process is standard, you should consider that
a particular query may be executed at any one of several different sites. The response time associated with remote sites
cannot be easily predetermined because some nodes are able to finish their part of the query in less time than others.

One of the most important characteristics of query optimization in distributed database systems is that it must provide
distribution transparency as well as replica transparency. (Distribution transparency was explained earlier in this
chapter.) Replica transparency refers to the DDBMS’s ability to hide the existence of multiple copies of data from
the user.

Most of the algorithms proposed for query optimization are based on two principles:

� The selection of the optimum execution order.

� The selection of sites to be accessed to minimize communication costs.

Within those two principles, a query optimization algorithm can be evaluated on the basis of its operation mode or
the timing of its optimization.

Operation modes can be classified as manual or automatic. Automatic query optimization means that the DDBMS
finds the most cost-effective access path without user intervention. Manual query optimization requires that the
optimization be selected and scheduled by the end user or programmer. Automatic query optimization is clearly more
desirable from the end user’s point of view, but the cost of such convenience is the increased overhead that it imposes
on the DDBMS.

Query optimization algorithms can also be classified according to when the optimization is done. Within this timing
classification, query optimization algorithms can be classified as static or dynamic.

� Static query optimization takes place at compilation time. In other words, the best optimization strategy is
selected when the query is compiled by the DBMS. This approach is common when SQL statements are
embedded in procedural programming languages such as C# or Visual Basic .NET. When the program is
submitted to the DBMS for compilation, it creates the plan necessary to access the database. When the
program is executed, the DBMS uses that plan to access the database.

Note

Chapter 11, Database Performance Tuning and Query Optimization, provides additional details about query
optimization.

500 C H A P T E R 1 2

� Dynamic query optimization takes place at execution time. Database access strategy is defined when the
program is executed. Therefore, access strategy is dynamically determined by the DBMS at run time, using the
most up-to-date information about the database. Although dynamic query optimization is efficient, its cost is
measured by run-time processing overhead. The best strategy is determined every time the query is executed;
this could happen several times in the same program.

Finally, query optimization techniques can be classified according to the type of information that is used to optimize
the query. For example, queries may be based on statistically based or rule-based algorithms.

� A statistically based query optimization algorithm uses statistical information about the database. The
statistics provide information about database characteristics such as size, number of records, average access
time, number of requests serviced, and number of users with access rights. These statistics are then used by the
DBMS to determine the best access strategy.

� The statistical information is managed by the DDBMS and is generated in one of two different modes: dynamic
or manual. In the dynamic statistical generation mode, the DDBMS automatically evaluates and updates
the statistics after each access. In the manual statistical generation mode, the statistics must be updated
periodically through a user-selected utility such as IBM’s RUNSTAT command used by DB2 DBMSs.

� A rule-based query optimization algorithm is based on a set of user-defined rules to determine the best
query access strategy. The rules are entered by the end user or database administrator, and they are typically
very general in nature.

12.11 DISTRIBUTED DATABASE DESIGN

Whether the database is centralized or distributed, the design principles and concepts described in Chapter 3, The
Relational Database Model; Chapter 4, Entity Relationship (ER) Modeling; and Chapter 6, Normalization of Database
Tables, are still applicable. However, the design of a distributed database introduces three new issues:

� How to partition the database into fragments.

� Which fragments to replicate.

� Where to locate those fragments and replicas.

Data fragmentation and data replication deal with the first two issues, and data allocation deals with the third issue.

12.11.1 Data Fragmentation

Data fragmentation allows you to break a single object into two or more segments, or fragments. The object might
be a user’s database, a system database, or a table. Each fragment can be stored at any site over a computer network.
Information about data fragmentation is stored in the distributed data catalog (DDC), from which it is accessed by the
TP to process user requests.

Data fragmentation strategies, as discussed here, are based at the table level and consist of dividing a table into logical
fragments. You will explore three types of data fragmentation strategies: horizontal, vertical, and mixed. (Keep in mind
that a fragmented table can always be re-created from its fragmented parts by a combination of unions and joins.)

� Horizontal fragmentation refers to the division of a relation into subsets (fragments) of tuples (rows). Each
fragment is stored at a different node, and each fragment has unique rows. However, the unique rows all have
the same attributes (columns). In short, each fragment represents the equivalent of a SELECT statement, with
the WHERE clause on a single attribute.

� Vertical fragmentation refers to the division of a relation into attribute (column) subsets. Each subset
(fragment) is stored at a different node, and each fragment has unique columns—with the exception of the key
column, which is common to all fragments. This is the equivalent of the PROJECT statement in SQL.

� Mixed fragmentation refers to a combination of horizontal and vertical strategies. In other words, a table
may be divided into several horizontal subsets (rows), each one having a subset of the attributes (columns).

501D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

To illustrate the fragmentation strategies, let’s use the CUSTOMER table for the XYZ Company, depicted in
Figure 12.15. The table contains the attributes CUS_NUM, CUS_NAME, CUS_ADDRESS, CUS_STATE,
CUS_LIMIT, CUS_BAL, CUS_RATING, and CUS_DUE.

Horizontal Fragmentation
Suppose that XYZ Company’s corporate management requires information about its customers in all three states, but
company locations in each state (TN, FL, and GA) require data regarding local customers only. Based on such
requirements, you decide to distribute the data by state. Therefore, you define the horizontal fragments to conform to
the structure shown in Table 12.5.

TABLE
12.5

Horizontal Fragmentation of the CUSTOMER Table by State

FRAGMENT
NAME

LOCATION CONDITION NODE NAME CUSTOMER
NUMBERS

NUMBER
OF ROWS

CUST_H1 Tennessee CUS_STATE = 'TN' NAS 10, 12 2
CUST_H2 Georgia CUS_STATE = 'GA' ATL 15 1
CUST_H3 Florida CUS_STATE = 'FL' TAM 11, 13, 14 3

Each horizontal fragment may have a different number of rows, but each fragment must have the same attributes. The
resulting fragments yield the three tables depicted in Figure 12.16.

Vertical Fragmentation
You may also divide the CUSTOMER relation into vertical fragments that are composed of a collection of attributes.
For example, suppose that the company is divided into two departments: the service department and the collections
department. Each department is located in a separate building, and each has an interest in only a few of the
CUSTOMER table’s attributes. In this case, the fragments are defined as shown in Table 12.6.

Table name: CUSTOMER Database name: Ch12_Text

FIGURE
12.15

A sample CUSTOMER table

O n l i n e C o n t e n t

The databases used to illustrate the material in this chapter are found in the Premium Website for this book.

502 C H A P T E R 1 2

TABLE
12.6

Vertical Fragmentation of the CUSTOMER Table

FRAGMENT
NAME

LOCATION NODE
NAME

ATTRIBUTE NAMES

CUST_V1 Service Bldg. SVC CUS_NUM, CUS_NAME, CUS_ADDRESS, CUS_STATE
CUST_V2 Collection Bldg. ARC CUS_NUM, CUS_LIMIT, CUS_BAL, CUS_RATING, CUS_DUE

Each vertical fragment must have the same number of rows, but the inclusion of the different attributes depends on
the key column. The vertical fragmentation results are displayed in Figure 12.17. Note that the key attribute
(CUS_NUM) is common to both fragments CUST_V1 and CUST_V2.

Table name: CUST_H1

Table name: CUST_H2

Table name: CUST_H3

Location: Tennessee

Location: Georgia

Location: Florida

Node: NAS

Node: ATL

Node: TAM

Database name: Ch12_Text

FIGURE
12.16

Table fragments in three locations

Table name: CUST_V1

Table name: CUST_V2

Location: Service Building

Database name: Ch12_Text

Location: Collection Building

Node: SVC

Node: ARC

FIGURE
12.17

Vertically fragmented table contents

503D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

Mixed Fragmentation
The XYZ Company’s structure requires that the CUSTOMER data be fragmented horizontally to accommodate the
various company locations; within the locations, the data must be fragmented vertically to accommodate the two
departments (service and collection). In short, the CUSTOMER table requires mixed fragmentation.

Mixed fragmentation requires a two-step procedure. First, horizontal fragmentation is introduced for each site based
on the location within a state (CUS_STATE). The horizontal fragmentation yields the subsets of customer tuples
(horizontal fragments) that are located at each site. Because the departments are located in different buildings, vertical
fragmentation is used within each horizontal fragment to divide the attributes, thus meeting each department’s
information needs at each subsite. Mixed fragmentation yields the results displayed in Table 12.7.

TABLE
12.7

Mixed Fragmentation of the CUSTOMER Table

FRAGMENT
NAME

LOCATION HORIZONTAL
CRITERIA

NODE
NAME

RESULTING
ROWS
AT SITE

VERTICAL CRITERIA
ATTRIBUTES AT
EACH FRAGMENT

CUST_M1 TN-Service CUS_STATE = ’TN’ NAS-S 10, 12 CUS_NUM, CUS_NAME
CUS_ADDRESS, CUS_STATE

CUST_M2 TN-Collection CUS_STATE = ’TN’ NAS-C 10, 12
CUS_NUM, CUS_LIMIT,
CUS_BAL, CUS_RATING,
CUS_DUE

CUST_M3 GA-Service CUS_STATE = ’GA’ ATL-S 15 CUS_NUM, CUS_NAME
CUS_ADDRESS, CUS_STATE

CUST_M4 GA-Collection CUS_STATE = ’GA’ ATL-C 15
CUS_NUM, CUS_LIMIT,
CUS_BAL, CUS_RATING,
CUS_DUE

CUST_M5 FL-Service CUS_STATE = ’FL’ TAM-S 11, 13, 14 CUS_NUM, CUS_NAME
CUS_ADDRESS, CUS_STATE

CUST_M6 FL-Collection CUS_STATE = ’FL’ TAM-C 11, 13, 14
CUS_NUM, CUS_LIMIT,
CUS_BAL, CUS_RATING,
CUS_DUE

Each fragment displayed in Table 12.7 contains customer data by state and, within each state, by department location,
to fit each department’s data requirements. The tables corresponding to the fragments listed in Table 12.7 are shown
in Figure 12.18.

12.11.2 Data Replication

Data replication refers to the storage of data copies at multiple sites served by a computer network. Fragment copies
can be stored at several sites to serve specific information requirements. Because the existence of fragment copies can
enhance data availability and response time, data copies can help to reduce communication and total query costs.

Suppose database A is divided into two fragments, A1 and A2. Within a replicated distributed database, the scenario
depicted in Figure 12.19 is possible: fragment A1 is stored at sites S1 and S2, while fragment A2 is stored at sites S2
and S3.

Replicated data are subject to the mutual consistency rule. The mutual consistency rule requires that all copies of
data fragments be identical. Therefore, to maintain data consistency among the replicas, the DDBMS must ensure that
a database update is performed at all sites where replicas exist.

504 C H A P T E R 1 2

Although replication has some benefits (such as improved data availability, better load distribution, improved data
failure-tolerance, and reduced query costs), it also imposes additional DDBMS processing overhead—because each
data copy must be maintained by the system. Furthermore, because the data are replicated at another site, there are

Table name: CUST_M1

Table name: CUST_M2

Table name: CUST_M3

Location: TN-Service

Location: TN-Collection

Database name: CH12_Text

Location: GA-Service

Node: NAS-S

Node: NAS-C

Node: ATL-S

Table name: CUST_M4

Table name: CUST_M5

Table name: CUST_M6

Location: GA-Collection

Location: FL-Service

Location: FL-Collection

Node: ATL-C

Node: TAM-S

Node: TAM-C

FIGURE
12.18

Table contents after the mixed fragmentation process

A 1 A 2A 1 A 2

FIGURE
12.19

Data replication

Site S1 Site S3Site S2

DP DP DP

505D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

associated storage costs and increased transaction times (as data must be updated at several sites concurrently to
comply with the mutual consistency rule). To illustrate the replica overhead imposed on a DDBMS, consider the
processes that the DDBMS must perform to use the database.

� If the database is fragmented, the DDBMS must decompose a query into subqueries to access the appropriate
fragments.

� If the database is replicated, the DDBMS must decide which copy to access. A READ operation selects the
nearest copy to satisfy the transaction. A WRITE operation requires that all copies be selected and updated
to satisfy the mutual consistency rule.

� The TP sends a data request to each selected DP for execution.

� The DP receives and executes each request and sends the data back to the TP.

� The TP assembles the DP responses.

The problem becomes more complex when you consider additional factors such as network topology and communi-
cation throughputs.

Three replication scenarios exist: a database can be fully replicated, partially replicated, or unreplicated.

� A fully replicated database stores multiple copies of each database fragment at multiple sites. In this case,
all database fragments are replicated. A fully replicated database can be impractical due to the amount of
overhead it imposes on the system.

� A partially replicated database stores multiple copies of some database fragments at multiple sites. Most
DDBMSs are able to handle the partially replicated database well.

� An unreplicated database stores each database fragment at a single site. Therefore, there are no duplicate
database fragments.

Several factors influence the decision to use data replication:

� Database size. The amount of data replicated will have an impact on the storage requirements and also on the
data transmission costs. Replicating large amounts of data requires a window of time and higher network
bandwidth that could affect other applications.

� Usage frequency. The frequency of data usage determines how frequently the data needs to be updated. Frequently
used data needs to be updated more often, for example, than large data sets that are used only every quarter.

� Costs, including those for performance, software overhead, and management associated with synchronizing
transactions and their components vs. fault-tolerance benefits that are associated with replicated data.

When the usage frequency of remotely located data is high and the database is large, data replication can reduce the
cost of data requests. Data replication information is stored in the distributed data catalog (DDC), whose contents are
used by the TP to decide which copy of a database fragment to access. The data replication makes it possible to restore
lost data.

12.11.3 Data Allocation

Data allocation describes the process of deciding where to locate data. Data allocation strategies are as follows:

� With centralized data allocation, the entire database is stored at one site.

� With partitioned data allocation, the database is divided into two or more disjointed parts (fragments) and
stored at two or more sites.

� With replicated data allocation, copies of one or more database fragments are stored at several sites.

Data distribution over a computer network is achieved through data partitioning, through data replication, or through
a combination of both. Data allocation is closely related to the way a database is divided or fragmented. Most data
allocation studies focus on one issue: which data to locate where.

506 C H A P T E R 1 2

Data allocation algorithms take into consideration a variety of factors, including:

� Performance and data availability goals.

� Size, number of rows, and number of relations that an entity maintains with other entities.

� Types of transactions to be applied to the database and the attributes accessed by each of those transactions.

� Disconnected operation for mobile users. In some cases, the design might consider the use of loosely
disconnected fragments for mobile users, particularly for read-only data that does not require frequent updates
and for which the replica update windows (the amount of time available to perform a certain data processing
task that cannot be executed concurrently with other tasks) may be longer.

Some algorithms include external data, such as network topology or network throughput. No optimal or universally
accepted algorithm exists yet, and very few algorithms have been implemented to date.

12.12 CLIENT/SERVER VS. DDBMS

Because the trend toward distributed databases is firmly established, many database vendors have used the
“client/server” label to indicate distributed database capability. However, distributed databases do not always accurately
reflect the characteristics implied by the client/server label.

Client/server architecture refers to the way in which computers interact to form a system. The client/server
architecture features a user of resources, or a client, and a provider of resources, or a server. The client/server
architecture can be used to implement a DBMS in which the client is the TP and the server is the DP.

Client/server interactions in a DDBMS are carefully scripted. The client (TP) interacts with the end user and sends a
request to the server (DP). The server receives, schedules, and executes the request, selecting only those records that
are needed by the client. The server then sends the data to the client only when the client requests the data.

Client/server applications offer several advantages.

� Client/server solutions tend to be less expensive than alternate midrange computer or mainframe solutions in
terms of startup infrastructure requirements.

� Client/server solutions allow the end user to use the PC’s GUI, thereby improving functionality and simplicity.
In particular, using the ubiquitous Web browser in conjunction with Java and .NET frameworks provides a
familiar end-user interface.

� More people in the job market have PC skills than mainframe skills. The majority of current students are
learning Java and .NET programming skills.

� The PC is well established in the workplace. In addition, the increased use of the Internet as a business channel,
coupled with security advances (SSL/TLS, virtual private networks, multifactor authentication, etc.) provide a
more reliable and secure platform for business transactions.

� Numerous data analysis and query tools exist to facilitate interaction with many of the DBMSs that are available
in the PC market.

� There is a considerable cost advantage to offloading applications development from the mainframe to powerful
PCs.

Client/server applications are also subject to some disadvantages.

� The client/server architecture creates a more complex environment in which different platforms (LANs,
operating systems, and so on) are often difficult to manage.

� An increase in the number of users and processing sites often paves the way for security problems.

� The client/server environment makes it possible to spread data access to a much wider circle of users. Such
an environment increases the demand for people with a broad knowledge of computers and software
applications. The burden of training increases the cost of maintaining the environment.

507D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

12.13 C. J. DATE’S TWELVE COMMANDMENTS FOR DISTRIBUTED DATABASES

The notion of distributed databases has been around for at least 20 years. With the rise of relational databases, most
vendors implemented their own versions of distributed databases, generally highlighting their respective product’s
strengths. To make the comparison of distributed databases easier, C. J. Date formulated 12 “commandments” or
basic principles of distributed databases.2 Although no current DDBMS conforms to all of them, they constitute a useful
target. The 12 rules are as follows:

1. Local site independence. Each local site can act as an independent, autonomous, centralized DBMS. Each site
is responsible for security, concurrency control, backup, and recovery.

2. Central site independence. No site in the network relies on a central site or any other site. All sites have the
same capabilities.

3. Failure independence. The system is not affected by node failures. The system is in continuous operation even
in the case of a node failure or an expansion of the network.

4. Location transparency. The user does not need to know the location of data in order to retrieve those data.

5. Fragmentation transparency. Data fragmentation is transparent to the user, who sees only one logical
database. The user does not need to know the name of the database fragments in order to retrieve them.

6. Replication transparency. The user sees only one logical database. The DDBMS transparently selects the
database fragment to access. To the user, the DDBMS manages all fragments transparently.

7. Distributed query processing. A distributed query may be executed at several different DP sites. Query
optimization is performed transparently by the DDBMS.

8. Distributed transaction processing. A transaction may update data at several different sites, and the
transaction is executed transparently.

9. Hardware independence. The system must run on any hardware platform.

10. Operating system independence. The system must run on any operating system platform.

11. Network independence. The system must run on any network platform.

12. Database independence. The system must support any vendor’s database product.

2 Date, C. J. “Twelve Rules for a Distributed Database,” Computer World, June 8, 1987, 2(23) pp. 77–81.

O n l i n e C o n t e n t

Refer to Appendix F, Client/Server Systems, in the Premium Website for this book, for complete coverage of
client/server computing concepts, components, and managerial implications.

508 C H A P T E R 1 2

S u m m a r y

◗ A distributed database stores logically related data in two or more physically independent sites connected via a
computer network. The database is divided into fragments, which can be horizontal (a set of rows) or vertical (a set
of attributes). Each fragment can be allocated to a different network node.

◗ Distributed processing is the division of logical database processing among two or more network nodes. Distributed
databases require distributed processing. A distributed database management system (DDBMS) governs the
processing and storage of logically related data through interconnected computer systems.

◗ The main components of a DDBMS are the transaction processor (TP) and the data processor (DP). The
transaction processor component is the software that resides on each computer node that requests data. The data
processor component is the software that resides on each computer that stores and retrieves data.

◗ Current database systems can be classified by the extent to which they support processing and data distribution.
Three major categories are used to classify distributed database systems: (1) single-site processing, single-site data
(SPSD); (2) multiple-site processing, single-site data (MPSD); and (3) multiple-site processing, multiple-site data
(MPMD).

◗ A homogeneous distributed database system integrates only one particular type of DBMS over a computer
network. A heterogeneous distributed database system integrates several different types of DBMSs over a computer
network.

◗ DDBMS characteristics are best described as a set of transparencies: distribution, transaction, failure, heterogene-
ity, and performance. All transparencies share the common objective of making the distributed database behave as
though it were a centralized database system; that is, the end user sees the data as part of a single logical centralized
database and is unaware of the system’s complexities.

◗ A transaction is formed by one or more database requests. An undistributed transaction updates or requests data
from a single site. A distributed transaction can update or request data from multiple sites.

◗ Distributed concurrency control is required in a network of distributed databases. A two-phase COMMIT protocol
is used to ensure that all parts of a transaction are completed.

◗ A distributed DBMS evaluates every data request to find the optimum access path in a distributed database. The
DDBMS must optimize the query to reduce access, communications, and CPU costs associated with the query.

◗ The design of a distributed database must consider the fragmentation and replication of data. The designer must
also decide how to allocate each fragment or replica to obtain better overall response time and to ensure data
availability to the end user.

◗ A database can be replicated over several different sites on a computer network. The replication of the database
fragments has the objective of improving data availability, thus decreasing access time. A database can be partially,
fully, or not replicated. Data allocation strategies are designed to determine the location of the database fragments
or replicas.

◗ Database vendors often label software as client/server database products. The client/server architecture label refers
to the way in which two computers interact over a computer network to form a system.

509D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

K e y T e r m s

application processor (AP), 487

automatic query optimization, 500

centralized data allocation, 506

client/server architecture, 490

coordinator, 499

data allocation, 506

database fragments, 484

data fragmentation, 501

data manager (DM), 487

data processor (DP), 487

data replication, 504

distributed database, 484

distributed database management
system (DDBMS), 481

distributed data catalog (DDC), 494

distributed data dictionary
(DDD), 494

distributed global schema, 494

distributed processing, 484

distributed request, 496

distributed transaction, 495

distribution transparency, 491

DO-UNDO-REDO protocol, 499

dynamic query optimization, 501

dynamic statistical generation
mode, 501

failure transparency, 491

fragmentation transparency, 492

fully heterogeneous DDBMS, 490

fully replicated database, 506

heterogeneity transparency, 492

heterogeneous DDBMS, 490

homogeneous DDBMS, 490

horizontal fragmentation, 501

local mapping transparency, 492

location transparency, 492

manual query optimization, 500

manual statistical generation
mode, 501

mixed fragmentation, 501

multiple-site processing, multiple-site
data (MPMD), 490

multiple-site processing, single-site
data (MPSD), 489

mutual consistency rule, 504

partially replicated database, 506

partitioned data allocation, 506

performance transparency, 491

remote request, 494

remote transaction, 494

replica transparency, 500

replicated data allocation, 506

rule-based query optimization
algorithm, 501

single-site processing, single-site
data (SPSD), 488

static query optimization, 500

statistically based query optimization
algorithm, 501

subordinates, 499

transaction manager (TM), 487

transaction processor (TP), 487

transaction transparency, 491

two-phase commit protocol, 498

unique fragment, 492

unreplicated database, 506

vertical fragmentation, 501

write-ahead protocol, 499

R e v i e w Q u e s t i o n s

1. Describe the evolution from centralized DBMSs to distributed DBMSs.

2. List and discuss some of the factors that influenced the evolution of the DDBMS.

3. What are the advantages of the DDBMS?

4. What are the disadvantages of the DDBMS?

5. Explain the difference between a distributed database and distributed processing.

6. What is a fully distributed database management system?

7. What are the components of a DDBMS?

8. List and explain the transparency features of a DDBMS.

9. Define and explain the different types of distribution transparency.

O n l i n e C o n t e n t

Answers to selected ReviewQuestions and Problems for this chapter are contained in the PremiumWebsite for
this book.

510 C H A P T E R 1 2

10. Describe the different types of database requests and transactions.

11. Explain the need for the two-phase commit protocol. Then describe the two phases.

12. What is the objective of query optimization functions?

13. To which transparency feature are the query optimization functions related?

14. What are the different types of query optimization algorithms?

15. Describe the three data fragmentation strategies. Give some examples of each.

16. What is data replication, and what are the three replication strategies?

17. Explain the difference between distributed databases and client/server architecture.

P r o b l e m s

The first problem is based on the DDBMS scenario in Figure P12.1.

1. Specify the minimum type(s) of operation(s) the database must support (remote request, remote transaction,
distributed transaction, or distributed request) to perform the following operations:

At site C

a. SELECT *
FROM CUSTOMER;

b. SELECT *
FROM INVOICE
WHERE INV_TOT > 1000;

c. SELECT *
FROM PRODUCT
WHERE PROD_ QOH < 10;

FIGURE
P12.1

The DDBMS scenario for Problem 1

TABLES LOCATIONFRAGMENTS

CUSTOMER
PRODUCT

INVOICE
INV_LINE

N/A
PROD_A
PROD_B
N/A
N/A

A
A
B
B
B

Site C

511D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

d. BEGIN WORK;
UPDATE CUSTOMER
SET CUS_BAL = CUS_BAL + 100
WHERE CUS_NUM = '10936';
INSERT INTO INVOICE(INV_NUM, CUS_NUM, INV_DATE, INV_TOTAL)

VALUES ('986391', '10936', '15-FEB-2010', 100);
INSERT INTO LINE(INV_NUM, PROD_NUM, LINE_PRICE)

VALUES('986391', '1023', 100);
UPDATE PRODUCT
SET PROD_QOH = PROD_ QOH –1
WHERE PROD_NUM = '1023'; COMMIT WORK;

e. BEGIN WORK;
INSERT INTO CUSTOMER(CUS_NUM, CUS_NAME, CUS_ADDRESS, CUS_BAL)

VALUES ('34210', 'Victor Ephanor', '123 Main St.', 0.00);
INSERT INTO INVOICE(INV_NUM, CUS_NUM, INV_DATE, INV_TOTAL)

VALUES ('986434', '34210', '10-AUG-2009', 2.00);
COMMIT WORK;

At site A

f. SELECT CUS_NUM,CUS_NAME,INV_TOTAL
FROM CUSTOMER, INVOICE
WHERE CUSTOMER.CUS_NUM = INVOICE.CUS_NUM;

g. SELECT *
FROM INVOICE
WHERE INV_TOTAL > 1000;

h. SELECT *
FROM PRODUCT
WHERE PROD_QOH < 10;

At site B

i. SELECT *
FROM CUSTOMER;

j. SELECT CUS_NAME, INV_TOTAL
FROM CUSTOMER, INVOICE
WHERE INV_TOTAL > 1000 AND CUSTOMER.CUS_NUM = INVOICE.CUS_NUM;

k. SELECT *
FROM PRODUCT
WHERE PROD_QOH < 10;

512 C H A P T E R 1 2

2. The following data structure and constraints exist for a magazine publishing company:

a. The company publishes one regional magazine in each region: Florida (FL), South Carolina (SC),
Georgia (GA), and Tennessee (TN).

b. The company has 300,000 customers (subscribers) distributed throughout the four states listed in Part a.

c. On the first of each month, an annual subscription INVOICE is printed and sent to each customer whose
subscription is due for renewal. The INVOICE entity contains a REGION attribute to indicate the state (FL,
SC, GA, TN) in which the customer resides:

CUSTOMER (CUS_NUM, CUS_NAME, CUS_ADDRESS, CUS_CITY, CUS_ZIP, CUS_SUBSDATE)
INVOICE (INV_NUM, INV_REGION, CUS_NUM, INV_DATE, INV_TOTAL)

The company’s management is aware of the problems associated with centralized management and has
decided to decentralize management of the subscriptions into the company’s four regional subsidiaries. Each
subscription site will handle its own customer and invoice data. The management at company headquarters,
however, will have access to customer and invoice data to generate annual reports and to issue ad hoc queries
such as:

� List all current customers by region.

� List all new customers by region.

� Report all invoices by customer and by region.

Given those requirements, how must you partition the database?

3. Given the scenario and the requirements in Question 2, answer the following questions:

a. What recommendations will you make regarding the type and characteristics of the required database system?

b. What type of data fragmentation is needed for each table?

c. What criteria must be used to partition each database?

d. Design the database fragments. Show an example with node names, location, fragment names, attribute
names, and demonstration data.

e. What type of distributed database operations must be supported at each remote site?

f. What type of distributed database operations must be supported at the headquarters site?

513D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

Preview

Business Intelligence and Data Warehouses

In this chapter, you will learn:

� How business intelligence is a comprehensive framework to support business decision
making

� How operational data and decision support data differ

� What a data warehouse is, how to prepare data for one, and how to implement one

� What star schemas are and how they are constructed

� What data mining is and what role it plays in decision support

� About online analytical processing (OLAP)

� How SQL extensions are used to support OLAP-type data manipulations

Data are crucial raw material in this information age, and data storage and management have

become the focus of database design and implementation. Ultimately, the reason for

collecting, storing, and managing data is to generate information that becomes the basis for

rational decision making. Decision support systems (DSSs) were originally developed to

facilitate the decision-making process. However, as the complexity and range of information

requirements increased, so did the difficulty of extracting all the necessary information from

the data structures typically found in an operational database.Therefore, a new data storage

facility, called a data warehouse, was developed.The data warehouse extracts or obtains its

data from operational databases as well as from external sources, providing a more

comprehensive data pool.

In parallel with data warehouses, new ways to analyze and present decision support data

were developed. Online analytical processing (OLAP) provides advanced data analysis and

presentation tools (including multidimensional data analysis). Data mining employs advanced

statistical tools to analyze the wealth of data now available through data warehouses and

other sources and to identify possible relationships and anomalies.

Business intelligence (BI) is the collection of best practices and software tools developed to

support business decision making in this age of globalization, emerging markets, rapid

change, and increasing regulation. BI encompasses tools and techniques such as data

warehouses and OLAP, with a more comprehensive focus on integrating them from a

company-wide perspective.

This chapter explores the main concepts and components of business intelligence and

decision support systems that gather, generate, and present information for business

decision makers, focusing especially on the use of data warehouses.

13
T

H
I

R
T

E
E

N

a

13.1 THE NEED FOR DATA ANALYSIS

Organizations tend to grow and prosper as they gain a better understanding of their environment. Most managers want
to be able to track daily transactions to evaluate how the business is performing. By tapping into the operational
database, management can develop strategies to meet organizational goals. In addition, data analysis can provide
information about short-term tactical evaluations and strategies such as these: Are our sales promotions working? What
market percentage are we controlling? Are we attracting new customers? Tactical and strategic decisions are also
shaped by constant pressure from external and internal forces, including globalization, the cultural and legal
environment, and (perhaps most importantly) technology.

Given the many and varied competitive pressures, managers are always looking for a competitive advantage through
product development and maintenance, service, market positioning, sales promotion, and so on. Managers understand
that the business climate is dynamic, and thus, mandates their prompt reaction to change in order to remain
competitive. In addition, the modern business climate requires managers to approach increasingly complex problems
that involve a rapidly growing number of internal and external variables. It should also come as no surprise that interest
is growing in creating support systems dedicated to facilitating quick decision making in a complex environment.

Different managerial levels require different decision support needs. For example, transaction-processing systems,
based on operational databases, are tailored to serve the information needs of people who deal with short-term
inventory, accounts payable, and purchasing. Middle-level managers, general managers, vice presidents, and presi-
dents focus on strategic and tactical decision making. Those managers require detailed information designed to help
them make decisions in a complex data and analysis environment.

Companies and software vendors addressed these multilevel decision support needs by creating independent
applications to fit the needs of particular areas (finance, customer management, human resources, product support,
etc.). Applications were also tailored to different industry sectors such as education, retail, health care, or financial. This
approach worked well for some time, but changes in the business world (globalization, expanding markets, mergers
and acquisitions, increased regulation, and more) called for new ways of integrating and managing data across levels,
sectors, and geographic locations. This more comprehensive and integrated decision support framework within
organizations became known as business intelligence.

13.2 BUSINESS INTELLIGENCE

Business intelligence (BI)1 is a term used to describe a comprehensive, cohesive, and integrated set of tools and
processes used to capture, collect, integrate, store, and analyze data with the purpose of generating and presenting
information used to support business decision making. As the names implies, BI is about creating intelligence about
a business. This intelligence is based on learning and understanding the facts about a business environment. BI is a
framework that allows a business to transform data into information, information into knowledge, and knowledge into
wisdom. BI has the potential to positively affect a company’s culture by creating “business wisdom” and distributing it
to all users in an organization. This business wisdom empowers users to make sound business decisions based on the
accumulated knowledge of the business as reflected on recorded facts (historic operational data). Table 13.1 gives some
real-world examples of companies that have implemented BI tools (data warehouse, data mart, OLAP, and/or
data-mining tools) and shows how the use of such tools benefited the companies.

1 In 1989, while working at Gartner Inc., Howard Dresner popularized “BI” as an umbrella term to describe a set of concepts and methods to improve
business decision making by using fact-based support systems. Source: http://www.computerworld.com/action/article.do?command=
viewArticleBasic&articleId=266298.

515B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

TABLE
13.1

Solving Business Problems and Adding Value with BI Tools

COMPANY PROBLEM BENEFIT
CiCi’s Enterprises
Eighth largest pizza chain in
the U.S. Operates 650 pizza
restaurants in 30 states
Source: Cognos Corp.
www.cognos.com

• Information access was cumber-
some and time-consuming.

• Needed to increase accuracy in
the creation of marketing budgets.

• Needed an easy, reliable and effi-
cient way to access daily data.

• Provided accurate, timely budgets
in less time.

• Provided analysts with access to
data for decision-making
purposes.

• Received in-depth view of prod-
uct performance by store to
reduce waste and increase profits.

NASDAQ
Largest U.S. electronic stock
market trading organization
Source: Oracle
www.oracle.com

• Inability to provide real-time ad
hoc query and standard reporting
for executives, business analysts,
and other users.

• Excessive storage costs for many
terabytes of data.

• Reduced storage cost by moving to
a multitier storage solution.

• Implemented new data warehouse
center with support for ad hoc
query and reporting and near-real-
time data access for end users.

Pfizer
Global pharmaceutical
company
Source: Oracle Corp.
www.oracle.com

• Needed a way to control costs and
adjust to tougher market conditions,
international competition, and
increasing government regulations.

• Need for better analytical capabili-
ties and flexible decision-making
framework.

• Ability to get and integrate financial
data from multiple sources in a reli-
able way.

• Streamlined standards-based finan-
cial analysis to improve forecasting
process.

• Faster and smarter decision making
for business strategy formulation.

Swisscom
Switzerland’s leading telecom-
munications provider
Source: Microsoft Corp.
www.microsoft.com

• Needed a tool to help employees
monitor service level compliance.

• Had a time-consuming process to
generate performance reports.

• Needed a way to integrate data
from 200 different systems.

• Ability to monitor performance
using dashboard technology.

• Quick and easy access to real-time
performance data.

• Managers have closer and better
control over costs.

BI is a comprehensive endeavor because it encompasses all business processes within an organization. Business
processes are the central units of operation in a business. Implementing BI in an organization involves capturing not
only business data (internal and external) but also the metadata, or knowledge about the data. In practice, BI is a
complex proposition that requires a deep understanding and alignment of the business processes, the internal and
external data, and the information needs of users at all levels in an organization.

BI is not a product by itself, but a framework of concepts, practices, tools, and technologies that help a business better
understand its core capabilities, provide snapshots of the company situation, and identify key opportunities to create
competitive advantage. In practice, BI provides a well-orchestrated framework for the management of data that works
across all levels of the organization. BI involves the following general steps:

1. Collecting and storing operational data.

2. Aggregating the operational data into decision support data.

3. Analyzing decision support data to generate information.

4. Presenting such information to the end user to support business decisions.

5. Making business decisions, which in turn generate more data that is collected, stored, etc. (restarting the
process).

6. Monitoring results to evaluate outcomes of the business decisions (providing more data to be collected,
stored, etc.).

516 C H A P T E R 1 3

To implement all these steps, BI uses varied components and technologies. In the following sections, you will learn
about the basic BI architecture and implementations.

13.3 BUSINESS INTELLIGENCE ARCHITECTURE

BI covers a range of technologies and applications to manage the entire data life cycle from acquisition to storage,
transformation, integration, analysis, monitoring, presentation, and archiving. BI functionality ranges from simple data
gathering and extraction to very complex data analysis and presentation. There is no single BI architecture; instead,
it ranges from highly integrated applications from a single vendor to a loosely integrated, multivendor environment.
However, there are some general types of functionality that all BI implementations share.

Like any critical business IT infrastructure, the BI architecture is composed of data, people, processes, technology, and
the management of such components. Figure 13.1 depicts how all those components fit together within the BI
framework.

Remember that the main focus of BI is to gather, integrate, and store business data for the purpose of creating
information. As depicted in Figure 13.1, BI integrates people and processes using technology in order to add value to
the business. Such value is derived from how end users use such information in their daily activities, and in particular,
their daily business decision making. Also note that the BI technology components are varied. This chapter will explain
those components in greater detail in the following sections.

The focus of traditional information systems was on operational automation and reporting; in contrast, BI tools focus
on the strategic and tactical use of information. In order to achieve this goal, BI recognizes that technology alone is

FIGURE
13.1

Business intelligence framework

Business Intelligence Technologies

Processes

Management Governance

Data visualization

Query
tool

Reporting
tool

Data
mining

OLAP

People

Extraction,
Transformation,

Loading

Operational
data

Data
warehouse

Data mart

517B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

not enough. Therefore, BI uses an arrangement of the best management practices to manage data as a corporate
asset. One of the most recent developments in this area is the use of master data management techniques. Master
data management (MDM) is a collection of concepts, techniques, and processes for the proper identification,
definition, and management of data elements within an organization. MDM’s main goal is to provide a comprehensive
and consistent definition of all data within an organization. MDM ensures that all company resources (people,
procedures, and IT systems) that operate over data have uniform and consistent views of the company’s data.

An added benefit of this meticulous approach to data management and decision making is that it provides a framework
for business governance. Governance is a method or process of government. In this case, BI provides a method for
controlling and monitoring business health and for consistent decision making. Furthermore, having such governance
creates accountability for business decisions. In the present age of business flux, accountability is increasingly
important. Had governance been as pivotal to business operations a few years back, crises precipitated by the likes of
Enron, WorldCom, Arthur Andersen, and the 2008 financial meltdown (Lehman Brothers, Bear-Stearns, Morgan
Stanley, etc.) might have been avoided.

Monitoring a business’s health is crucial to understanding where the company is and where it is headed. In order to
do this, BI makes extensive use of a special type of metrics known as key performance indicators. Key performance
indicators (KPI) are quantifiable measurements (numeric or scale based) that assess the company’s effectiveness or
success in reaching its strategic and operational goals. There are many different KPI used by different industries. Some
examples of KPI are:

� General. Year-to-year measurements of profit by line of business, same store sales, product turnovers, product
recalls, sales by promotion, sales by employee, etc.

� Finance. Earnings per share, profit margin, revenue per employee, percentage of sales to account receivables,
assets to sales, etc.

� Human resources. Applicants to job openings, employee turnover, employee longevity, etc.

� Education. Graduation rates, number of incoming freshmen, student retention rates, etc.

KPIs are determined after the main strategic, tactical, and operational goals for a business are defined. To tie the KPI
to the strategic master plan of an organization, a KPI will be compared to a desired goal within a specific time frame.
For example, if you are in an academic environment, you might be interested in ways to measure student satisfaction
or retention. In this case, a sample goal would be to “Increase the graduating senior average exit exam grades from
9 to 12 by fall, 2012.” Another sample KPI would be: “Increase the returning student rate of freshman year to
sophomore year from 60% to 75% by 2014.” In this case, such performance indicators would be measured and
monitored on a year-to-year basis, and plans to achieve such goals would be set in place.

Another way to understand BI architecture is by describing the basic components that form part of its infrastructure.
Some of the components have overlapping functionality; however, there are four basic components that all BI
environments should provide. These are described in Table 13.2 and illustrated in Figure 13.2.

TABLE
13.2

Basic BI Architectural Components

COMPONENT DESCRIPTION
ETL tools Data extraction, transformation, and loading (ETL) tools collect, filter, integrate, and

aggregate operational data to be saved into a data store optimized for decision support.
For example, to determine the relative market share by selected product lines, you
require data on competitors' products. Such data can be located in external databases
provided by industry groups or by companies that market the data. As the name implies,
this component extracts the data, filters the extracted data to select the relevant records,
and packages the data in the right format to be added to the data store component.

518 C H A P T E R 1 3

TABLE
13.2

Basic BI Architectural Components (continued)

COMPONENT DESCRIPTION
Data store The data store is optimized for decision support and is generally represented by a data

warehouse or a data mart. The data store contains two main types of data: business data
and business model data. The business data are extracted from the operational database
and from external data sources. The business data is stored in structures that are opti-
mized for data analysis and query speed. The external data sources provide data that can-
not be found within the company but that are relevant to the business, such as stock
prices, market indicators, marketing information (such as demographics), and competitors’
data. Business models are generated by special algorithms that model the business to
identify and enhance the understanding of business situations and problems.

Data query and
analysis tools

This component performs data retrieval, data analysis, and data-mining tasks using the
data in the data store. This component is used by the data analyst to create the queries
that access the database. Depending on the implementation, the query tool accesses
either the operational database, or more commonly, the data store. This tool advises the
user on which data to select and how to build a reliable business data model. This com-
ponent is generally represented in the form of an OLAP tool.

Data presentation and
visualization tools

This component is in charge of presenting the data to the end user in a variety of ways.
This component is used by the data analyst to organize and present the data. This tool
helps the end user select the most appropriate presentation format, such as summary
report, map, pie or bar graph, or mixed graphs. The query tool and the presentation tool
are the front end to the BI environment.

FIGURE
13.2

Business intelligence architectural component

End-user
query tool

Data extraction,
transformation,

and loading

Data store

End-user presentation and
data visualization tool

External data

Operational data
25,000
20,000
15,000
10,000
 5,000
 0

Sales Expenses Profits
14,000 9,500 4,500

17,000 11,000 6,000

21,000 14,000 7,000

Decision support
data

Business data
analysis modelsETL

519B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

Each BI component shown in Table 13.2 has generated a fast-growing market for specialized tools. And thanks to the
advancement of client/server technologies, those components can interact with other components to form a truly
open architecture. As a matter of fact, you can integrate multiple tools from different vendors into a single BI
framework. Table 13.3 shows a sample of common BI tools and vendors.

TABLE
13.3

Sample of Business Intelligence Tools

TOOL DESCRIPTION SAMPLE VENDORS
Decision support
systems

A decision support system (DSS) is an arrangement of com-
puterized tools used to assist managerial decision making
within a business. Decision support systems were the
precursors of modern BI systems. A DSS typically has a much
narrower focus and reach than a BI solution.

SAP
Teradata
IBM
Proclarity

Dashboards and
business activity
monitoring

dashboards use Web-based technologies to present key busi-
ness performance indicators or information in a single inte-
grated view, generally using graphics in a clear, concise, and
easy to understand manner.

Salesforce
VisualCalc
Cognos/IBM
BusinessObjects
Information Builders
Actuate

Portals portals provide a unified, single point of entry for information
distribution. Portals are a Web-based technology that uses a
Web browser to integrate data from multiple sources into a
single Web page. Many different types of BI functionality can
be accessed through a portal.

Oracle Portal
Actuate
Microsoft

Data analysis and
reporting tools

Advanced tools used to query multiple diverse data sources to
create single integrated reports.

Mircrosoft Reporting
Services
Information Builders
Eclipse BIRT
MicroStrategy
SAS WebReportStudio

Data-mining tools Tools that provide advanced statistical analysis to uncover
problems and opportunities hidden within business data.

MicroStrategy Intelligence
MS Analytics Services

Data warehouses
(DW)

The data warehouse is the foundation on which a BI infrastruc-
ture is built. Data is captured from the OLTP system and placed
in the DW on near-real-time basis. BI provides company-wide
integration of data and the capability to respond to business
issues in a timely manner.

Microsoft
Oracle
IBM/Cognos
MicroStrategy

OLAP tools Online analytical processing provides multidimensional data
analysis.

Cognos/IBM
BusinessObjects
Oracle
Microsoft

Data visualization Tools that provide advanced visual analysis and techniques to
enhance understanding of business data.

Dundas
iDashboards

Although BI has an unquestionably important role in modern business operations, keep in mind that the manager must
initiate the decision support process by asking the appropriate questions. The BI environment exists to support the
manager; it does not replace the management function. If the manager fails to ask the appropriate questions, problems
will not be identified and solved, and opportunities will be missed. In spite of the very powerful BI presence, the human
component is still at the center of business technology.

Note

Although the term BI includes a variety of components and tools, this chapter focuses on its data warehouse
component.

520 C H A P T E R 1 3

13.4 DECISION SUPPORT DATA

Although BI is used at strategic and tactical managerial levels within organizations, its effectiveness depends on the
quality of data gathered at the operational level. Yet operational data are seldom well suited to the decision support
tasks. The differences between operational data and decision support data are examined in the next section.

13.4.1 Operational Data vs. Decision Support Data

Operational data and decision support data serve different purposes. Therefore, it is not surprising to learn that their
formats and structures differ.

Most operational data are stored in a relational database in which the structures (tables) tend to be highly normalized.
Operational data storage is optimized to support transactions that represent daily operations. For example, each time
an item is sold, it must be accounted for. Customer data, inventory data, and so on, are in a frequent update mode.
To provide effective update performance, operational systems store data in many tables, each with a minimum number
of fields. Thus, a simple sales transaction might be represented by five or more different tables (for example, invoice,
invoice line, discount, store, and department). Although such an arrangement is excellent in an operational database,
it is not efficient for query processing. For example, to extract a simple invoice, you would have to join several tables.
Whereas operational data are useful for capturing daily business transactions, decision support data give tactical and
strategic business meaning to the operational data. From the data analyst’s point of view, decision support data differ
from operational data in three main areas: time span, granularity, and dimensionality.

� Time span. Operational data cover a short time frame. In contrast, decision support data tend to cover a longer
time frame. Managers are seldom interested in a specific sales invoice to customer X; rather, they tend to focus
on sales generated during the last month, the last year, or the last five years.

� Granularity (level of aggregation). Decision support data must be presented at different levels of aggregation,
from highly summarized to near-atomic. For example, if managers must analyze sales by region, they must be
able to access data showing the sales by region, by city within the region, by store within the city within the
region, and so on. In that case, summarized data to compare the regions is required, and also data in a structure
that enables a manager to drill down, or decompose, the data into more atomic components (that is,
finer-grained data at lower levels of aggregation). In contrast, when you roll up the data, you are aggregating
the data to a higher level.

� Dimensionality. Operational data focus on representing individual transactions rather than on the effects of
the transactions over time. In contrast, data analysts tend to include many data dimensions and are interested
in how the data relate over those dimensions. For example, an analyst might want to know how product X
fared relative to product Z during the past six months by region, state, city, store, and customer. In that case,
both place and time are part of the picture.

Figure 13.3 shows how decision support data can be examined from multiple dimensions (such as product, region, and
year), using a variety of filters to produce each dimension. The ability to analyze, extract, and present information in
meaningful ways is one of the differences between decision support data and transaction-at-a-time operational data.

From the designer’s point of view, the differences between operational and decision support data are as follows:

� Operational data represent transactions as they happen in real time. Decision support data are a snapshot of
the operational data at a given point in time. Therefore, decision support data are historic, representing a time
slice of the operational data.

� Operational and decision support data are different in terms of transaction type and transaction volume. Whereas
operational data are characterized by update transactions, decision support data are mainly characterized by
query (read-only) transactions. Decision support data also require periodic updates to load new data that are
summarized from the operational data. Finally, the concurrent transaction volume in operational data tends to
be very high when compared with the low-to-medium levels found in decision support data.

521B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

� Operational data are commonly stored in many tables, and the stored data represent the information about a
given transaction only. Decision support data are generally stored in a few tables that store data derived from
the operational data. The decision support data do not include the details of each operational transaction.
Instead, decision support data represent transaction summaries; therefore, the decision support database
stores data that are integrated, aggregated, and summarized for decision support purposes.

� The degree to which decision support data are summarized is very high when contrasted with operational data.
Therefore, you will see a great deal of derived data in decision support databases. For example, rather than
storing all 10,000 sales transactions for a given store on a given day, the decision support database might
simply store the total number of units sold and the total sales dollars generated during that day. Decision
support data might be collected to monitor such aggregates as total sales for each store or for each product.
The purpose of the summaries is simple: they are to be used to establish and evaluate sales trends, product
sales comparisons, and so on, that serve decision needs. (How well are items selling? Should this product be
discontinued? Has the advertising been effective as measured by increased sales?)

FIGURE
13.3

Transforming operational data into decision support data

Operational Data Decision Support Data

Operational data have a narrow time span, low
granularity, and single focus. Such data are usually
presented in tabular format, in which each row
represents a single transaction. This format often
makes it difficult to derive useful information.

Decision support system (DSS) data focus on a broader
timespan, tend to have high levels of granularity, and can be
examined in multiple dimensions. For example, note these
possible aggregations:

• Sales by product, region, agent, etc.
• Sales for all years or only a few selected years.
• Sales for all products or only a few selected products.

Region

Sales

Agent

Product

Time

O n l i n e C o n t e n t

The operational data in Figure 13.3 are found in the PremiumWebsite for this book. The decision support data
in Figure 13.3 shows the output for the solution to Problem 2 at the end of this chapter.

522 C H A P T E R 1 3

� The data models that govern operational data and decision support data are different. The operational
database’s frequent and rapid data updates make data anomalies a potentially devastating problem. Therefore,
the data requirements in a typical relational transaction (operational) system generally require normalized
structures that yield many tables, each of which contains the minimum number of attributes. In contrast, the
decision support database is not subject to such transaction updates, and the focus is on querying capability.
Therefore, decision support databases tend to be non-normalized and include few tables, each of which
contains a large number of attributes.

� Query activity (frequency and complexity) in the operational database tends to be low to allow additional
processing cycles for the more crucial update transactions. Therefore, queries against operational data typically
are narrow in scope, low in complexity, and speed-critical. In contrast, decision support data exist for the sole
purpose of serving query requirements. Queries against decision support data typically are broad in scope, high
in complexity, and less speed-critical.

� Finally, decision support data are characterized by very large amounts of data. The large data volume is the
result of two factors. First, data are stored in non-normalized structures that are likely to display many data
redundancies and duplications. Second, the same data can be categorized in many different ways to represent
different snapshots. For example, sales data might be stored in relation to product, store, customer, region, and
manager.

Table 13.4 summarizes the differences between operational and decision support data from the database designer’s
point of view.

TABLE
13.4

Contrasting Operational and Decision Support Data Characteristics

CHARACTERISTIC OPERATIONAL DATA DECISION SUPPORT DATA
Data currency Current operations

Real-time data
Historic data
Snapshot of company data
Time component (week/month/year)

Granularity Atomic-detailed data Summarized data
Summarization level Low; some aggregate yields High; many aggregation levels
Data model Highly normalized

Mostly relational DBMS
Non-normalized
Complex structures
Some relational, but mostly multidimensional
DBMS

Transaction type Mostly updates Mostly query
Transaction volumes High update volumes Periodic loads and summary calculations
Transaction speed Updates are critical Retrievals are critical
Query activity Low-to-medium High
Query scope Narrow range Broad range
Query complexity Simple-to-medium Very complex
Data volumes Hundreds of gigabytes Terabytes to petabytes

The many differences between operational data and decision support data are good indicators of the requirements of
the decision support database, described in the next section.

13.4.2 Decision Support Database Requirements

A decision support database is a specialized DBMS tailored to provide fast answers to complex queries. There are four
main requirements for a decision support database: the database schema, data extraction and loading, the end-user
analytical interface, and database size.

523B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

Database Schema
The decision support database schema must support complex (non-normalized) data representations. As noted earlier,
the decision support database must contain data that are aggregated and summarized. In addition to meeting those
requirements, the queries must be able to extract multidimensional time slices. If you are using an RDBMS, the
conditions suggest using non-normalized and even duplicated data. To see why this must be true, take a look at the
10-year sales history for a single store containing a single department. At this point, the data are fully normalized
within the single table, as shown in Table 13.5.

This structure works well when you have only one store with
only one department. However, it is very unlikely that such a
simple environment has much need for a decision support
database. One would suppose that a decision support data-
base becomes a factor when dealing with more than one
store, each of which has more than one department. To
support all of the decision support requirements, the data-
base must contain data for all of the stores and all of their
departments—and the database must be able to support
multidimensional queries that track sales by stores, by depart-
ments, and over time. For simplicity, suppose that there are
only two stores (A and B) and two departments (1 and 2)
within each store. Let’s also change the time dimension to
include yearly data. Table 13.6 shows the sales figures under
the specified conditions. Only 2000, 2004, and 2009 are
shown; ellipses (...) are used to indicate that data values were

omitted. You can see in Table 13.6 that the number of rows and attributes already multiplies quickly and that the table
exhibits multiple redundancies.

TABLE
13.6

Yearly Sales Summaries, Two Stores and Two Departments per Store, in Millions
of Dollars

YEAR STORE DEPARTMENT SALES
2000 A 1 1,985
2000 A 2 2,401
2000 B 1 1,879
2000 B 2 1,962
� � � �

2004 A 1 3,912
2004 A 2 4,158
2004 B 1 3,426
2004 B 2 1,203
� � � �

2009 A 1 7,683
2009 A 2 6,912
2009 B 1 3,768
2009 B 2 1,623

Now suppose that the company has 10 departments per store and 20 stores nationwide. And suppose that you want
to access yearly sales summaries. Now you are dealing with 200 rows and 12 monthly sales attributes per row.
(Actually, there are 13 attributes per row if you add each store’s sales total for each year.)

TABLE
13.5

Ten-Year Sales History for a Single-
Department, in Millions of Dollars

YEAR SALES
2000 8,227
2001 9,109
2002 10,104
2003 11,553
2004 10,018
2005 11,875
2006 12,699
2007 14,875
2008 16,301
2009 19,986

524 C H A P T E R 1 3

The decision support database schema must also be optimized for query (read-only) retrievals. To optimize query speed,
the DBMS must support features such as bitmap indexes and data partitioning to increase search speed. In addition,
the DBMS query optimizer must be enhanced to support the non-normalized and complex structures found in decision
support databases.

Data Extraction and Filtering
The decision support database is created largely by extracting data from the operational database and by importing
additional data from external sources. Thus, the DBMS must support advanced data extraction and data-filtering tools.
To minimize the impact on the operational database, the data extraction capabilities should allow batch and scheduled
data extraction. The data extraction capabilities should also support different data sources: flat files and hierarchical,
network, and relational databases, as well as multiple vendors. Data-filtering capabilities must include the ability to
check for inconsistent data or data validation rules. Finally, to filter and integrate the operational data into the decision
support database, the DBMS must support advanced data integration, aggregation, and classification.

Using data from multiple external sources also usually means having to solve data-formatting conflicts. For example,
data such as Social Security numbers and dates can occur in different formats; measurements can be based on different
scales, and the same data elements can have different names. In short, data must be filtered and purified to ensure that
only the pertinent decision support data are stored in the database and that they are stored in a standard format.

End-User Analytical Interface
The decision support DBMS must support advanced data-modeling and data presentation tools. Using those tools
makes it easy for data analysts to define the nature and extent of business problems. Once the problems have been
defined, the decision support DBMS must generate the necessary queries to retrieve the appropriate data from the
decision support database. If necessary, the query results may then be evaluated with data analysis tools supported by
the decision support DBMS. Because queries yield crucial information for decision makers, the queries must be
optimized for speedy processing. The end-user analytical interface is one of the most critical DBMS components.
When properly implemented, an analytical interface permits the user to navigate through the data to simplify and
accelerate the decision-making process.

Database Size
Decision support databases tend to be very large; gigabyte and terabyte ranges are not unusual. For example, in 2008,
Wal-Mart, the world’s largest company, had more than 4 petabytes of data in its data warehouses. As mentioned
earlier, the decision support database typically contains redundant and duplicated data to improve data retrieval and
simplify information generation. Therefore, the DBMS must be capable of supporting very large databases
(VLDBs). To support a VLDB adequately, the DBMS might be required to use advanced hardware, such as multiple
disk arrays, and even more importantly, to support multiple-processor technologies, such as a symmetric multipro-
cessor (SMP) or a massively parallel processor (MPP).

The complex information requirements and the ever-growing demand for sophisticated data analysis sparked the
creation of a new type of data repository. This repository contains data in formats that facilitate data extraction, data
analysis, and decision making. This data repository is known as a data warehouse and has become the foundation for
a new generation of decision support systems.

525B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

13.5 THE DATA WAREHOUSE

Bill Inmon, the acknowledged “father” of the data warehouse, defines the term as “an integrated, subject-oriented,
time-variant, nonvolatile collection of data (italics added for emphasis) that provides support for decision making.”2

To understand that definition, let’s take a more detailed look at its components.

� Integrated. The data warehouse is a centralized, consolidated database that integrates data derived from the
entire organization and from multiple sources with diverse formats. Data integration implies that all business
entities, data elements, data characteristics, and business metrics are described in the same way throughout
the enterprise. Although this requirement sounds logical, you would be amazed to discover how many different
measurements for “sales performance” can exist within an organization; the same scenario holds true for any
other business element. For instance, the status of an order might be indicated with text labels such as “open,”
“received,” “canceled,” and “closed” in one department and as “1,” “2,” “3,” and “4” in another department.
A student’s status might be defined as “freshman,” “sophomore,” “junior,” or “senior” in the accounting
department and as “FR,” “SO,” “JR,” or “SR” in the computer information systems department. To avoid the
potential format tangle, the data in the data warehouse must conform to a common format acceptable
throughout the organization. This integration can be time-consuming, but once accomplished, it enhances
decision making and helps managers better understand the company’s operations. This understanding can be
translated into recognition of strategic business opportunities.

� Subject-oriented. Data warehouse data are arranged and optimized to provide answers to questions coming
from diverse functional areas within a company. Data warehouse data are organized and summarized by topic,
such as sales, marketing, finance, distribution, and transportation. For each topic, the data warehouse contains
specific subjects of interest—products, customers, departments, regions, promotions, and so on. This form of
data organization is quite different from the more functional or process-oriented organization of typical
transaction systems. For example, an invoicing system designer concentrates on designing normalized data
structures (relational tables) to support the business process by storing invoice components in two tables:
INVOICE and INVLINE. In contrast, the data warehouse has a subject orientation. Data warehouse designers
focus specifically on the data rather than on the processes that modify the data. (After all, data warehouse data
are not subject to numerous real-time data updates!) Therefore, instead of storing an invoice, the data
warehouse stores its “sales by product” and “sales by customer” components because decision support
activities require the retrieval of sales summaries by product or customer.

� Time-variant. In contrast to operational data, which focus on current transactions, warehouse data represent the
flow of data through time. The data warehouse can even contain projected data generated through statistical and
other models. It is also time-variant in the sense that once data are periodically uploaded to the data warehouse,
all time-dependent aggregations are recomputed. For example, when data for previous weekly sales are uploaded
to the data warehouse, the weekly, monthly, yearly, and other time-dependent aggregates for products,
customers, stores, and other variables are also updated. Because data in a data warehouse constitute a snapshot
of the company history as measured by its variables, the time component is crucial. The data warehouse contains
a time ID that is used to generate summaries and aggregations by week, month, quarter, year, and so on. Once
the data enter the data warehouse, the time ID assigned to the data cannot be changed.

� Nonvolatile. Once data enter the data warehouse, they are never removed. Because the data in the warehouse
represent the company’s history, the operational data, representing the near-term history, are always added to
it. Because data are never deleted and new data are continually added, the data warehouse is always growing.
That’s why the DBMS must be able to support multigigabyte and even multiterabyte or greater databases,
operating on multiprocessor hardware. Table 13.7 summarizes the differences between data warehouses and
operational databases.

2 Inmon, Bill and Chuck Kelley. “The Twelve Rules of Data Warehouse for a Client/Server World,” Data Management Review, 4(5), May 1994,
pp. 6−16.

526 C H A P T E R 1 3

TABLE
13.7

Characteristics of Data Warehouse Data and Operational Database Data

CHARACTERISTIC OPERATIONAL DATABASE DATA DATA WAREHOUSE DATA
Integrated Similar data can have different represen-

tations or meanings. For example, Social
Security numbers may be stored as ###-
##-#### or as #########, and a
given condition may be labeled as T/F or
0/1 or Y/N. A sales value may be shown
in thousands or in millions.

Provide a unified view of all data elements
with a common definition and representation
for all business units.

Subject-oriented Data are stored with a functional, or pro-
cess, orientation. For example, data may
be stored for invoices, payments, and
credit amounts.

Data are stored with a subject orientation that
facilitates multiple views of the data and facili-
tates decision making. For example, sales may
be recorded by product, by division, by man-
ager, or by region.

Time-variant Data are recorded as current transactions.
For example, the sales data may be the
sale of a product on a given date, such as
$342.78 on 12-MAY-2010.

Data are recorded with a historical perspec-
tive in mind. Therefore, a time dimension is
added to facilitate data analysis and various
time comparisons.

Nonvolatile Data updates are frequent and common.
For example, an inventory amount
changes with each sale. Therefore, the
data environment is fluid.

Data cannot be changed. Data are added only
periodically from historical systems. Once the
data are properly stored, no changes are
allowed. Therefore, the data environment is
relatively static.

In summary, the data warehouse is usually a read-only database optimized for data analysis and query processing.
Typically, data are extracted from various sources and are then transformed and integrated—in other words, passed
through a data filter—before being loaded into the data warehouse. As mentioned, this process of extracting,
transforming, and loading the aggregated data into the data warehouse is known as ETL. Figure 13.4 illustrates the
ETL process to create a data warehouse from operational data.

Although the centralized and integrated data warehouse can be a very attractive proposition that yields many benefits,
managers may be reluctant to embrace this strategy. Creating a data warehouse requires time, money, and
considerable managerial effort. Therefore, it is not surprising that many companies begin their foray into data
warehousing by focusing on more manageable data sets that are targeted to meet the special needs of small groups
within the organization. These smaller data stores are called data marts. A data mart is a small, single-subject data
warehouse subset that provides decision support to a small group of people. In addition, a data mart could also be
created from data extracted from a larger data warehouse with the specific function to support faster data access to
a target group or function. That is, data marts and data warehouses can coexist within a business intelligence
environment.

Some organizations choose to implement data marts not only because of the lower cost and shorter implementation
time but also because of the current technological advances and inevitable “people issues” that make data marts
attractive. Powerful computers can provide a customized decision support system to small groups in ways that might
not be possible with a centralized system. Also, a company’s culture may predispose its employees to resist major
changes, but they might quickly embrace relatively minor changes that lead to demonstrably improved decision
support. In addition, people at different organizational levels are likely to require data with different summarization,
aggregation, and presentation formats. Data marts can serve as a test vehicle for companies exploring the potential
benefits of data warehouses. By gradually migrating from data marts to data warehouses, a specific department’s
decision support needs can be addressed within a reasonable time frame (six months to one year) as opposed to the
longer time frame usually required to implement a data warehouse (one to three years). Information technology (IT)
departments also benefit from this approach because their personnel have the opportunity to learn the issues and
develop the skills required to create a data warehouse.

527B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

The only difference between a data mart and a data warehouse is the size and scope of the problem being solved.
Therefore, the problem definitions and data requirements are essentially the same for both. To be useful, the data
warehouse must conform to uniform structures and formats to avoid data conflicts and to support decision making. In
fact, before a decision support database can be considered a true data warehouse, it must conform to the rules
described in the next section.

13.5.1 Twelve Rules That Define a Data Warehouse

In 1994, William H. Inmon and Chuck Kelley created 12 rules defining a data warehouse, which summarize many of
the points made in this chapter about data warehouses.3

1. The data warehouse and operational environments are separated.

2. The data warehouse data are integrated.

3. The data warehouse contains historical data over a long time.

4. The data warehouse data are snapshot data captured at a given point in time.

5. The data warehouse data are subject oriented.

6. The data warehouse data are mainly read-only with periodic batch updates from operational data. No online
updates are allowed.

7. The data warehouse development life cycle differs from classical systems development. The data warehouse
development is data-driven; the classical approach is process-driven.

8. The data warehouse contains data with several levels of detail: current detail data, old detail data, lightly
summarized data, and highly summarized data.

3 Inmon, Bill and Chuck Kelley. “The Twelve Rules of Data Warehouse for a Client/Server World,” Data Management Review, 4 (5), May 1994, pp. 6−16.

Transformation
Data warehouse

Operational data

• Filter

• Transform

• Integrate

• Classify

• Aggregate

• Summarize

• Integrated

• Subject-oriented

• Time-variant

• Nonvolatile

FIGURE
13.4

The ETL process

Extraction Loading

528 C H A P T E R 1 3

9. The data warehouse environment is characterized by read-only transactions to very large data sets. The
operational environment is characterized by numerous update transactions to a few data entities at a time.

10. The data warehouse environment has a system that traces data sources, transformations, and storage.

11. The data warehouse’s metadata are a critical component of this environment. The metadata identify and define
all data elements. The metadata provide the source, transformation, integration, storage, usage, relationships,
and history of each data element.

12. The data warehouse contains a chargeback mechanism for resource usage that enforces optimal use of the data
by end users.

Note how those 12 rules capture the complete data warehouse life cycle—from its introduction as an entity separate
from the operational data store to its components, functionality, and management processes. The next section
illustrates the historical progression of decision support architectural styles. This discussion will help you understand
how the data store components evolved to produce the data warehouse.

13.5.2 Decision Support Architectural Styles

Several decision support database architectural styles are available. These architectures provide advanced decision
support features, and some are capable of providing access to multidimensional data analysis. Table 13.8 summarizes
the main architectural styles that you are likely to encounter in the decision support database environment.

You might be tempted to think that the data warehouse is just a big summarized database. The previous discussion
indicates that a good data warehouse is much more than that. A complete data warehouse architecture includes
support for a decision support data store, a data extraction and integration filter, and a specialized presentation
interface. In the next section you will learn more about a common decision support architectural style known as online
analytical processing (OLAP).

13.6 ONLINE ANALYTICAL PROCESSING

The need for more intensive decision support prompted the introduction of a new generation of tools. Those new
tools, called online analytical processing (OLAP), create an advanced data analysis environment that supports
decision making, business modeling, and operations research. OLAP systems share four main characteristics:

� They use multidimensional data analysis techniques.

� They provide advanced database support.

� They provide easy-to-use end-user interfaces.

� They support the client/server architecture.

Let’s examine each of those characteristics.

13.6.1 Multidimensional Data Analysis Techniques

The most distinctive characteristic of modern OLAP tools is their capacity for multidimensional analysis. In
multidimensional analysis, data are processed and viewed as part of a multidimensional structure. This type of data
analysis is particularly attractive to business decision makers because they tend to view business data as data that are
related to other business data.

To better understand this view, let’s examine how a business data analyst might investigate sales figures. In this case,
the analyst is probably interested in the sales figures as they relate to other business variables such as customers and
time. In other words, customers and time are viewed as different dimensions of sales. Figure 13.5 illustrates how the
operational (one-dimensional) view differs from the multidimensional view of sales.

529B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

TA
BL

E
13

.8
D

ec
is

io
n

Su
pp

or
t

Ar
ch

ite
ct

ur
al

St
yl

es

SY
ST

EM
TY

PE
SO

U
RC

E
D

AT
A

D
AT

A
EX

TR
AC

TI
O

N
/

IN
TE

G
RA

TI
O

N
PR

O
C

ES
S

D
EC

IS
IO

N
SU

P-
PO

RT
D

AT
A

ST
O

RE
EN

D
-U

SE
R

Q
U

ER
Y

TO
O

L
EN

D
U

SE
R

PR
ES

EN
TA

TI
O

N
TO

O
L

Tr
ad
iti
on
al
m
ai
nf
ra
m
e-

ba
se
d
on
lin
e
tra
ns
ac

-
tio
n
pr
oc
es
sin
g

(O
LT
P)

O
pe
ra
tio
na
ld
at
a

N
on
e

Re
po
rts
,r
ea
ds
,a
nd
su
m
m
a-

riz
es
da
ta
di
re
ct
ly
fro
m

op
er
at
io
na
ld
at
a

N
on
e

Te
m
po
ra
ry
fil
es
us
ed

fo
r
re
po
rti
ng

pu
rp
os
es

Ve
ry
ba
sic

Pr
ed
ef
in
ed
re
po
rti
ng

fo
rm
at
s

Ba
sic
so
rti
ng
,t
ot
al
in
g,

an
d
av
er
ag
in
g

Ve
ry
ba
sic

M
en
u-
dr
iv
en
,p
re
de
fin
ed

re
po
rts
,t
ex
ta
nd
nu
m
be
rs
on
ly

M
an
ag
er
ia
l

in
fo
rm
at
io
n
sy
st
em

(M
IS

)w
ith
th
ird

-
ge
ne
ra
tio
n
la
ng
ua
ge

(3
G

L)

O
pe
ra
tio
na
ld
at
a

Ba
sic
ex
tra
ct
io
n
an
d

ag
gr
eg
at
io
n

Re
ad
s,
fil
te
rs
,a
nd
su
m
m
a-

riz
es
op
er
at
io
na
ld
at
a
in
to

in
te
rm
ed
ia
te
da
ta
st
or
e

Li
gh
tly
ag
gr
eg
at
ed

da
ta
in

RD
BM

S
Sa
m
e
as
ab
ov
e,
in
ad
di

-
tio
n
to
so
m
e
ad
ho
c

re
po
rti
ng
us
in
g

SQ
L

Sa
m
e
as
ab
ov
e,
in
ad
di
tio
n
to

so
m
e
ad
ho
c
co
lu
m
na
r
re
po
rt

de
fin
iti
on
s

Fi
rs
t-
ge
ne
ra
tio
n

de
pa
rtm
en
ta
lD

SS
O
pe
ra
tio
na
ld
at
a

D
at
a
ex
tra
ct
io
n
an
d
in
te
gr
a-

tio
n
pr
oc
es
s
to
po
pu
la
te
a

D
SS
da
ta
st
or
e;
is
ru
n

pe
rio
di
ca
lly

Fi
rs
tD

SS
da
ta
ba
se

ge
ne
ra
tio
n

U
su
al
ly

RD
BM

S

Q
ue
ry
to
ol
w
ith
so
m
e

an
al
yt
ic
al
ca
pa
bi
lit
ie
s

an
d
pr
ed
ef
in
ed
re
po
rts

Ad
va
nc
ed
pr
es
en
ta
tio
n
to
ol
s

w
ith
pl
ot
tin
g
an
d
gr
ap
hi
cs

ca
pa
bi
lit
ie
s

Fi
rs
t-
ge
ne
ra
tio
n

en
te
rp
ris
e
da
ta

w
ar
eh
ou
se
us
in
g

RD
BM

S

O
pe
ra
tio
na
ld
at
a

Ex
te
rn
al
da
ta

(c
en
su
s
da
ta

)

Ad
va
nc
ed
da
ta
ex
tra
ct
io
n

an
d
in
te
gr
at
io
n
to
ol
s

Fe
at
ur
es
in
cl
ud
e
ac
ce
ss
to

di
ve
rs
e
da
ta
so
ur
ce
s,
tra
ns

-
fo
rm
at
io
ns
,f
ilt
er
s,
ag
gr
eg
a-

tio
ns
,c
la
ss
ifi
ca
tio
ns
,

sc
he
du
lin
g,
an
d
co
nf
lic
t

re
so
lu
tio
n

D
at
a
w
ar
eh
ou
se

in
te
gr
at
ed
de
ci
sio
n

su
pp
or
td
at
ab
as
e
to

su
pp
or
tt
he
en
tir
e

or
ga
ni

za
tio
n

U
se
s

RD
BM

S
te
ch

-
no
lo
gy
op
tim
iz
ed
fo
r

qu
er
y
pu
rp
os
es

St
ar
sc
he
m
a
m
od
el

Sa
m
e
as
ab
ov
e,
in
ad
di

-
tio
n
to
su
pp
or
tf
or
m
or
e

ad
va
nc
ed

qu
er
ie
s
an
d

an
al
yt
ic
al
fu
nc
tio
ns
w
ith

ex
te
ns
io
ns

Sa
m
e
as
ab
ov
e,
in
ad
di
tio
n
to

ad
di
tio
na
lm
ul
tid
im
en
sio
na
l

pr
es
en
ta
tio
n
to
ol
s
w
ith
dr
ill

-
do
w
n
ca
pa
bi
lit
ie
s

Se
co
nd

-g
en
er
at
io
n

da
ta
w
ar
eh
ou
se
us
in
g

m
ul
tid
im
en
sio
na
l

da
ta
ba
se
m
an
ag
em
en
t

sy
st
em

(M
D

BM
S)

O
pe
ra
tio
na
ld
at
a

Ex
te
rn
al
da
ta

(In
du
st
ry
gr
ou
p
da
ta

)

Sa
m
e
as
ab
ov
e

D
at
a
w
ar
eh
ou
se

st
or
es
da
ta
by
us
in
g

M
D

BM
S
te
ch
no
lo
gy

ba
se
d
on
da
ta

st
ru
ct
ur
es

;
re
fe
rr
ed

to
as
cu
be
s
w
ith

m
ul
tip
le
di
m
en
sio
ns

Sa
m
e
as
ab
ov
e,
bu
t

us
es
di
ffe
re
nt

q u
er
y

in
te
rfa
ce
to
ac
ce
ss

M
D

BM
S

(p
ro
pr
ie
ta
ry

)

Sa
m
e
as
ab
ov
e,
bu
tu
se
s
cu
be
s

an
d
m
ul
tid
im
en
sio
na
lm
at
rix
es

;
Li
m
ite
d
in
te
rm
s
of
cu
be
siz
e

530 C H A P T E R 1 3

Note in Figure 13.5 that the tabular (operational) view of sales data is not well suited to decision support, because the
relationship between INVOICE and LINE does not provide a business perspective of the sales data. On the other hand,
the end user’s view of sales data from a business perspective is more closely represented by the multidimensional view
of sales than by the tabular view of separate tables. Note also that the multidimensional view allows end users to
consolidate or aggregate data at different levels: total sales figures by customers and by date. Finally, the multidimen-
sional view of data allows a business data analyst to easily switch business perspectives (dimensions) from sales by
customer to sales by division, by region, and so on.

Multidimensional data analysis techniques are augmented by the following functions:

� Advanced data presentation functions. 3-D graphics, pivot tables, crosstabs, data rotation, and three-
dimensional cubes. Such facilities are compatible with desktop spreadsheets, statistical packages, and query
and report packages.

FIGURE
13.5

Operational vs. multidimensional view of sales

Database name: Ch13_Text

Operational Data

Table name: DW_INVOICE

Table name: DW_LINE

Multidimensional View of Sales

Sales are located in the intersection
of a customer row and time column.

Aggregations are provided
for both dimensions.

Dartonik

Summer Lake

Trydon

Customer Dimension 15-May-10 16-May-10

$1,400.00

$1,200.00

$2,600.00

$1,350.00

$3,100.00

$400.00

$4,850.00

Totals

$2,750.00

$4,300.00

$400.00

$7,450.00

Time Dimension

Totals

531B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

� Advanced data aggregation, consolidation, and classification functions. These allow the data analyst to
create multiple data aggregation levels, slice and dice data (see Section 13.7.3), and drill down and roll up data
across different dimensions and aggregation levels. For example, aggregating data across the time dimension
(by week, month, quarter, and year) allows the data analyst to drill down and roll up across time dimensions.

� Advanced computational functions. These include business-oriented variables (market share, period com-
parisons, sales margins, product margins, and percentage changes), financial and accounting ratios (profitabil-
ity, overhead, cost allocations, and returns), and statistical and forecasting functions. These functions are
provided automatically, and the end user does not need to redefine their components each time they are
accessed.

� Advanced data-modeling functions. These provide support for what-if scenarios, variable assessment,
variable contributions to outcome, linear programming, and other modeling tools.

Because many analysis and presentation functions are common to desktop spreadsheet packages, most OLAP vendors
have closely integrated their systems with spreadsheets such as Microsoft Excel. Using the features available in
graphical end-user interfaces such as Windows, the OLAP menu option simply becomes another option within the
spreadsheet menu bar, as shown in Figure 13.6. This seamless integration is an advantage for OLAP systems and for
spreadsheet vendors because end users gain access to advanced data analysis features by using familiar programs and
interfaces. Therefore, additional training and development costs are minimized.

FIGURE
13.6

Integration of OLAP with a spreadsheet program

532 C H A P T E R 1 3

13.6.2 Advanced Database Support

To deliver efficient decision support, OLAP tools must have advanced data access features. Such features include:

� Access to many different kinds of DBMSs, flat files, and internal and external data sources.

� Access to aggregated data warehouse data as well as to the detail data found in operational databases.

� Advanced data navigation features such as drill-down and roll-up.

� Rapid and consistent query response times.

� The ability to map end-user requests, expressed in either business or model terms, to the appropriate data
source and then to the proper data access language (usually SQL). The query code must be optimized to match
the data source, regardless of whether the source is operational or data warehouse data.

� Support for very large databases. As already explained, the data warehouse can easily and quickly grow to
multiple gigabytes and even terabytes.

To provide a seamless interface, OLAP tools map the data elements from the data warehouse and from the operational
database to their own data dictionaries. These metadata are used to translate end-user data analysis requests into the
proper (optimized) query codes, which are then directed to the appropriate data source(s).

13.6.3 Easy-to-Use End-User Interface

Advanced OLAP features become more useful when access to them is kept simple. OLAP tool vendors learned this
lesson early and have equipped their sophisticated data extraction and analysis tools with easy-to-use graphical
interfaces. Many of the interface features are “borrowed” from previous generations of data analysis tools that are
already familiar to end users. This familiarity makes OLAP easily accepted and readily used.

13.6.4 Client/Server Architecture

Client/server architecture provides a framework within which new systems can be designed, developed, and
implemented. The client/server environment enables an OLAP system to be divided into several components that
define its architecture. Those components can then be placed on the same computer, or they can be distributed among
several computers. Thus, OLAP is designed to meet ease-of-use requirements while keeping the system flexible.

13.6.5 OLAP Architecture

OLAP operational characteristics can be divided into three main modules:

� Graphical user interface (GUI).

� Analytical processing logic.

� Data-processing logic.

In the client/server environment, those three OLAP modules make the defining features of OLAP possible:
multidimensional data analysis, advanced database support, and an easy-to-use interface. Figure 13.7 illustrates
OLAP’s client/server components and attributes.

As Figure 13.7 illustrates, OLAP systems are designed to use both operational and data warehouse data. Figure 13.7
shows the OLAP system components located on a single computer, but this single-user scenario is only one of many.
In fact, one problem with the installation shown here is that each data analyst must have a powerful computer to store

O n l i n e C o n t e n t

If necessary, review the coverage in Appendix F, Client/Server Systems in the Premium Website for this book,
which provides an in-depth look at client/server system architecture and principles.

533B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

the OLAP system and perform all data processing locally. In addition, each analyst uses a separate copy of the data.
Therefore, the data copies must be synchronized to ensure that analysts are working with the same data. In other
words, each end user must have his/her own “private” copy (extract) of the data and programs, thus returning to the
islands of information problems discussed in Chapter 1, Database Systems. This approach does not provide the
benefits of a single business image shared among all users.

A more common and practical architecture is one in which the OLAP GUI runs on client workstations, while the OLAP
engine, or server, composed of the OLAP analytical processing logic and OLAP data-processing logic, runs on a
shared computer. In that case, the OLAP server will be a front end to the data warehouse’s decision support data. This
front end or middle layer (because it sits between the data warehouse and the end-user GUI) accepts and processes the
data-processing requests generated by the many end-user analytical tools. The end-user GUI might be a custom-made
program or, more likely, a plug-in module that is integrated with spreadsheet software or a third-party data analysis and
query tool. Figure 13.8 illustrates such an arrangement.

Note in Figure 13.8 that the data warehouse is traditionally created and maintained by a process or software tool that
is independent of the OLAP system. This independent software performs the data extraction, filtering, and integration
necessary to transform operational data into data warehouse data. This scenario reflects the fact that in most cases,
the data warehousing and data analysis activities are handled separately.

FIGURE
13.7

OLAP client/server architecture

• Drill-down
• Roll-up
• Detailed

Operational data

Data warehouse

• Integrated
• Subject-oriented

• Time-variant
• Nonvolatile

OLAP GUI

Analytical processing logic

Data-processing logic

• Dimensional
• Aggregated
• Very large DB

OLAP System

The OLAP system exhibits...

•Client/Server architecture

•Easy-to-use GUI
Dimensional presentation
Dimensional modeling
Dimensional analysis

•Multidimensional data
Analysis
Manipulation
Structure

•Database support
Data warehouse
Operational DB
Relational
Multidimensional

534 C H A P T E R 1 3

At this point, you might ask why you need a data warehouse if OLAP provides the necessary multidimensional data
analysis of operational data. The answer lies in the definition of OLAP. OLAP is defined as an “advanced data analysis
environment that supports decision making, business modeling, and research activities.” The key word here is
environment, which includes client/server technology. Environment is defined as “surroundings or atmosphere.” And
an atmosphere surrounds a nucleus. In this case, the nucleus is composed of all business activities within an
organization as represented by the operational data. Just as there are several layers within the atmosphere, there
are several layers of data processing, with each outer layer representing a more aggregated data analysis. The fact is
that an OLAP system might access both data storage types (operational or data warehouse) or only one; it depends
on the vendor’s implementation of the product selected. In any case, multidimensional data analysis requires some type
of multidimensional data representation, which is normally provided by the OLAP engine.

In most implementations, the data warehouse and OLAP are interrelated, complementary environments. While the
data warehouse holds integrated, subject-oriented, time-variant, and nonvolatile decision support data, the OLAP
system provides the front end through which end users access and analyze such data. Yet an OLAP system can also
directly access operational data, transforming it and storing it in a multidimensional structure. In other words, the
OLAP system can provide an alternative multidimensional data store component, as shown in Figure 13.8.

Figure 13.8 illustrates a scenario in which the OLAP engine extracts data from an operational database and then stores
it in a multidimensional structure for further data analysis. The extraction process follows the same conventions used
with data warehouses. Therefore, the OLAP provides a mini data-warehouse component that looks remarkably like the
data mart mentioned in previous sections. In this scenario, the OLAP engine has to perform all of the data extraction,
filtering, integration, classification, and aggregation functions that the data warehouse normally provides. In fact, when

FIGURE
13.8

OLAP server arrangement

Analytical processing logic

Data-processing logic

Multiple users
access OLAP engine.

OLAP GUI

OLAP GUI

OLAP GUI

OLAP GUI

Alternate direct access of
operational data and data
warehouse maintenance

Shared OLAP “engine” provides a
front end to the data warehouse.

OLAP System

Excel plug-in

Access plug-in

Query tool plug-in

Operational data

Data warehouse

• Integrated
• Subject-oriented
• Time-variant
• Nonvolatile

ETL

Traditional data warehouse
creation and maintenance

535B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

properly implemented, the data warehouse performs all data preparation functions instead of letting OLAP perform
those chores; as a result, there is no duplication of functions. Better yet, the data warehouse handles the data
component more efficiently than OLAP does, so you can appreciate the benefits of having a central data warehouse
serve as the large enterprise decision support database.

To provide better performance, some OLAP systems merge the data warehouse and data mart approaches by storing
small extracts of the data warehouse at end-user workstations. The objective is to increase the speed of data access and
data visualization (the graphic representations of data trends and characteristics). The logic behind that approach is the
assumption that most end users usually work with fairly small, stable data warehouse data subsets. For example, a sales
analyst is most likely to work with sales data, whereas a customer representative is likely to work with customer data.
Figure 13.9 illustrates that scenario.

Whatever the arrangement of the OLAP components, one thing is certain: multidimensional data must be used. But
how are multidimensional data best stored and managed? OLAP proponents are sharply divided. Some favor the use
of relational databases to store the multidimensional data; others argue for the superiority of specialized multidimen-
sional databases for storing multidimensional data. The basic characteristics of each approach are examined next.

Data warehouse

Multidimensional
data

Analytical
processing

logic

Data-
processing

logic

Multiple users
access OLAP engine

OLAP GUI

OLAP GUI

OLAP GUI

OLAP GUI

Shared
OLAP “engine”

OLAP System

Operational
data

Data extracted from the
data warehouse provide

faster processing

Local data marts

FIGURE
13.9

OLAP server with local mini-data-marts

Customers

Marketing

Production

Vendors

ETL

536 C H A P T E R 1 3

13.6.6 Relational OLAP

Relational online analytical processing (ROLAP) provides OLAP functionality by using relational databases and
familiar relational query tools to store and analyze multidimensional data. That approach builds on existing relational
technologies and represents a natural extension to all of the companies that already use relational database
management systems within their organizations. ROLAP adds the following extensions to traditional RDBMS
technology:

� Multidimensional data schema support within the RDBMS.

� Data access language and query performance optimized for multidimensional data.

� Support for very large databases (VLDBs).

Multidimensional Data Schema Support within the RDBMS
Relational technology uses normalized tables to store data. The reliance on normalization as the design methodology
for relational databases is seen as a stumbling block to its use in OLAP systems. Normalization divides business entities
into smaller pieces to produce the normalized tables. For example, sales data components might be stored in four or
five different tables. The reason for using normalized tables is to reduce redundancies, thereby eliminating data
anomalies, and to facilitate data updates. Unfortunately, for decision support purposes, it is easier to understand
data when they are seen with respect to other data. (See the example in Figure 13.5.) Given that view of the data
environment, this book has stressed that decision support data tend to be non-normalized, duplicated, and
preaggregated. Those characteristics seem to preclude the use of standard relational design techniques and RDBMSs
as the foundation for multidimensional data.

Fortunately for those heavily invested in relational technology, ROLAP uses a special design technique to enable
RDBMS technology to support multidimensional data representations. This special design technique is known as a star
schema, which is covered in detail in Section 13.7.

The star schema is designed to optimize data query operations rather than data update operations. Naturally, changing
the data design foundation means that the tools used to access such data will have to change. End users who are
familiar with the traditional relational query tools will discover that those tools do not work efficiently with the new star
schema. However, ROLAP saves the day by adding support for the star schema when familiar query tools are used.
ROLAP provides advanced data analysis functions and improves query optimization and data visualization methods.

Data Access Language and Query Performance Optimized for Multidimensional Data
Another criticism of relational databases is that SQL is not suited for performing advanced data analysis. Most decision
support data requests require the use of multiple-pass SQL queries or multiple-nested SQL statements. To answer this
criticism, ROLAP extends SQL so that it can differentiate between access requirements for data warehouse data (based
on the star schema) and operational data (normalized tables). In that way, a ROLAP system is able to generate the SQL
code required to access the star schema data.

Query performance is also improved because the query optimizer is modified to identify the SQL code’s intended query
targets. For example, if the query target is the data warehouse, the optimizer passes the requests to the data warehouse.
However, if the end user performs drill-down queries against operational data, the query optimizer identifies that
operation and properly optimizes the SQL requests before passing them through to the operational DBMS.

Another source of improved query performance is the use of advanced indexing techniques such as bitmapped indexes
within relational databases. As the name suggests, a bitmapped index is based on 0 and 1 bits to represent a given
condition. For example, if the REGION attribute in Figure 13.3 has only four outcomes—North, South, East, and
West—those outcomes may be represented as shown in Table 13.9. (Only the first 10 rows from Figure 13.3 are
represented in Table 13.9. The “1” represents “bit on,” and the “0” represents “bit off.” For example, to represent
a row with a REGION attribute = “East,” only the “East” bit would be on. Note that each row must be represented
in the index table.)

537B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

Note that the index in Table 13.9 takes a minimum amount
of space. Therefore, bitmapped indexes are more efficient at
handling large amounts of data than are the indexes typically
found in many relational databases. But do keep in mind that
bitmapped indexes are primarily used in situations where the
number of possible values for an attribute (in other words,
the attribute domain) is fairly small. For example, REGION
has only four outcomes in this example. Marital status—
married, single, widowed, divorced—would be another good
bitmapped index candidate, as would gender—M or F.

ROLAP tools are mainly client/server products in which the
end-user interface, the analytical processing, and the data
processing take place on different computers. Figure 13.10
shows the interaction of the client/server ROLAP
components.

Support for Very Large Databases
Recall that support for VLDBs is a requirement for decision support databases. Therefore, when the relational database
is used in a decision support role, it also must be able to store very large amounts of data. Both the storage capability

TABLE
13.9

Bitmap Representation of
Region Values

NORTH SOUTH EAST WEST
0 0 1 0
0 0 1 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 0 1
0 0 0 1

FIGURE
13.10

Typical ROLAP client/server architecture

Data

ROLAP analytical
processing logic

ROLAP data-
processing logic

ROLAP GUI

ROLAP GUI

ROLAP GUI

ROLAP GUI

ROLAP server

ROLAP System

warehouse
data

Operational
data

The ROLAP server interprets
end-user requests and builds

complex SQL queries required
to access the data warehouse.
If an end user requests a drill-
down operation, the ROLAP

server builds the required SQL
code to access the operational

database.

The GUI front end runs on the
client computer and passes
data-analysis requests to the

ROLAP server. The GUI
receives data replies from the

ROLAP server and formats
them according to the end
user’s presentation needs.

538 C H A P T E R 1 3

and the process of loading data into the database are crucial. Therefore, the RDBMS must have the proper tools to
import, integrate, and populate the data warehouse with data. Decision support data are normally loaded in bulk
(batch) mode from the operational data. However, batch operations require that both the source and the destination
databases be reserved (locked). The speed of the data-loading operations is important, especially when you realize that
most operational systems run 24 hours a day, 7 days a week, 52 weeks a year. Therefore, the window of opportunity
for maintenance and batch loading is open only briefly, typically during slack periods.

With an open client/server architecture, ROLAP provides advanced decision support capabilities that are scalable to
the entire enterprise. Clearly, ROLAP is a logical choice for companies that already use relational databases for their
operational data. Given the size of the relational database market, it is hardly surprising that most current RDBMS
vendors have extended their products to support data warehouses.

13.6.7 Multidimensional OLAP

Multidimensional online analytical processing (MOLAP) extends OLAP functionality to multidimensional
database management systems (MDBMSs). (An MDBMS uses special proprietary techniques to store data in
matrix-like n-dimensional arrays.) MOLAP’s premise is that multidimensional databases are best suited to manage,
store, and analyze multidimensional data. Most of the proprietary techniques used in MDBMSs are derived from
engineering fields such as computer-aided design/computer-aided manufacturing (CAD/CAM) and geographic
information systems (GIS).

Conceptually, MDBMS end users visualize the stored data as a three-dimensional cube known as a data cube. The
location of each data value in the data cube is a function of the x-, y-, and z-axes in a three-dimensional space. The
x-, y-, and z-axes represent the dimensions of the data value. The data cubes can grow to n number of dimensions,
thus becoming hypercubes. Data cubes are created by extracting data from the operational databases or from the data
warehouse. One important characteristic of data cubes is that they are static; that is, they are not subject to change
and must be created before they can be used. Data cubes cannot be created by ad hoc queries. Instead, you query
precreated cubes with defined axes; for example, a cube for sales will have the product, location, and time dimensions,
and you can query only those dimensions. Therefore, the data cube creation process is critical and requires in-depth
front-end design work. The front-end design work may be well justified because MOLAP databases are known to be
much faster than their ROLAP counterparts, especially when dealing with small-to-medium-sized data sets. To speed
data access, data cubes are normally held in memory in what is called the cube cache. (A data cube is only a window
to a predefined subset of data in the database. A data cube and a database are not the same thing.) Because MOLAP
also benefits from a client/server infrastructure, the cube cache can be located at the MOLAP server, at the MOLAP
client, or in both locations. Figure 13.11 shows the basic MOLAP architecture.

Because the data cube is predefined with a set number of dimensions, the addition of a new dimension requires that
the entire data cube be re-created. This re-creation process is time-consuming. Therefore, when data cubes are created
too often, the MDBMS loses some of its speed advantage over the relational database. And although MDBMSs have
performance advantages over relational databases, the MDBMS is best suited to small and medium-sized data sets.
Scalability is somewhat limited because the size of the data cube is restricted to avoid lengthy data access times caused
by having less work space (memory) available for the operating system and the application programs. In addition, the
MDBMS makes use of proprietary data storage techniques that, in turn, require proprietary data access methods using
a multidimensional query language.

Multidimensional data analysis is also affected by how the database system handles sparsity. Sparsity is a
measurement of the density of the data held in the data cube and is computed by dividing the total number of actual
values in the cube by the total number of cells in the cube. Because the data cube’s dimensions are predefined, not all
cells are populated. In other words, some cells are empty. Returning to the sales example, there may be many products
that are not sold during a given time period in a given location. In fact, you will often find that fewer than 50 percent
of the data cube’s cells are populated. In any case, multidimensional databases must handle sparsity effectively to
reduce processing overhead and resource requirements.

539B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

Relational proponents also argue that using proprietary solutions makes it difficult to integrate the MDBMS with other
data sources and tools used within the enterprise. Although it takes a substantial investment of time and effort to
integrate the new technology and the existing information systems architecture, MOLAP may be a good solution for
those situations in which small-to-medium-sized databases are the norm and application software speed is critical.

13.6.8 Relational vs. Multidimensional OLAP

Table 13.10 summarizes some OLAP and MOLAP pros and cons. Keep in mind, too, that the selection of one or the
other often depends on the evaluator’s vantage point. For example, a proper evaluation of OLAP must include price,
supported hardware platforms, compatibility with the existing DBMS, programming requirements, performance, and
availability of administrative tools. The summary in Table 13.10 provides a useful starting point for comparison.

Data

MOLAP analytical
processing logic

MOLAP data-
processing logic

MOLAP GUI

MOLAP GUI

MOLAP GUI

MOLAP GUI

MOLAP server

MOLAP System

warehouse
data

Operational
data

The MOLAP engine receives
data requests from end users
and translates them into data
cube requests that are passed

to the MDBMS.

The data cube
is created within

predefined
dimensions.

The MOLAP GUI allows end
users to interact with the

MOLAP server and request
data for analysis.

RDBMS

MDBMS

Data cube

Multidimensional
database

FIGURE
13.11

MOLAP client/server architecture

540 C H A P T E R 1 3

TABLE
13.10

Relational vs. Multidimensional OLAP

CHARACTERISTIC ROLAP MOLAP
Schema Uses star schema

Additional dimensions can
be added dynamically

Uses data cubes
Additional dimensions require re-creation of the data cube

Database size Medium to large Small to medium
Architecture Client/server

Standards-based
Open

Client/server
Proprietary

Access Supports ad hoc requests
Unlimited dimensions

Limited to predefined dimensions

Resources High Very high
Flexibility High Low
Scalability High Low
Speed Good with small data sets;

average for medium-
sized-to-large data sets

Faster for small-to-medium-sized data sets; average for large
data sets

ROLAP and MOLAP vendors are working toward the integration of their respective solutions within a unified decision
support framework. Many OLAP products are able to handle tabular and multidimensional data with the same ease.
For example, if you are using Excel OLAP functionality, as shown earlier in Figure 13.6, you can access relational
OLAP data in a SQL server as well as cube (multidimensional) data in the local computer. In the meantime, relational
databases successfully use the star schema design to handle multidimensional data, and their market share makes it
unlikely that their popularity will fade anytime soon.

13.7 STAR SCHEMAS

The star schema is a data-modeling technique used to map multidimensional decision support data into a relational
database. In effect, the star schema creates the near equivalent of a multidimensional database schema from the
existing relational database. The star schema was developed because existing relational modeling techniques, ER, and
normalization did not yield a database structure that served advanced data analysis requirements well.

Star schemas yield an easily implemented model for multidimensional data analysis while still preserving the relational
structures on which the operational database is built. The basic star schema has four components: facts, dimensions,
attributes, and attribute hierarchies.

13.7.1 Facts

Facts are numeric measurements (values) that represent a specific business aspect or activity. For example, sales
figures are numeric measurements that represent product and/or service sales. Facts commonly used in business data
analysis are units, costs, prices, and revenues. Facts are normally stored in a fact table that is the center of the star
schema. The fact table contains facts that are linked through their dimensions, which are explained in the next
section.

Facts can also be computed or derived at run time. Such computed or derived facts are sometimes called metrics to
differentiate them from stored facts. The fact table is updated periodically (daily, weekly, monthly, and so on) with data
from operational databases.

541B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

13.7.2 Dimensions

Dimensions are qualifying characteristics that provide additional perspectives to a given fact. Recall that dimensions
are of interest because decision support data are almost always viewed in relation to other data. For instance, sales
might be compared by product from region to region and from one time period to the next. The kind of problem
typically addressed by a BI system might be to make a comparison of the sales of unit X by region for the first quarters
of 2000 through 2010. In that example, sales have product, location, and time dimensions. In effect, dimensions are
the magnifying glass through which you study the facts. Such dimensions are normally stored in dimension tables.
Figure 13.12 depicts a star schema for sales with product, location, and time dimensions.

13.7.3 Attributes

Each dimension table contains attributes. Attributes are often used to search, filter, or classify facts. Dimensions provide
descriptive characteristics about the facts through their attributes. Therefore, the data warehouse designer must
define common business attributes that will be used by the data analyst to narrow a search, group information, or
describe dimensions. Using a sales example, some possible attributes for each dimension are illustrated in Table 13.11.

TABLE
13.11

Possible Attributes for Sales Dimensions

DIMENSION NAME DESCRIPTION POSSIBLE ATTRIBUTES
Location Anything that provides a description of the

location. For example, Nashville, Store 101,
South Region, and TN.

Region, state, city, store, and so on.

Product Anything that provides a description of the
product sold. For example, hair care prod-
uct, shampoo, Natural Essence brand, 5.5-
oz. bottle, and blue liquid.

Product type, product ID, brand, pack-
age, presentation, color, size, and so on.

FIGURE
13.12

Simple star schema

Product
dimension

Time
dimension

Location
dimension

HP calculator

Sales
Fact

$125,000

542 C H A P T E R 1 3

TABLE
13.11

Possible Attributes for Sales Dimensions (continued)

DIMENSION NAME DESCRIPTION POSSIBLE ATTRIBUTES
Time Anything that provides a time frame for the

sales fact. For example, the year 2010, the
month of July, the date 07/29/2010, and the
time 4:46 p.m.

Year, quarter, month, week, day, time of
day, and so on.

These product, location, and time dimensions add a business perspective to the sales facts. The data analyst can now
group the sales figures for a given product, in a given region, and at a given time. The star schema, through its facts
and dimensions, can provide the data in the required format when the data are needed. And it can do so without
imposing the burden of the additional and unnecessary data (such as order number, purchase order number, and status)
that commonly exist in operational databases.

Conceptually, the sales example’s multidimensional data model is best represented by a three-dimensional cube. Of
course, this does not imply that there is a limit on the number of dimensions that can be associated to a fact table.
There is no mathematical limit to the number of dimensions used. However, using a three-dimensional model makes
it easy to visualize the problem. In this three-dimensional example, the multidimensional data analysis terminology, the
cube illustrated in Figure 13.13 represents a view of sales dimensioned by product, location, and time.

Note that each sales value stored in the cube in Figure 13.13 is associated with the location, product, and time
dimensions. However, keep in mind that this cube is only a conceptual representation of multidimensional data, and
it does not show how the data are physically stored in a data warehouse. A ROLAP engine stores data in an RDBMS
and uses its own data analysis logic and the end-user GUI to perform multidimensional analysis. A MOLAP system
stores data in an MDBMS, using proprietary matrix and array technology to simulate this multidimensional cube.

Whatever the underlying database technology, one of the main features of multidimensional analysis is its ability to focus
on specific “slices” of the cube. For example, the product manager may be interested in examining the sales of a product
while the store manager is interested in examining the sales made by a particular store. In multidimensional terms, the
ability to focus on slices of the cube to perform a more detailed analysis is known as slice and dice. Figure 13.14

Sales facts are stored in
the intersection of each
product, time, and location
dimension.

Conceptual three-dimensional
cube of sales by product,
location, and time

Lo
ca

tio
n

Pr
od

uc
t

Time

FIGURE
13.13

Three-dimensional view of sales

543B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

illustrates the slice-and-dice concept. As you look at Figure 13.14, note that each cut across the cube yields a slice.
Intersecting slices produce small cubes that constitute the “dice” part of the “slice-and-dice” operation.

To slice and dice, it must be possible to identify each slice of the cube. That is done by using the values of each attribute
in a given dimension. For example, to use the location dimension, you might need to define a STORE_ID attribute in
order to focus on a particular store.

Given the requirement for attribute values in a slice-and-dice environment, let’s reexamine Table 13.11. Note that each
attribute adds an additional perspective to the sales facts, thus setting the stage for finding new ways to search, classify,
and possibly aggregate information. For example, the location dimension adds a geographic perspective of where the
sales took place: in which region, state, city, store, and so on. All of the attributes are selected with the objective of
providing decision support data to the end users so that they can study sales by each of the dimension’s attributes.

Time is an especially important dimension. The time dimension provides a framework from which sales patterns can
be analyzed and possibly predicted. Also, the time dimension plays an important role when the data analyst is
interested in looking at sales aggregates by quarter, month, week, and so on. Given the importance and universality
of the time dimension from a data analysis perspective, many vendors have added automatic time dimension
management features to their data-warehousing products.

13.7.4 Attribute Hierarchies

Attributes within dimensions can be ordered in a well-defined attribute hierarchy. The attribute hierarchy provides
a top-down data organization that is used for two main purposes: aggregation and drill-down/roll-up data analysis. For
example, Figure 13.15 shows how the location dimension attributes can be organized in a hierarchy by region, state,
city, and store.

The attribute hierarchy provides the capability to perform drill-down and roll-up searches in a data warehouse. For
example, suppose a data analyst looks at the answers to the query: How does the 2009 month-to-date sales
performance compare to the 2010 month-to-date sales performance? The data analyst spots a sharp sales decline for
March 2010. The data analyst might decide to drill down inside the month of March to see how sales by regions
compared to the previous year. By doing that, the analyst can determine whether the low March sales were reflected
in all regions or in only a particular region. This type of drill-down operation can even be extended until the data analyst
identifies the store that is performing below the norm.

Product manager’s
view of sales data

Sales manager’s
view of sales data

Lo
ca

tio
n

Pr
od

uc
t

Time

FIGURE
13.14

Slice-and-dice view of sales

544 C H A P T E R 1 3

The March sales scenario is possible because the attribute
hierarchy allows the data warehouse and OLAP systems to
have a defined path that will identify how data are to be
decomposed and aggregated for drill-down and roll-up
operations. It is not necessary for all attributes to be part of
an attribute hierarchy; some attributes exist merely to provide
narrative descriptions of the dimensions. But keep in mind
that the attributes from different dimensions can be grouped
to form a hierarchy. For example, after you drill down from
city to store, you might want to drill down using the product
dimension so that the manager can identify slow products in
the store. The product dimension can be based on the
product group (dairy, meat, and so on) or on the product
brand (Brand A, Brand B, and so on).

Figure 13.16 illustrates a scenario in which the data analyst
studies sales facts, using the product, time, and location
dimensions. In this example, the product dimension is set to

“All products,” meaning that the data analyst will see all products on the y-axis. The time dimension (x-axis) is set to
“Quarter,” meaning that the data are aggregated by quarters (for example, total sales of products A, B, and C in Q1,
Q2, Q3, and Q4). Finally, the location dimension is initially set to “Region,” thus ensuring that each cell contains the
total regional sales for a given product in a given quarter.

The simple data analysis scenario illustrated in Figure 13.16 provides the data analyst with three different information
paths. On the product dimension (the y-axis), the data analyst can request to see all products, products grouped by
type, or just one product. On the time dimension (the x-axis), the data analyst can request time-variant data at different
levels of aggregation: year, quarter, month, or week. Each sales value initially shows the total sales, by region, of each
product. When a GUI is used, clicking on the region cell enables the data analyst to drill down to see sales by states
within the region. Clicking again on one of the state values yields the sales for each city in the state, and so forth.

As the preceding examples illustrate, attribute hierarchies determine how the data in the data warehouse are extracted
and presented. The attribute hierarchy information is stored in the DBMS’s data dictionary and is used by the OLAP
tool to access the data warehouse properly. Once such access is ensured, query tools must be closely integrated with
the data warehouse’s metadata and they must support powerful analytical capabilities.

13.7.5 Star Schema Representation

Facts and dimensions are normally represented by physical tables in the data warehouse database. The fact table is
related to each dimension table in a many-to-one (M:1) relationship. In other words, many fact rows are related to each
dimension row. Using the sales example, you can conclude that each product appears many times in the SALES
fact table.

Fact and dimension tables are related by foreign keys and are subject to the familiar primary key/foreign key
constraints. The primary key on the “1” side, the dimension table, is stored as part of the primary key on the “many”
side, the fact table. Because the fact table is related to many dimension tables, the primary key of the fact table
is a composite primary key. Figure 13.17 illustrates the relationships among the sales fact table and the product,
location, and time dimension tables. To show you how easily the star schema can be expanded, a customer dimension
has been added to the mix. Adding the customer dimension merely required including the CUST_ID in the SALES fact
table and adding the CUSTOMER table to the database.

The composite primary key for the SALES fact table is composed of TIME_ID, LOC_ID, CUST_ID, and PROD_ID.
Each record in the SALES fact table is uniquely identified by the combination of values for each of the fact table’s

FIGURE
13.15

Location attribute hierarchy

The attribute
hierarchy

allows the end
user to

perform drill-down
and roll-up
searches.

Region

State

City

Store

545B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

foreign keys. By default, the fact table’s primary key is always formed by combining the foreign keys pointing to
the dimension tables to which they are related. In this case, each sales record represents each product sold to a
specific customer, at a specific time, and in a specific location. In this schema, the TIME dimension table represents
daily periods, so the SALES fact table represents daily sales aggregates by product and by customer. Because fact tables
contain the actual values used in the decision support process, those values are repeated many times in the fact tables.
Therefore, the fact tables are always the largest tables in the star schema. Because the dimension tables contain only
nonrepetitive information (all unique salespersons, all unique products, and so on), the dimension tables are always
smaller than the fact tables.

In a typical star schema, each dimension record is related to thousands of fact records. For example, “widget” appears
only once in the product dimension, but it has thousands of corresponding records in the SALES fact table. That
characteristic of the star schema facilitates data retrieval functions because most of the time the data analyst will look
at the facts through the dimension’s attributes. Therefore, a data warehouse DBMS that is optimized for decision
support first searches the smaller dimension tables before accessing the larger fact tables.

Data warehouses usually have many fact tables. Each fact table is designed to answer specific decision support
questions. For example, suppose that you develop a new interest in orders while maintaining your original interest in
sales. In that scenario, you should maintain an ORDERS fact table and a SALES fact table in the same data warehouse.
If orders are considered to be an organization’s key interest, the ORDERS fact table should be the center of a star
schema that might have vendor, product, and time dimensions. In that case, an interest in vendors yields a new vendor

Year Quarter Month Week

Time dimension

Product
dimension

All products

By product type

One product

Q1

Product A

Product B
Product C

........

........

........

Total of
quarters

Q2 Q3 Q4
Total of
product

Region

State

City

Store

Location hierarchy

FIGURE
13.16

Attribute hierarchies in multidimensional analysis

546 C H A P T E R 1 3

dimension, represented by a new VENDOR table in the database. The product dimension is represented by the same
product table used in the initial sales star schema. However, given the interest in orders as well as sales, the time
dimension now requires special attention. If the orders department uses the same time periods as the sales department,
time can be represented by the same time table. If different time periods are used, you must create another table,
perhaps named ORDER_TIME, to represent the time periods used by the orders department. In Figure 13.18, the
orders star schema shares the product, vendor, and time dimensions.

Multiple fact tables can also be created for performance and semantic reasons. The following section explains several
performance-enhancing techniques that can be used within the star schema.

FIGURE
13.17

Star schema for SALES

365 records

LOCATION

SALES

CUSTOMER

TIME

PRODUCT

LOC_ID

LOC_DESCRIPTION

REGION_ID

LOC_STATE

LOC_CITY

CUST_ID

CUST_LNAME

CUST_FNAME

CUST_INITIAL

CUST_DOB

TIME_ID

LOC_ID

CUST_ID

PROD_ID

SALES_QUANTITY

SALES_PRICE

SALES_TOTAL

TIME_ID

TIME_YEAR

TIME_QUARTER

TIME_MONTH

TIME_DAY

TIME_CLOCKTIME

PROD_ID

PROD_DESCRIPTION

PROD_TYPE_ID

PROD_BRAND

PROD_COLOR

PROD_SIZE

PROD_PACKAGE

PROD_PRICE

3,000 records

125 records

25 records

3,000,000 records

Daily sales aggregates
by store, customer, and

product

M

M

1

1 M

M

1

1

547B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

13.7.6 Performance-Improving Techniques for the Star Schema

The creation of a database that provides fast and accurate answers to data analysis queries is the data warehouse
design’s prime objective. Therefore, performance-enhancement actions might target query speed through the
facilitation of SQL code as well as through better semantic representation of business dimensions. These four
techniques are often used to optimize data warehouse design:

� Normalizing dimensional tables.

� Maintaining multiple fact tables to represent different aggregation levels.

� Denormalizing fact tables.

� Partitioning and replicating tables.

Normalizing Dimensional Tables
Dimensional tables are normalized to achieve semantic simplicity and facilitate end-user navigation through the
dimensions. For example, if the location dimension table contains transitive dependencies among region, state, and
city, you can revise those relationships to the 3NF (third normal form), as shown in Figure 13.19. (If necessary, review
normalization techniques in Chapter 6, Normalization of Database Tables.) The star schema shown in Figure 13.19
is known as a snowflake schema, which is a type of star schema in which the dimension tables can have their own
dimension tables. The snowflake schema is usually the result of normalizing dimension tables.

FIGURE
13.18

Orders star schema

365 records

PRODUCT

ORDER

VENDOR

TIME

PROD_ID

PROD_DESCRIPTION

PROD_TYPE_ID

PROD_BRAND

PROD_COLOR

VEND_ID

VEND_NAME

VEND_AREACODE

VEND_PHONE

VEND_EMAIL

TIME_ID

PROD_ID

VEND_ID

ORDER_QUANTITY

ORDER_PRICE

ORDER_AMOUNT

TIME_ID

TIME_YEAR

TIME_QUARTER

TIME_MONTH

TIME_DAY

TIME_CLOCKTIME

50 records

3,000 records
85,000 records

Daily sales aggregates
by product and vendor

M

M

1

1

M 1

PROD_SIZE

PROD_PACKAGE

PROD_PRICE

548 C H A P T E R 1 3

By normalizing the dimension tables, you simplify the data-filtering operations related to the dimensions. In this
example, the region, state, city, and location contain very few records compared to the SALES fact table. Only the
location table is directly related to the sales fact table.

Maintaining Multiple Fact Tables That Represent Different Aggregation Levels
You can also speed up query operations by creating and maintaining multiple fact tables related to each level of
aggregation (region, state, and city) in the location dimension. These aggregate tables are precomputed at the
data-loading phase rather than at run time. The purpose of this technique is to save processor cycles at run time,
thereby speeding up data analysis. An end-user query tool optimized for decision analysis then properly accesses the
summarized fact tables instead of computing the values by accessing a lower level of detail fact table. This technique
is illustrated in Figure 13.20, which adds aggregate fact tables for region, state, and city to the initial sales example.

The data warehouse designer must identify which levels of aggregation to precompute and store in the database. These
multiple aggregate fact tables are updated during each load cycle in batch mode. And because the objective is to
minimize access and processing time, according to the expected frequency of use and the processing time required to

FIGURE
13.19

Normalized dimension tables

REGION

LOCATIONSTATE

SALES

REGION_ID

REGION_NAME

STATE_ID

STATE_NAME

REGION_ID

LOC_ID

LOC_DESCRIPTION

CITY_ID

TIME_ID

LOC_ID

CUST_ID

PROD_ID

SALES_QUANTITY

SALES_PRICEM
M

1

1

M

1

CITY

CITY_ID

CITY_NAME

STATE_ID

SALES_TOTAL

M

1

Note

Although using the dimension tables shown in Figure 13.19 provides structural simplicity, there is a price to pay
for that simplicity. For example, if you want to aggregate the data by region, you must use a four-table join, thus
increasing the complexity of the SQL statements. The star schema in Figure 13.17 uses a LOCATION dimension
table that greatly facilitates data retrieval by eliminating multiple join operations. This is yet another example of
the trade-offs that designers must consider.

549B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

calculate a given aggregation level at run time, the data warehouse designer must select which aggregation fact tables
to create.

Denormalizing Fact Tables
Denormalizing fact tables improves data access performance and saves data storage space. The latter objective,
however, is becoming less of an issue. Data storage costs decrease almost daily, and DBMS limitations that restrict
database and table size limits, record size limits, and the maximum number of records in a single table have far more
negative effects than raw storage space costs.

Denormalization improves performance by using a single record to store data that normally take many records. For
example, to compute the total sales for all products in all regions, you might have to access the region sales aggregates
and summarize all of the records in this table. If you have 300,000 product sales, you could be summarizing at least
300,000 rows. Although this might not be a very taxing operation for a DBMS, a comparison of, say, 10 years’ worth
of previous sales begins to bog down the system. In such cases, it is useful to have special aggregate tables that are
denormalized. For example, a YEAR_TOTALS table might contain the following fields: YEAR_ID, MONTH_1,
MONTH_2 ... MONTH_12, and each year’s total. Such tables can easily be used to serve as a basis for year-to-year
comparisons at the top month level, the quarter level, or the year level. Here again, design criteria, such as frequency

FIGURE
13.20

Multiple fact tables

SALES_REGION REGION SALES_CITY

TIME_ID

REGION_ID

REGION_ID

REGION_NAME

TIME_ID

CITY_ID

CUST_ID

PROD_ID

SLSCIT_QUANTITY

SLSCIT_PRICE

SLSCIT_AMOUNT

M
1

CUST_ID

PROD_ID

SLSREG_QUANTITY

SLSREG_PRICE

SLSREG_AMOUNT

SALES_STATE

TIME_ID

STATE_ID

CUST_ID

PROD_ID

SLSSTA_QUANTITY

SLSSTA_PRICE

SLSSTA_AMOUNT

STATE

STATE_ID

STATE_NAME

REGION_ID

CITY

CITY_ID

CITY_NAME

LOCATION

LOC_ID

LOC_DESCRIPTION

CITY_ID

STATE_ID

SALES_LOCATION

TIME_ID

LOC_ID

CUST_ID

PROD_ID

SLSLOC_QUANTITY

SLSLOC_PRICE

SLSLOC_AMOUNT

M

1

1

M

1

M

1

M

M

1

M

1

550 C H A P T E R 1 3

of use and performance requirements, are evaluated against the possible overload placed on the DBMS to manage the
denormalized relations.

Partitioning and Replicating Tables
Because table partitioning and replication were covered in detail in Chapter 12, Distributed Database Management
Systems, those techniques are discussed here only as they specifically relate to the data warehouse. Table partitioning
and replication are particularly important when a BI system is implemented in dispersed geographic areas.
Partitioning splits a table into subsets of rows or columns and places the subsets close to the client computer to
improve data access time. Replication makes a copy of a table and places it in a different location, also to improve
access time.

No matter which performance-enhancement scheme is used, time is the most common dimension used in business
data analysis. Therefore, it is very common to have one fact table for each level of aggregation defined within the time
dimension. For example, in the sales example, you might have five aggregate sales fact tables: daily, weekly, monthly,
quarterly, and yearly. Those fact tables must have an implicit or explicit periodicity defined. Periodicity, usually
expressed as current year only, previous years, or all years, provides information about the time span of the data stored
in the table.

At the end of each year, daily sales for the current year are moved to another table that contains previous years’ daily
sales only. This table actually contains all sales records from the beginning of operations, with the exception of the
current year. The data in the current year and previous years’ tables thus represent the complete sales history of
the company. The previous years’ sales table can be replicated at several locations to avoid having to remotely access
the historic sales data, which can cause a slow response time. The possible size of this table is enough to intimidate
all but the bravest of query optimizers. Here is one case in which denormalization would be of value!

13.8 IMPLEMENTING A DATA WAREHOUSE

Organization-wide information system development is subject to many constraints. Some of the constraints are based
on available funding. Others are a function of management’s view of the role played by an IS department and of the
extent and depth of the information requirements. Add the constraints imposed by corporate culture, and you
understand why no single formula can describe perfect data warehouse development. Therefore, rather than proposing
a single data warehouse design and implementation methodology, this section identifies a few factors that appear to
be common to data warehousing.

13.8.1 The Data Warehouse as an Active Decision Support Framework

Perhaps the first thing to remember is that a data warehouse is not a static database. Instead, it is a dynamic framework
for decision support that is, almost by definition, always a work in progress. Because it is the foundation of a modern
BI environment, the design and implementation of the data warehouse means that you are involved in the design and
implementation of a complete database system development infrastructure for company-wide decision support.
Although it is easy to focus on the data warehouse database as the BI central data repository, you must remember that
the decision support infrastructure includes hardware, software, people, and procedures, as well as data. The argument
that the data warehouse is the only critical BI success component is as misleading as the argument that a human being
needs only a heart or a brain to function. The data warehouse is a critical component of a modern BI environment,
but it is certainly not the only critical component. Therefore, its design and implementation must be examined in light
of the entire infrastructure.

551B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

13.8.2 A Company-Wide Effort That Requires User Involvement

Designing a data warehouse means being given an opportunity to help develop an integrated data model that captures
the data that are considered to be essential to the organization, from both end-user and business perspectives. Data
warehouse data cross departmental lines and geographical boundaries. Because the data warehouse represents an
attempt to model all of the organization’s data, you are likely to discover that organizational components (divisions,
departments, support groups, and so on) often have conflicting goals, and it certainly will be easy to find data
inconsistencies and damaging redundancies. Information is power, and the control of its sources and uses is likely to
trigger turf battles, end-user resistance, and power struggles at all levels. Building the perfect data warehouse is not just
a matter of knowing how to create a star schema; it requires managerial skills to deal with conflict resolution,
mediation, and arbitration. In short, the designer must:

� Involve end users in the process.

� Secure end users’ commitment from the beginning.

� Solicit continuous end-user feedback.

� Manage end-user expectations.

� Establish procedures for conflict resolution.

13.8.3 Satisfy the Trilogy: Data, Analysis, and Users

Great managerial skills are not, of course, solely sufficient. The technical aspects of the data warehouse must be
addressed as well. The old adage of input-process-output repeats itself here. The data warehouse designer must satisfy:

� Data integration and loading criteria.

� Data analysis capabilities with acceptable query performance.

� End-user data analysis needs.

The foremost technical concern in implementing a data warehouse is to provide end-user decision support with
advanced data analysis capabilities—at the right moment, in the right format, with the right data, and at the right cost.

13.8.4 Apply Database Design Procedures

You learned about the database life cycle and the database design process in Chapter 9, Database Design, so perhaps
it is wise to review the traditional database design procedures. These design procedures must then be adapted to fit the
data warehouse requirements. If you remember that the data warehouse derives its data from operational databases,
you will understand why a solid foundation in operational database design is important. (It’s difficult to produce good
data warehouse data when the operational database data are corrupted.) Figure 13.21 depicts a simplified process for
implementing the data warehouse.

As noted, developing a data warehouse is a company-wide effort that requires many resources: human, financial, and
technical. Providing company-wide decision support requires a sound architecture based on a mix of people skills,
technology, and managerial procedures that is often difficult to find and implement. For example:

� The sheer and often mind-boggling quantity of decision support data is likely to require the latest hardware and
software—that is, advanced computers with multiple processors, advanced database systems, and large-
capacity storage units. In the not-too-distant past, those requirements usually prompted the use of a
mainframe-based system. Today’s client/server technology offers many other choices to implement a data
warehouse.

� Very detailed procedures are necessary to orchestrate the flow of data from the operational databases to the
data warehouse. Data flow control includes data extraction, validation, and integration.

� To implement and support the data warehouse architecture, you also need people with advanced database
design, software integration, and management skills.

552 C H A P T E R 1 3

13.9 DATA MINING

The purpose of data analysis is to discover previously unknown data characteristics, relationships, dependencies, or
trends. Such discoveries then become part of the information framework on which decisions are built. A typical data
analysis tool relies on the end users to define the problem, select the data, and initiate the appropriate data
analyses to generate the information that helps model and solve problems that the end users uncover. In other
words, the end user reacts to an external stimulus—the discovery of the problem itself. If the end user fails to detect
a problem, no action is taken. Given that limitation, some current BI environments now support various types of
automated alerts. The alerts are software agents that constantly monitor certain parameters, such as sales indicators
and inventory levels, and then perform specified actions (send e-mail or alert messages, run programs, and so on) when
such parameters reach predefined levels.

In contrast to the traditional (reactive) BI tools, data mining is proactive. Instead of having the end user define the
problem, select the data, and select the tools to analyze the data, data-mining tools automatically search the data
for anomalies and possible relationships, thereby identifying problems that have not yet been identified by the
end user. In other words, data mining refers to the activities that analyze the data, uncover problems or opportunities
hidden in the data relationships, form computer models based on their findings, and then use the models to predict
business behavior—requiring minimal end-user intervention. Therefore, the end user is able to use the system’s findings

FIGURE
13.21

Data warehouse design and implementation road map

Initial data
gathering

Design
and mapping

Loading and
testing

Building and
testing

Rollout
and feedback

• Identify and interview key users
• Define main subjects
• Identify operational data model
• Define ownership of data
• Define frequency of use and update
• Define end-user interface
• Define outputs

• Design star schema
• Facts, dimensions, attributes
• Create star schema diagrams
• Attribute hierarchies
• Map to relational tables
• Naming conventions

• Prepare for loading
• Define initial and update processes
• Define transformation
• Map from operational data
• Integrate and transform
• Load data, index data, and
 validate data
• Verify metadata and star schemas

• Roll out system
• Get end-user feedback
• System maintenance
• System expansion

• Training in development environment
• Build menus
• Customize query tools
• Build required queries
• Lay out outputs
• Test interfaces and results
• Optimize for speed and accuracy
• End-user prototyping and testing

553B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

to gain knowledge that might yield competitive advantages. Data mining describes a new breed of specialized decision
support tools that automate data analysis. In short, data-mining tools initiate analyses to create knowledge. Such
knowledge can be used to address any number of business problems. For example, banks and credit card companies
use knowledge-based analysis to detect fraud, thereby decreasing fraudulent transactions.

To put data mining in perspective, look at the pyramid in Figure 13.22, which represents how knowledge is extracted
from data. Data form the pyramid base and represent what most organizations collect in their operational databases.
The second level contains information that represents the purified and processed data. Information forms the basis
for decision making and business understanding. Knowledge is found at the pyramid’s apex and represents highly
specialized information.

It is difficult to provide a precise list of characteristics of data-mining tools. For one thing, the current generation of
data-mining tools contains many design and application variations to fit data-mining requirements. Additionally, the
many variations exist because there are no established standards that govern the creation of data-mining tools. Each
data-mining tool seems to be governed by a different approach and focus, thus generating families of data-mining tools
that focus on market niches such as marketing, retailing, finance, healthcare, investments, insurance, and banking.
Within a given niche, data-mining tools can use certain algorithms, and those algorithms can be implemented in
different ways and/or applied over different data.

Data-mining tools use advanced techniques from knowledge
discovery, artificial intelligence, and other fields to obtain “knowledge”
and apply it to business needs. Knowledge is then used to make
predictions of events or forecasts of values such as sales returns.
Several OLAP tools have integrated at least some of these data-mining
features in their products.

Low

High • Artificial intelligence
• Knowledge discovery
• Neural networks, etc.

• Data mining
• OLAP
• DSS
• Data warehouse

• OLTP
• Operational database

Knowledge

Information

Data

Processing

FIGURE
13.22

Extracting knowledge from data

554 C H A P T E R 1 3

In spite of the lack of precise standards, data mining is subject to four general phases:

1. Data preparation.

2. Data analysis and classification.

3. Knowledge acquisition.

4. Prognosis.

In the data preparation phase, the main data sets to be used by the data-mining operation are identified and cleansed
of any data impurities. Because the data in the data warehouse are already integrated and filtered, the data warehouse
usually is the target set for data-mining operations.

The data analysis and classification phase studies the data to identify common data characteristics or patterns.
During this phase, the data-mining tool applies specific algorithms to find:

� Data groupings, classifications, clusters, or sequences.

� Data dependencies, links, or relationships.

� Data patterns, trends, and deviations.

The knowledge acquisition phase uses the results of the data analysis and classification phase. During the knowledge
acquisition phase, the data-mining tool (with possible intervention by the end user) selects the appropriate modeling
or knowledge acquisition algorithms. The most common algorithms used in data mining are based on neural networks,
decision trees, rules induction, genetic algorithms, classification and regression trees, memory-based reasoning, and
nearest neighbor and data visualization. A data-mining tool may use many of these algorithms in any combination to
generate a computer model that reflects the behavior of the target data set.

Although many data-mining tools stop at the knowledge-acquisition phase, others continue to the prognosis phase.
In that phase, the data-mining findings are used to predict future behavior and forecast business outcomes. Examples
of data-mining findings can be:

� Sixty-five percent of customers who did not use a particular credit card in the last six months are 88 percent
likely to cancel that account.

� Eighty-two percent of customers who bought a 42-inch or larger LCD TV are 90 percent likely to buy an
entertainment center within the next four weeks.

� If age < 30 and income <= 25,000 and credit rating < 3 and credit amount > 25,000, then the minimum loan
term is 10 years.

The complete set of findings can be represented in a decision tree, a neural net, a forecasting model, or a visual
presentation interface that is used to project future events or results. For example, the prognosis phase might project
the likely outcome of a new product rollout or a new marketing promotion. Figure 13.23 illustrates the different phases
of the data-mining techniques.

Because data-mining technology is still in its infancy, some of the data-mining findings might fall outside the boundaries
of what business managers expect. For example, a data-mining tool might find a close relationship between a
customer’s favorite brand of soda and the brand of tires on the customer’s car. Clearly, that relationship might not be
held in high regard among sales managers. (In regression analysis, those relationships are commonly described by the
label “idiot correlation.”) Fortunately, data mining usually yields more meaningful results. In fact, data mining has
proved to be very helpful in finding practical relationships among data that help define customer buying patterns,
improve product development and acceptance, reduce healthcare fraud, analyze stock markets, and so on.

Ideally, you can expect the development of databases that not only store data and various statistics about data usage,
but also have the ability to learn about and extract knowledge from the stored data. Such database management
systems, also known as inductive or intelligent databases, are the focus of intense research in many laboratories.
Although those databases have yet to lay claim to substantial commercial market penetration, both “add-on” and
DBMS-integrated data-mining tools have proliferated in the data warehousing database market.

555B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

13.10 SQL EXTENSIONS FOR OLAP

The proliferation of OLAP tools has fostered the development of SQL extensions to support multidimensional data
analysis. Most SQL innovations are the result of vendor-centric product enhancements. However, many of the
innovations have made their way into standard SQL. This section introduces some of the new SQL extensions that
have been created to support OLAP-type data manipulations.

The SaleCo snowflake schema shown in Figure 13.24 will be used to demonstrate the use of the SQL extensions. Note
that this snowflake schema has a central DWSALESFACT fact table and three-dimension tables: DWCUSTOMER,
DWPRODUCT, and DWTIME. The central fact table represents daily sales by product and customer. However, as you
examine the star schema shown in Figure 13.24 more carefully, you will see that the DWCUSTOMER and
DWPRODUCT dimension tables have their own dimension tables: DWREGION and DWVENDOR.

Keep in mind that a database is at the core of all data warehouses. Therefore, all SQL commands (such as CREATE,
INSERT, UPDATE, DELETE, and SELECT) will work in the data warehouse as expected. However, most queries you
run in a data warehouse tend to include a lot of data groupings and aggregations over multiple columns. That’s why
this section introduces two extensions to the GROUP BY clause that are particularly useful: ROLLUP and CUBE. In
addition, you will learn about using materialized views to store preaggregated rows in the database.

Operational

Data warehouse

Data preparation phase
• Identify data set
• Clean data set
• Integrate data set

Data analysis and
classification phase

Knowledge
acquisition phase

Prognosis phase

• Classification analysis
• Clustering and sequence analysis
• Link analysis
• Trend and deviation analysis

• Select and apply algorithms
Neural nets
Inductive logic
Decision trees
Classification and regression tree
Nearest neighbor
Visualization, etc.

• Prediction
• Forecasting
• Modeling

database

FIGURE
13.23

Data–mining phases

556 C H A P T E R 1 3

13.10.1 The ROLLUP Extension

The ROLLUP extension is used with the GROUP BY clause to generate aggregates by different dimensions. As you
know, the GROUP BY clause will generate only one aggregate for each new value combination of attributes listed in
the GROUP BY clause. The ROLLUP extension goes one step further; it enables you to get a subtotal for each column
listed except for the last one, which gets a grand total instead. The syntax of the GROUP BY ROLLUP is as follows:

SELECT column1, column2 [, ...], aggregate_function(expression)
FROM table1 [,table2, �]
[WHERE condition]
GROUP BY ROLLUP (column1, column2 [, ...])
[HAVING condition]
[ORDER BY column1 [, column2, �]]

The order of the column list within the GROUP BY ROLLUP is very important. The last column in the list will generate
a grand total. All other columns will generate subtotals. For example, Figure 13.25 shows the use of the ROLLUP
extension to generate subtotals by vendor and product.

FIGURE
13.24

SaleCo snowflake schema

O n l i n e C o n t e n t

The script files used to populate the database and run the SQL commands are available in the PremiumWebsite
for this book.

Note

This section uses the Oracle RDBMS to demonstrate the use of SQL extensions to support OLAP functionality.
If you use a different DBMS, consult the documentation to verify whether the vendor supports similar
functionality and what the proper syntax is for your DBMS.

557B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

Note that Figure 13.25 shows the subtotals by vendor code and a grand total for all product codes. Contrast that with
the normal GROUP BY clause that will generate only the subtotals for each vendor and product combination rather
than the subtotals by vendor and the grand total for all products. The ROLLUP extension is particularly useful when
you want to obtain multiple-nested subtotals for a dimension hierarchy. For example, within a location hierarchy, you
can use ROLLUP to generate subtotals by region, state, city, and store.

13.10.2 The CUBE Extension

The CUBE extension is also used with the GROUP BY clause to generate aggregates by the listed columns, including
the last one. The CUBE extension will enable you to get a subtotal for each column listed in the expression, in addition
to a grand total for the last column listed. The syntax of the GROUP BY CUBE is as follows:

SELECT column1 [, column2, ...], aggregate_function(expression)
FROM table1 [,table2, �]
[WHERE condition]
GROUP BY CUBE (column1, column2 [, �])
[HAVING condition]
[ORDER BY column1 [, column2, �]]

For example, Figure 13.26 shows the use of the CUBE extension to compute the sales subtotals by month and by
product, as well as a grand total.

In Figure 13.26, note that the CUBE extension generates the subtotals for each combination of month and product,
in addition to subtotals by month and by product, as well as a grand total. The CUBE extension is particularly useful
when you want to compute all possible subtotals within groupings based on multiple dimensions. Cross-tabulations are
especially good candidates for application of the CUBE extension.

FIGURE
13.25

ROLLUP extension

Subtotals by V_CODE

Grand total for all P_CODE values

558 C H A P T E R 1 3

13.10.3 Materialized Views

The data warehouse normally contains fact tables that store specific measurements of interest to an organization. Such
measurements are organized by different dimensions. The vast majority of OLAP business analysis of “everyday
activities” is based on comparisons of data that are aggregated at different levels, such as totals by vendor, by product,
and by store.

Because businesses normally use a predefined set of summaries for benchmarking, it is reasonable to predefine such
summaries for future use by creating summary fact tables. (See Section 13.5.6 for a discussion of additional
performance-improving techniques.) However, creating multiple summary fact tables that use GROUP BY queries with
multiple table joins could become a resource-intensive operation. In addition, data warehouses must also be able to
maintain up-to-date summarized data at all times. So what happens with the summary fact tables after new sales data
have been added to the base fact tables? Under normal circumstances, the summary fact tables are re-created. This
operation requires that the SQL code be run again to re-create all summary rows, even when only a few rows needed
updating. Clearly, this is a time-consuming process.

To save query processing time, most database vendors have implemented additional “functionality” to manage
aggregate summaries more efficiently. This new functionality resembles the standard SQL views for which the SQL
code is predefined in the database. However, the added functionality difference is that the views also store the

FIGURE
13.26

CUBE extension

Subtotals by quarter

Subtotals by product

Grand total for all products and quarters

559B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

preaggregated rows, something like a summary table. For example, Microsoft SQL Server provides indexed views,
while Oracle provides materialized views. This section explains the use of materialized views.

A materialized view is a dynamic table that not only contains the SQL query command to generate the rows, but
also stores the actual rows. The materialized view is created the first time the query is run and the summary rows are
stored in the table. The materialized view rows are automatically updated when the base tables are updated. That way,
the data warehouse administrator will create the view but will not have to worry about updating the view. The use of
materialized views is totally transparent to the end user. The OLAP end user can create OLAP queries, using the
standard fact tables, and the DBMS query optimization feature will automatically use the materialized views if those
views provide better performance.

The basic syntax for the materialized view is:

CREATE MATERIALIZED VIEW view_name
BUILD {IMMEDIATE | DEFERRED}
REFRESH {[FAST | COMPLETE | FORCE]} ON COMMIT
[ENABLE QUERY REWRITE]

AS select_query;

The BUILD clause indicates when the materialized view rows are actually populated. IMMEDIATE indicates that the
materialized view rows are populated right after the command is entered. DEFERRED indicates that the materialized
view rows will be populated at a later time. Until then, the materialized view is in an “unusable” state. The DBMS
provides a special routine that an administrator runs to populate materialized views.

The REFRESH clause lets you indicate when and how to update the materialized view when new rows are added to
the base tables. FAST indicates that whenever a change is made in the base tables, the materialized view updates only
the affected rows. COMPLETE indicates that a complete update will be made for all rows in the materialized view when
the select query on which the view is based is rerun. FORCE indicates that the DBMS will first try to do a FAST update;
otherwise, it will do a COMPLETE update. The ON COMMIT clause indicates that the updates to the materialized view
will take place as part of the commit process of the underlying DML statement, that is, as part of the commitment of
the DML transaction that updated the base tables. The ENABLE QUERY REWRITE option allows the DBMS to use
the materialized views in query optimization.

To create materialized views, you must have specified privileges and you must complete specified prerequisite steps.
As always, you must defer to the DBMS documentation for the latest updates. In the case of Oracle, you must create
materialized view logs on the base tables of the materialized view. Figure 13.27 shows the steps required to create the
MONTH_SALES_MV materialized view in the Oracle RDBMS.

560 C H A P T E R 1 3

The materialized view in Figure 13.27 computes the monthly total units sold and the total sales aggregates by product.
The SALES_MONTH_MV materialized view is configured to automatically update after each change in the base tables.
Note that the last row of SALES_MONTH_MV indicates that during October, the sales of product 'WR3/TT3' are three
units, for a total of $359.85. Figure 13.28 shows the effects of an update to the DWDAYSALESFACT base table.

FIGURE
13.27

Creating a materialized view

561B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

Figure 13.28 shows how the materialized view was automatically updated after the insertion of a new row in the
DWDAYSALESFACT table. Note that the last row of the SALES_MONTH_MV now shows that in October, the sales
of product 'WR3/TT3' are four units, for a total of $466.84.

FIGURE
13.28

Refreshing a materialized view

562 C H A P T E R 1 3

Although all of the examples in this section focus on SQL extensions to support OLAP reporting in an Oracle DBMS,
you have seen just a small fraction of the many business intelligence features currently provided by most DBMS
vendors. For example, most vendors provide rich graphical user interfaces to manipulate, analyze, and present the data
in multiple formats. Figure 13.29 shows two sample screens, one for Oracle and one for Microsoft OLAP products.

Oracle DBMS
OLAP Services

Microsoft SQL Server
Analysis Services

FIGURE
13.29

Sample OLAP applications

563B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

S u m m a r y

◗ Business intelligence (BI) is a term used to describe a comprehensive, cohesive, and integrated set of applications
used to capture, collect, integrate, store, and analyze data with the purpose of generating and presenting
information used to support business decision making.

◗ BI covers a range of technologies and applications to manage the entire data life cycle from acquisition to storage,
transformation, integration, analysis, monitoring, presentation, and archiving. BI functionality ranges from simple
data gathering and extraction to very complex data analysis and presentation.

◗ Decision support systems (DSS) refers to an arrangement of computerized tools used to assist managerial decision
making within a business. DSS were the original precursor of current-generation BI systems.

◗ Operational data are not well suited for decision support. From the end-user point of view, decision support data
differ from operational data in three main areas: time span, granularity, and dimensionality.

◗ The requirements for a decision support DBMS are divided into four main categories: database schema, data
extraction and filtering, end-user analytical interface, and database size requirements.

◗ The data warehouse is an integrated, subject-oriented, time-variant, nonvolatile collection of data that provides
support for decision making. The data warehouse is usually a read-only database optimized for data analysis and
query processing. A data mart is a small, single-subject data warehouse subset that provides decision support to a
small group of people.

◗ Online analytical processing (OLAP) refers to an advanced data analysis environment that supports decision
making, business modeling, and operations research. OLAP systems have four main characteristics: use of
multidimensional data analysis techniques, advanced database support, easy-to-use end-user interfaces, and
client/server architecture.

◗ Relational online analytical processing (ROLAP) provides OLAP functionality by using relational databases and
familiar relational query tools to store and analyze multidimensional data. Multidimensional online analytical
processing (MOLAP) provides OLAP functionality by using multidimensional database management systems
(MDBMSs) to store and analyze multidimensional data.

◗ The star schema is a data-modeling technique used to map multidimensional decision support data into a relational
database with the purpose of performing advanced data analysis. The basic star schema has four components:
facts, dimensions, attributes, and attribute hierarchies. Facts are numeric measurements or values representing a
specific business aspect or activity. Dimensions are general qualifying categories that provide additional perspec-
tives to a given fact. Conceptually, the multidimensional data model is best represented by a three-dimensional
cube. Attributes can be ordered in well-defined attribute hierarchies. The attribute hierarchy provides a top-down
organization that is used for two main purposes: to permit aggregation and to provide drill-down/roll-up data
analysis.

◗ Four techniques are generally used to optimize data warehouse design: normalizing dimensional tables, maintaining
multiple fact tables representing different aggregation levels, denormalizing fact tables, and partitioning and
replicating tables.

◗ Data mining automates the analysis of operational data with the intention of finding previously unknown data
characteristics, relationships, dependencies, and/or trends. The data-mining process has four phases: data
preparation, data analysis and classification, knowledge acquisition, and prognosis.

◗ SQL has been enhanced with extensions that support OLAP-type processing and data generation.

564 C H A P T E R 1 3

K e y T e r m s

attribute hierarchy, 544

business intelligence (BI), 515

cube cache, 539

dashboard, 520

data cube, 539

data mart, 527

data mining, 553

data store, 519

data warehouse, 526

decision support system (DSS), 520

dimensions, 542

dimension tables, 542

drill down, 521

extraction, transformation, and
loading (ETL), 518

facts, 541

fact table, 541

governance, 518

key performance indicators
(KPI), 518

master data management
(MDM), 518

materialized view, 560

metrics, 541

multidimensional database
management system
(MDBMS), 539

multidimensional online analytical
processing (MOLAP), 539

online analytical processing
(OLAP), 529

partitioning, 551

periodicity, 551

portal, 520

relational online analytical
processing (ROLAP), 537

replication, 551

roll up, 521

slice and dice, 543

snowflake schema, 548

sparsity, 539

star schema, 541

very large databases (VLDBs), 525

R e v i e w Q u e s t i o n s

1. What is business intelligence?

2. Describe the BI framework.

3. What are decision support systems, and what role do they play in the business environment?

4. Explain how the main components of the BI architecture interact to form a system.

5. What are the most relevant differences between operational and decision support data?

6. What is a data warehouse, and what are its main characteristics? How does it differ from a data mart?

7. Give three examples of problems likely to be encountered when operational data are integrated into the data
warehouse.

Use the following scenario to answer Questions 8−14.

While working as a database analyst for a national sales organization, you are asked to be part of its data warehouse
project team.

8. Prepare a high-level summary of the main requirements for evaluating DBMS products for data warehousing.

9. Your data warehousing project group is debating whether to prototype a data warehouse before its
implementation. The project group members are especially concerned about the need to acquire some data
warehousing skills before implementing the enterprise-wide data warehouse. What would you recommend?
Explain your recommendations.

10. Suppose that you are selling the data warehouse idea to your users. How would you define multidimensional data
analysis for them? How would you explain its advantages to them?

O n l i n e C o n t e n t

Answers to selected ReviewQuestions and Problems for this chapter are contained in the PremiumWebsite for
this book.

565B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

11. Before making a commitment, the data warehousing project group has invited you to provide an OLAP overview.
The group’s members are particularly concerned about the OLAP client/server architecture requirements and
how OLAP will fit the existing environment. Your job is to explain to them the main OLAP client/server
components and architectures.

12. One of your vendors recommends using an MDBMS. How would you explain this recommendation to your
project leader?

13. The project group is ready to make a final decision, choosing between ROLAP and MOLAP. What should be the
basis for this decision? Why?

14. The data warehouse project is in the design phase. Explain to your fellow designers how you would use a star
schema in the design.

15. Briefly discuss the decision support architectural styles and their evolution. What major technologies influenced
this evolution?

16. What is OLAP, and what are its main characteristics?

17. Explain ROLAP and give the reasons you would recommend its use in the relational database environment.

18. Explain the use of facts, dimensions, and attributes in the star schema.

19. Explain multidimensional cubes and describe how the slice-and-dice technique fits into this model.

20. In the star schema context, what are attribute hierarchies and aggregation levels, and what is their purpose?

21. Discuss the most common performance improvement techniques used in star schemas.

22. Explain some of the most important issues in data warehouse implementation.

23. What is data mining, and how does it differ from traditional decision support tools?

24. How does data mining work? Discuss the different phases in the data-mining process.

P r o b l e m s

1. The university computer lab’s director keeps track of lab usage, measured by the number of students using the
lab. This particular function is important for budgeting purposes. The computer lab director assigns you the task
of developing a data warehouse in which to keep track of the lab usage statistics. The main requirements for this
database are to:

� Show the total number of users by different time periods.

� Show usage numbers by time period, by major, and by student classification.

� Compare usage for different majors and different semesters.

Use the Ch13_P1.mdb database, which includes the following tables:

� USELOG contains the student lab access data.

� STUDENT is a dimension table containing student data.

Given the three bulleted requirements above, and using the Ch13_P1.mdb data, complete the following problems:

a. Define the main facts to be analyzed. (Hint: These facts become the source for the design of the fact table.)

O n l i n e C o n t e n t

The databases used for this problem set are found in the Premium Website for this book. These databases are
stored inMicrosoft Access 2000 format. The databases, named Ch13_P1.mdb, Ch13_P3.mdb, and Ch13_P4.
mdb, contain the data for Problems 1, 3, and 4, respectively. The data for Problem 2 are stored in Microsoft
Excel 2000 format in the Premium Website for this book. The spreadsheet filename is Ch13_P2.xls.

566 C H A P T E R 1 3

b. Define and describe the appropriate dimensions. (Hint: These dimensions become the source for the design
of the dimension tables.)

c. Draw the lab usage star schema, using the fact and dimension structures you defined in Problems 1a and 1b.

d. Define the attributes for each of the dimensions in Problem 1b.

e. Recommend the appropriate attribute hierarchies.

f. Implement your data warehouse design, using the star schema you created in Problem 1c and the attributes
you defined in Problem 1d.

g. Create the reports that will meet the requirements listed in this problem’s introduction.

2. Ms. Victoria Ephanor manages a small product distribution company. Because the business is growing fast, Ms.
Ephanor recognizes that it is time to manage the vast information pool to help guide the accelerating growth. Ms.
Ephanor, who is familiar with spreadsheet software, currently employs a small sales force of four people. She asks
you to develop a data warehouse application prototype that will enable her to study sales figures by year, region,
salesperson, and product. (This prototype is to be used as the basis for a future data warehouse database.)

Using the data supplied in the Ch13_P2.xls file, complete the following seven problems:

a. Identify the appropriate fact table components.

b. Identify the appropriate dimension tables.

c. Draw a star schema diagram for this data warehouse.

d. Identify the attributes for the dimension tables that will be required to solve this problem.

e. Using a Microsoft Excel spreadsheet (or any other spreadsheet capable of producing pivot tables), generate
a pivot table to show the sales by product and by region. The end user must be able to specify the display
of sales for any given year. (The sample output is shown in the first pivot table in Figure P13.2E.)

f. Using Problem 2e as your base, add a second pivot table (see Figure P13.2E) to show the sales by salesperson
and by region. The end user must be able to specify sales for a given year or for all years and for a given
product or for all products.

g. Create a 3-D bar graph to show sales by salesperson, by product, and by region. (See the sample output in
Figure P13.2G.)

FIGURE
P13.2E

Using a pivot table

567B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

3. Mr. David Suker, the inventory manager for a marketing research company, is interested in studying the use of
supplies within the different company departments. Mr. Suker has heard that his friend, Ms. Ephanor, has
developed a small spreadsheet-based data warehouse model (see Problem 2) that she uses to analyze sales data.
Mr. Suker is interested in developing a small data warehouse model like Ms. Ephanor’s so he can analyze orders
by department and by product. He will use Microsoft Access as the data warehouse DBMS and Microsoft Excel
as the analysis tool.

a. Develop the order star schema.

b. Identify the appropriate dimensions attributes.

c. Identify the attribute hierarchies required to support the model.

d. Develop a crosstab report (in Microsoft Access), using a 3-D bar graph to show orders by product and by
department. (The sample output is shown in Figure P13.3.)

FIGURE
P13.2G

3-D bar graph showing the relationships among agent, product, and region

568 C H A P T E R 1 3

4. ROBCOR, whose sample data are contained in the database named Ch13_P4.mdb, provides “on-demand”
aviation charters, using a mix of different aircraft and aircraft types. Because ROBCOR has grown rapidly, its
owner has hired you to be its first database manager. (The company’s database, developed by an outside
consulting team, already has a charter database in place to help manage all of its operations.) Your first critical
assignment is to develop a decision support system to analyze the charter data. (Review Problems 24−31 in
Chapter 3, The Relational Database Model, in which the operations have been described.) The charter operations
manager wants to be able to analyze charter data such as cost, hours flown, fuel used, and revenue. She would
also like to be able to drill down by pilot, type of airplane, and time periods.

Given those requirements, complete the following:

a. Create a star schema for the charter data.

b. Define the dimensions and attributes for the charter operation’s star schema.

c. Define the necessary attribute hierarchies.

d. Implement the data warehouse design, using the design components you developed in Problems 4a−4c.

e. Generate the reports that will illustrate that your data warehouse meets the specified information
requirements.

FIGURE
P13.3

Crosstab report: orders by product and department

569B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S

Using the data provided in the SaleCo snowflake schema in Figure 13.24, solve the following problems.

5. What is the SQL command to list the total sales by customer and by product, with subtotals by customer and a
grand total for all product sales? (Hint: Use the ROLLUP command.)

6. What is the SQL command to list the total sales by customer, month, and product, with subtotals by customer
and by month and a grand total for all product sales? (Hint: Use the ROLLUP command.)

7. What is the SQL command to list the total sales by region and customer, with subtotals by region and a grand
total for all sales? (Hint: Use the ROLLUP command.)

8. What is the SQL command to list the total sales by month and product category, with subtotals by month and
a grand total for all sales? (Hint: Use the ROLLUP command.)

9. What is the SQL command to list the number of product sales (number of rows) and total sales by month, with
subtotals by month and a grand total for all sales? (Hint: Use the ROLLUP command.)

10. What is the SQL command to list the number of product sales (number of rows) and total sales by month and
product category, with subtotals by month and product category and a grand total for all sales? (Hint: Use the
ROLLUP command.)

11. What is the SQL command to list the number of product sales (number of rows) and total sales by month, product
category, and product, with subtotals by month and product category and a grand total for all sales? (Hint: Use
the ROLLUP command.)

12. Using the answer to Problem 10 as your base, what command would you need to generate the same output but
with subtotals in all columns? (Hint: Use the CUBE command.)

O n l i n e C o n t e n t

The script files used to populate the database are available in the PremiumWebsite for this book. The script files
assume an Oracle RDBMS. If you use a different DBMS, consult the documentation to verify whether the
vendor supports similar functionality and what the proper syntax is for your DBMS.

570 C H A P T E R 1 3

This page intentionally left blank

PART

V
Databases and the

Internet

14Database Connectivity and Web Technologies

B
V

usiness
ignette

KBB Transforms with Innovative Web
Services

Since 1926, Kelley Blue Book has been an authority on vehicle pricing, originally for car

dealers, manufacturers, financial institutions, and other businesses. When the company

launched its first Web site in 1995, it reached out to consumers, triggering the biggest

growth in the company’s history. Today nearly one in three people who are buying or

selling a used car in the United States visit kbb.com, and the site receives over 12 million

visits a month.

The Web site and all other Kelley Blue Book products receive their data through a single

pipeline that tracks vehicle transactions from all over the country. Data is entered into

the system from a variety of sources, from employees submitting Microsoft Excel

spreadsheets to dealer management systems.The data is converted into the right format

using SQL Server Integration services, loaded into an SQL Server database, and then

analyzed and manipulated using SQL Server Analysis Services and SAS software.The Web

site itself was developed with Microsoft ASP.NET and uses Asynchronous JavaScript and

XML programming techniques to increase efficiency.

The company uses Microsoft Visual Studio products to develop most of the software for

the site, but occasionally implements other tools to create innovative services. In 2008

developers at kbb.com used Microsoft Silverlight and its Deep Zoom technology to create

the �Perfect Car Finder,� an application that allows users to view many cars at once and

adjust the car selection by price, mileage, and body style.The whole application took one

developer only eight weeks to build.

The company has also turned its attention to mobile users. The site was getting about

200,000 mobile visits per month, but these visits were short—spanning one or two page

views, as compared to an average of 14 page views from desktops. So, Kelley Blue Book

created one version of the kbb.com site for the Apple iPhone and another for other

mobile browsers. The result was a tenfold increase in mobile page views per month.

These examples underline a growing trend among Internet businesses.To be successful,

companies like Kelley Blue Book must go beyond their original area of expertise. They

must transform themselves into niche software development companies and market new,

innovative services.

Preview

Database Connectivity and Web Technologies

In this chapter, you will learn:

� About various database connectivity technologies

� How Web-to-database middleware is used to integrate databases with the Internet

� About Web browser plug-ins and extensions

� What services are provided by Web application servers

� What Extensible Markup Language (XML) is and why it is important for Web database
development

� About SQL data services and how they can reduce the cost of data management

As you know, a database is a central repository for critical business data. Such data can be

generated through traditional business applications or via newer business channels such as

the Web and mobile devices like smart phones. To be useful universally, the data must be

available to all business users. Those users need access to the data via many avenues: a

spreadsheet, a user-developed Visual Basic application, a Web front end, Microsoft Access

forms and reports, and so on. In this chapter, you will learn about the architectures that

applications use to connect to databases.

The Internet has changed how organizations of all types operate. For example, buying goods

and services via the Internet has become commonplace. In today’s environment, intercon-

nectivity occurs not only between an application and the database but also between

applications interchanging messages and data. Extensible Markup Language (XML) provides

a standard way of exchanging unstructured and structured data between applications.

Given the growing relationship between the Web and databases, database professionals

must know how to create, use, and manage Web interfaces to those databases.This chapter

examines the basics of Web database technologies.

14
F

O
U

R
T

E
E

N

14.1 DATABASE CONNECTIVITY

Database connectivity refers to the mechanisms through which application programs connect and communicate with
data repositories. Database connectivity software is also known as database middleware because it provides an
interface between the application program and the database. The data repository, also known as the data source,
represents the data management application, such as Oracle RDBMS, SQL Server DBMS, or IBM DBMS, that will be
used to store the data generated by the application program. Ideally, a data source or data repository could be located
anywhere and hold any type of data. For example, the data source could be a relational database, a hierarchical
database, a spreadsheet, or a text data file.

The need for standard database connectivity interfaces cannot be overstated. Just as SQL has become the de facto data
manipulation language, there is a need for a standard database connectivity interface that will enable applications to
connect to data repositories. There are many different ways to achieve database connectivity. This section will cover
only the following interfaces:

� Native SQL connectivity (vendor provided).

� Microsoft’s Open Database Connectivity (ODBC), Data Access Objects (DAO), and Remote Data
Objects (RDO).

� Microsoft’s Object Linking and Embedding for Database (OLE-DB).

� Microsoft’s ActiveX Data Objects (ADO.NET).

� Sun’s Java Database Connectivity (JDBC).

You should not be surprised to learn that most interfaces you are likely to encounter are Microsoft offerings. After all,
client applications connect to databases, and the majority of those applications run on computers that are powered by
some version of Microsoft Windows. The data connectivity interfaces illustrated here are dominant players in the
market, and more importantly, they enjoy the support of the majority of database vendors. In fact, ODBC, OLE-DB,
and ADO.NET form the backbone of Microsoft’s Universal Data Access (UDA) architecture, a collection of
technologies used to access any type of data source and manage the data through a common interface. As you will
see, Microsoft’s database connectivity interfaces have evolved over time: each interface builds on top of the other, thus
providing enhanced functionality, features, flexibility, and support.

14.1.1 Native SQL Connectivity

Most DBMS vendors provide their own methods for connecting to their databases. Native SQL connectivity refers to
the connection interface that is provided by the database vendor and that is unique to that vendor. The best example
of that type of native interface is the Oracle RDBMS. To connect a client application to an Oracle database, you must
install and configure the Oracle’s SQL*Net interface in the client computer. Figure 14.1 shows the configuration of
Oracle SQL*NET interface on the client computer.

Native database connectivity interfaces are optimized for “their” DBMS, and those interfaces support access to most,
if not all, of the database features. However, maintaining multiple native interfaces for different databases can become
a burden for the programmer. Therefore, the need for “universal” database connectivity arises. Usually, the native
database connectivity interface provided by the vendor is not the only way to connect to a database; most current
DBMS products support other database connectivity standards, the most common being ODBC.

14.1.2 ODBC, DAO, and RDO

Developed in early 1990s, Open Database Connectivity (ODBC) is Microsoft’s implementation of a superset of the
SQL Access Group Call Level Interface (CLI) standard for database access. ODBC is probably the most widely
supported database connectivity interface. ODBC allows any Windows application to access relational data sources,
using SQL via a standard application programming interface (API). The Webopedia online dictionary (www.
webopedia.com) defines an API as “a set of routines, protocols, and tools for building software applications.” A good

575D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

API makes it easy to develop a program by providing all of the building blocks; the programmer puts the blocks
together. Most operating environments, such as Microsoft Windows, provide an API so that programmers can write
applications consistent with the operating environment. Although APIs are designed for programmers, they are
ultimately good for users because they guarantee that all programs using a common API will have similar interfaces.
That makes it easy for users to learn new programs.

ODBC was the first widely adopted database middleware standard, and it enjoyed rapid adoption in Windows
applications. As programming languages evolved, ODBC did not provide significant functionality beyond the ability to
execute SQL to manipulate relational style data. Therefore, programmers needed a better way to access data. To
answer that need, Microsoft developed two other data access interfaces:

� Data Access Objects (DAO) is an object-oriented API used to access MS Access, MS FoxPro, and dBase
databases (using the Jet data engine) from Visual Basic programs. DAO provided an optimized interface that
exposed to programmers the functionality of the Jet data engine (on which the MS Access database is based).
The DAO interface can also be used to access other relational-style data sources.

� Remote Data Objects (RDO) is a higher-level object-oriented application interface used to access remote
database servers. RDO uses the lower-level DAO and ODBC for direct access to databases. RDO was
optimized to deal with server-based databases, such as MS SQL Server, Oracle, and DB2.

Figure 14.2 illustrates how Windows applications can use ODBC, DAO, and RDO to access local and remote relational
data sources.

As you can tell by examining Figure 14.2, client applications can use ODBC to access relational data sources.
However, the DAO and RDO object interfaces provide more functionality. DAO and RDO make use of the underlying
ODBC data services. ODBC, DAO, and RDO are implemented as shared code that is dynamically linked to the
Windows operating environment through dynamic-link libraries (DLLs), which are stored as files with the .dll
extension. Running as a DLL, the code speeds up load and run times.

FIGURE
14.1

ORACLE native connectivity

576 C H A P T E R 1 4

The basic ODBC architecture has three main components:

� A high-level ODBC API through which application programs access ODBC functionality.

� A driver manager that is in charge of managing all database connections.

� An ODBC driver that communicates directly to the DBMS.

Defining a data source is the first step in using ODBC. To define a data source, you must create a data source name
(DSN) for the data source. To create a DSN you need to provide:

� An ODBC driver. You must identify the driver to use to connect to the data source. The ODBC driver is
normally provided by the database vendor, although Microsoft provides several drivers that connect to most
common databases. For example, if you are using an Oracle DBMS, you will select the Oracle ODBC driver
provided by Oracle, or if desired, the Microsoft-provided ODBC driver for Oracle.

� A DSN name. This is a unique name by which the data source will be known to ODBC, and therefore, to
applications. ODBC offers two types of data sources: user and system. User data sources are available only
to the user. System data sources are available to all users, including operating system services.

FIGURE
14.2

Using ODBC, DAO, and RDO to access databases

MS Word MS Access MS Excel

RDO

DAO

Jet Engine

ODBC API

ODBC Driver Manager

ODBC Database Driver

Oracle
Driver

MS SQL
Driver

ODBC
Driver

Oracle MS SQL Access

Remote Data Objects

Data Access Objects

Jet Engine supports MS
Access databases and other

SQL-aware data sources.

Database vendors provide ODBC
database drivers so Windows
applications can access their

respective databases.

Client Applications

577D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

� ODBC driver parameters. Most ODBC drivers require specific parameters in order to establish a connection
to the database. For example, if you are using an MS Access database, you must point to the location of the
MS Access file, and if necessary, provide a username and password. If you are using a DBMS server, you must
provide the server name, the database name, the username, and the password needed to connect to the
database. Figure 14.3 shows the ODBC screens required to create a System ODBC data source for an Oracle
DBMS. Note that some ODBC drivers use the native driver provided by the DBMS vendor.

Once the ODBC data source is defined, application programmers can write to the ODBC API by issuing specific
commands and providing the required parameters. The ODBC Driver Manager will properly route the calls to the
appropriate data source. The ODBC API standard defines three levels of compliance: Core, Level-1, and Level-2,
which provide increasing levels of functionality. For example, Level-1 might provide support for most SQL DDL and
DML statements, including subqueries and aggregate functions, but no support for procedural SQL or cursors. The
database vendors can choose which level to support. However, to interact with ODBC, the database vendor must
implement all of the features indicated in that ODBC API support level.

Figure 14.4 shows how you could use MS Excel to retrieve data from an Oracle RDBMS, using ODBC. Because much
of the functionality provided by these interfaces is oriented toward accessing relational data sources, the use of the
interfaces was limited when they were used with other data source types. With the advent of object-oriented
programming languages, it has become more important to provide access to other nonrelational data sources.

FIGURE
14.3

Configuring an Oracle ODBC data source

Defining an ODBC
system Data Source Name (DSN)
to connect to an Oracle DBMS,
using Oracle ODBC driver

Oracle ODBC driver
uses the native Oracle
SQL connectivity.

If no user ID is provded,
ODBC will prompt for the
user ID and password at
run time.

578 C H A P T E R 1 4

14.1.3 OLE-DB

Although ODBC, DAO, and RDO were widely used, they did not provide support for nonrelational data. To answer
that need and to simplify data connectivity, Microsoft developed Object Linking and Embedding for Database
(OLE-DB). Based on Microsoft’s Component Object Model (COM), OLE-DB is database middleware that adds
object-oriented functionality for access to relational and nonrelational data. OLE-DB was the first part of Microsoft’s
strategy to provide a unified object-oriented framework for the development of next-generation applications.

OLE-DB is composed of a series of COM objects that provide low-level database connectivity for applications. Because
OLE-DB is based on COM, the objects contain data and methods, also known as the interface. The OLE-DB model
is better understood when you divide its functionality into two types of objects:

� Consumers are objects (applications or processes) that request and use data. The data consumers request data
by invoking the methods exposed by the data provider objects (public interface) and passing the required
parameters.

� Providers are objects that manage the connection with a data source and provide data to the consumers.
Providers are divided into two categories: data providers and service providers.

- Data providers provide data to other processes. Database vendors create data provider objects that expose
the functionality of the underlying data source (relational, object-oriented, text, and so on).

FIGURE
14.4

MS Excel uses ODBC to connect to an Oracle database

ODBC Interface

ODBC API

ODBC
DRIVER MGR

ODBC DRIVER

RDBMS
SERVER

DATABASE

DATABASE
SERVER

COMPUTER

1. From Excel, select Get External Data, From Other Sources
 and From Microsoft Query options to retrieve data from
 an Oracle RDBMS.
2. Select the Gradora ODBC data source.
3. Enter the authentication parameters. ODBC uses the
 connection parameters to connect to the data source.
4. Select the table and columns to use in the query.
5. Select filtering options to restrict the rows returned.
6. Select sorting options to order the rows.
7. Select Return Data to Microsoft Office Excel.
8. Excel uses the ODBC API to pass the SQL request down to
 the database. Oracle executes the request and generates a
 result set. Excel issues calls to the ODBC API to retrieve the
 result set and populate the spreadsheet.

2

3

4

5

6

1

CLIENT APPLICATION

1 2

3

4

5

6

7
8

579D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

- Service providers provide additional functionality to consumers. The service provider is located between the
data provider and the consumer. The service provider requests data from the data provider, transforms the
data, and then provides the transformed data to the data consumer. In other words, the service provider acts
like a data consumer of the data provider and as a data provider for the data consumer (end-user
application). For example, a service provider could offer cursor management services, transaction manage-
ment services, query processing services, and indexing services.

As a common practice, many vendors provide OLE-DB objects to augment their ODBC support, effectively creating
a shared object layer on top of their existing database connectivity (ODBC or native) through which applications can
interact. The OLE-DB objects expose functionality about the database; for example, there are objects that deal with
relational data, hierarchical data, and flat-file text data. Additionally, the objects implement specific tasks, such as
establishing a connection, executing a query, invoking a stored procedure, defining a transaction, or invoking an OLAP
function. By using OLE-DB objects, the database vendor can choose what functionality to implement in a modular way,
instead of being forced to include all of the functionality all of the time. Table 14.1 shows a sample of the
object-oriented classes used by OLE-DB and some of the methods (interfaces) exposed by the objects.

TABLE
14.1

Sample OLE-DB Classes and Interfaces

OBJECT CLASS USAGE SAMPLE INTERFACES
Session Used to create an OLE-DB session between a data consumer

application and a data provider.
IGetDataSource
ISessionProperties

Command Used to process commands to manipulate a data provider's data.
Generally, the command object will create RowSet objects to hold
the data returned by a data provider.

ICommandPrepare
ICommandProperties

RowSet Used to hold the result set returned by a relational-style database
or a database that supports SQL. Represents a collection of rows
in a tabular format.

IRowsetInfo
IRowsetFind
IRowsetScroll

OLE-DB provided additional capabilities for the applications accessing the data. However, it did not provide support
for scripting languages, especially the ones used for Web development, such as Active Server Pages (ASP) and ActiveX.
(A script is written in a programming language that is not compiled but is interpreted and executed at run time.) To
provide that support, Microsoft developed a new object framework called ActiveX Data Objects (ADO), which
provides a high-level application-oriented interface to interact with OLE-DB, DAO, and RDO. ADO provides a unified
interface to access data from any programming language that uses the underlying OLE-DB objects. Figure 14.5
illustrates the ADO/OLE-DB architecture, showing how it interacts with ODBC and native connectivity options.

ADO introduced a simpler object model that was composed of only a few interacting objects to provide the data
manipulation services required by the applications. Sample objects in ADO are shown in Table 14.2.

TABLE
14.2

Sample ADO Objects

OBJECT CLASS USAGE
Connection Used to set up and establish a connection with a data source. ADO will connect to any

OLE-DB data source. The data source can be of any type.
Command Used to execute commands against a specific connection (data source).
Recordset Contains the data generated by the execution of a command. It will also contain any new

data to be written to the data source. The Recordset can be disconnected from the data
source.

Fields Contains a collection of Field descriptions for each column in the Recordset.

580 C H A P T E R 1 4

Although the ADO model is a tremendous improvement over the OLE-DB model, Microsoft is actively encouraging
programmers to use its newer data access framework, ADO.NET.

14.1.4 ADO.NET

Based on ADO, ADO.NET is the data access component of Microsoft’s .NET application development framework.
The Microsoft .NET framework is a component-based platform for developing distributed, heterogeneous,
interoperable applications aimed at manipulating any type of data over any network under any operating system and
any programming language. Comprehensive coverage of the .NET framework is beyond the scope of this book.
Therefore, this section will only introduce the basic data access component of the .NET architecture, ADO.NET.

It’s important to understand that the .NET framework extends and enhances the functionality provided by the
ADO/OLE-DB duo. ADO.NET introduced two new features critical for the development of distributed applications:
DataSets and XML support.

To understand the importance of this new model, you should know that a DataSet is a disconnected memory-resident
representation of the database. That is, the DataSet contains tables, columns, rows, relationships, and constraints.
Once the data are read from a data provider, the data are placed on a memory-resident DataSet, and the DataSet is
then disconnected from the data provider. The data consumer application interacts with the data in the DataSet object

FIGURE
14.5

OLE-DB architecture

OLE-DB Data Providers

OLE-DB Provider
for SQL Server

OLE-DB Provider
for ODBC

OLE-DB Provider
for Exchange

OLE-DB Provider
for Oracle

SQL Server

ODBCSQL*NET

E-MAIL

OLE-DB Service Providers
Query

Processing
Cursor

Processing
E-Mail

Processing
Indexing

Processing

DATABASEDATABASE

OLE-DB Consumers

ActiveX Data Objects (ADO)

Client Applications

Access Excel Visual C++

581D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

to make changes (inserts, updates, and deletes) in the DataSet. Once the processing is done, the DataSet data are
synchronized with the data source and the changes are made permanent.

The DataSet is internally stored in XML format (you will learn about XML later in this chapter), and the data in the
DataSet can be made persistent as XML documents. This is critical in today’s distributed environments. You can think
of the DataSet as an XML-based, in-memory database that represents the persistent data stored in the data source.
Figure 14.6 illustrates the main components of the ADO.NET object model.

The ADO.NET framework consolidates all data access functionality under one integrated object model. In this object
model, several objects interact with one another to perform specific data manipulation functions. Those objects can
be grouped as data providers and consumers.

Data provider objects are provided by the database vendors. However, ADO.NET comes with two standard data
providers: a data provider for OLE-DB data sources and a data provider for SQL Server. That way ADO.NET can work
with any previously supported database, including an ODBC database with an OLE-DB data provider. At the same
time, ADO.NET includes a highly optimized data provider for SQL Server.

FIGURE
14.6

ADO.NET framework

DataReader

DataAdapter

Command

Connection

OLE-DB

DATABASE

ADO.NET

Client Applications

DataRelationCollection

DataTableCollection

DataTable

DataColumnCollection

DataRowCollection

ConstraintCollection

DataSet (XML)

Data Providers

Internet

Data Consumers

Access Excel

582 C H A P T E R 1 4

Whatever the data provider is, it must support a set of specific objects in order to manipulate the data in the data
source. Some of those objects are shown in Figure 14.6. A brief description of the objects follows.

� Connection. The Connection object defines the data source used, the name of the server, the database, and
so on. This object enables the client application to open and close a connection to a database.

� Command. The Command object represents a database command to be executed within a specified database
connection. This object contains the actual SQL code or a stored procedure call to be run by the database.
When a SELECT statement is executed, the Command object returns a set of rows and columns.

� DataReader. The DataReader object is a specialized object that creates a read-only session with the database
to retrieve data sequentially (forward only) in a very fast manner.

� DataAdapter. The DataAdapter object is in charge of managing a DataSet object. This is the most specialized
object in the ADO.NET framework. The DataAdapter object contains the following objects that aid in
managing the data in the DataSet: SelectCommand, InsertCommand, UpdateCommand, and
DeleteCommand. The DataAdapter object uses those objects to populate and synchronize the data in the
DataSet with the permanent data source data.

� DataSet. The DataSet object is the in-memory representation of the data in the database. This object contains
two main objects. The DataTableCollection object contains a collection of DataTable objects that make up the
“in-memory” database, and the DataRelationCollection object contains a collection of objects describing the
data relationships and ways to associate one row in a table to the related row in another table.

� DataTable. The DataTable object represents the data in tabular format. This object has one very important
property: PrimaryKey, which allows the enforcement of entity integrity. In turn, the DataTable object is
composed of three main objects:

- DataColumnCollection contains one or more column descriptions. Each column description has properties
such as column name, data type, nulls allowed, maximum value, and minimum value.

- DataRowCollection contains zero rows, one row, or more than one row with data as described in the
DataColumnCollection.

- ConstraintCollection contains the definition of the constraints for the table. Two types of constraints are
supported: ForeignKeyConstraint and UniqueConstraint.

As you can see, a DataSet is a simple database with tables, rows, and constraints. Even more important, the DataSet
doesn’t require a permanent connection to the data source. The DataAdapter uses the SelectCommand object to
populate the DataSet from a data source. However, once the DataSet is populated, it is completely independent of the
data source, which is why it’s called “disconnected.”

Additionally, DataTable objects in a DataSet can come from different data sources. This means that you could have an
EMPLOYEE table in an Oracle database and a SALES table in a SQL Server database. You could then create a DataSet
that relates both tables as though they were located in the same database. In short, the DataSet object paves the way
for truly heterogeneous distributed database support within applications.

The ADO.NET framework is optimized to work in disconnected environments. In a disconnected environment,
applications exchange messages in request/reply format. The most common example of a disconnected system is the
Internet. Modern applications rely on the Internet as the network platform and on the Web browser as the graphical
user interface. In the next section, you will learn details about how Internet databases work.

14.1.5 Java Database Connectivity (JDBC)

Java is an object-oriented programming language developed by Sun Microsystems that runs on top of Web browser
software. Java is one of the most common programming languages for Web development. Sun Microsystems created
Java as a “write once, run anywhere” environment. That means that a programmer can write a Java application once
and then without any modification, run the application in multiple environments (Microsoft Windows, Apple OS X,
IBM AIX, etc.). The cross-platform capabilities of Java are based on its portable architecture. Java code is normally

583D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

stored in preprocessed chunks known as applets that run on a virtual machine environment in the host operating
system. This environment has well-defined boundaries, and all interactivity with the host operating system is closely
monitored. Sun provides Java runtime environments for most operating systems (from computers to hand-held devices
to TV set-top boxes.) Another advantage of using Java is its “on-demand” architecture. When a Java application loads,
it can dynamically download all its modules or required components via the Internet.

When Java applications want to access data outside the Java runtime environment, they use predefined application
programming interfaces. Java Database Connectivity (JDBC) is an application programming interface that allows
a Java program to interact with a wide range of data sources (relational databases, tabular data sources, spreadsheets,
and text files). JDBC allows a Java program to establish a connection with a data source, prepare and send the SQL
code to the database server, and process the result set.

One of the main advantages of JDBC is that it allows a company to leverage its existing investment in technology and
personnel training. JDBC allows programmers to use their SQL skills to manipulate the data in the company’s
databases. As a matter of fact, JDBC allows direct access to a database server or access via database middleware.
Furthermore, JDBC provides a way to connect to databases through an ODBC driver. Figure 14.7 illustrates the basic
JDBC architecture and the various database access styles.

As you see in Figure 14.7, the database access architecture in JDBC is very similar to the ODBC/OLE/ADO.NET
architecture. All database access middleware shares similar components and functionality. One advantage of JDBC
over other middleware is that it requires no configuration on the client side. The JDBC driver is automatically
downloaded and installed as part of the Java applet download. Because Java is a Web-based technology, applications
can connect to a database directly using a simple URL. Once the URL is invoked, the Java architecture comes into

Java Client Application

JDBC API

JDBC Driver Manager

Java DB Driver Java DB Driver
JDBC-ODBC
Bridge Driver

ODBC
Database

Middleware

FIGURE
14.7

JDBC architecture

DATABASE DATABASE DATABASE DATABASE

584 C H A P T E R 1 4

play, the necessary applets are downloaded to the client (including the JDBC database driver and all configuration
information), and then the applets are executed securely in the client’s run-time environment.

Every day, more and more companies are investing resources in developing and expanding their Web presence and
finding ways to do more business on the Internet. Such business will generate increasing amounts of data that will be
stored in databases. Java and the .NET framework are part of the trend toward increasing reliance on the Internet as
a critical business resource. In fact, the Internet is likely to become the development platform of the future. In the next
section you will learn more about Internet databases and how they are used.

14.2 INTERNET DATABASES

Millions of people all over the world access the Internet, connecting to databases via Web browsers or data services
(i.e., using a smart phone applet to get weather information). Internet database connectivity opens the door to new
innovative services that:

� Permit rapid responses to competitive pressures by bringing new services and products to market quickly.

� Increase customer satisfaction through the creation of Web-based support services.

� Allow anywhere/anytime data access using mobile smart devices via the Internet

� Yield fast and effective information dissemination through universal access from across the street or across
the globe.

Given those advantages, many organizations rely on their IS departments to create universal data access architectures
based on Internet standards. Table 14.3 shows a sample of Internet technology characteristics and the benefits they
provide.

TABLE
14.3

Characteristics and Benefits of Internet Technologies

INTERNET CHARACTERISTIC BENEFIT
Hardware and software independence Savings in equipment/software acquisition

Ability to run on most existing equipment
Platform independence and portability
No need for multiple platform development

Common and simple user interface Reduced training time and cost
Reduced end-user support cost
No need for multiple platform development

Location independence Global access through Internet infrastructure and mobile smart
devices
Reduced requirements (and costs!) for dedicated connections

Rapid development at manageable costs Availability of multiple development tools
Plug-and-play development tools (open standards)
More interactive development
Reduced development times
Relatively inexpensive tools
Free client access tools (Web browsers)
Low entry costs. Frequent availability of free Web servers
Reduced costs of maintaining private networks
Distributed processing and scalability, using multiple servers

In the current business and global information environment, it’s easy to see why many database professionals consider
the DBMS connection to the Internet to be a critical element in IS development. As you will learn in the following
sections, database application development—and, in particular, the creation and management of user interfaces and
database connectivity—are profoundly affected by the Web. However, having a Web-based database interface does not

585D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

negate the database design and implementation issues that were addressed in the previous chapters. In the final
analysis, whether you make a purchase by going online or by standing in line, the system-level transaction details are
essentially the same, and they require the same basic database structures and relationships. If any immediate lesson is
to be learned, it is this: The effects of bad database design, implementation, and management are multiplied in
an environment in which transactions might be measured in hundreds of thousands per day, rather than in
hundreds per day.

The Internet is rapidly changing the way information is generated, accessed, and distributed. At the core of this change
is the Web’s ability to access data in databases (local and remote), the simplicity of the interface, and cross-platform
(heterogeneous) functionality. The Web has helped create a new information dissemination standard.

The following sections examine how Web-to-database middleware enables end users to interact with databases over
the Web.

14.2.1 Web-to-Database Middleware: Server-Side Extensions

In general, the Web server is the main hub through which all Internet services are accessed. For example, when an end
user uses a Web browser to dynamically query a database, the client browser requests a Web page. When the Web
server receives the page request, it looks for the page on the hard disk; when it finds the page (for example, a stock
quote, product catalog information, or an airfare listing), the server sends it back to the client.

Dynamic Web pages are at the heart of current Web sites. In this database-query scenario, the Web server generates
the Web page contents before it sends the page to the client Web browser. The only problem with the preceding query
scenario is that the Web server must include the database query result on the page before it sends that page back to
the client. Unfortunately, neither the Web browser nor the Web server knows how to connect to and read data from
the database. Therefore, to support this type of request (database query), the Web server’s capability must be extended
so that it can understand and process database requests. This job is done through a server-side extension.

A server-side extension is a program that interacts directly with the Web server to handle specific types of requests.
In the preceding database query example, the server-side extension program retrieves the data from databases and
passes the retrieved data to the Web server, which, in turn, sends the data to the client’s browser for display purposes.
The server-side extension makes it possible to retrieve and present the query results, but what’s more important is that
it provides its services to the Web server in a way that is totally transparent to the client browser. In short, the
server-side extension adds significant functionality to the Web server, and therefore, to the Internet.

A database server-side extension program is also known as Web-to-database middleware. Figure 14.8 shows the
interaction between the browser, the Web server, and the Web-to-database middleware.

Trace the Web-to-database middleware actions in Figure 14.8:

1. The client browser sends a page request to the Web server.

2. The Web server receives and validates the request. In this case, the server will pass the request to the
Web-to-database middleware for processing. Generally, the requested page contains some type of scripting
language to enable the database interaction.

O n l i n e C o n t e n t

Client/server systems are covered in detail in Appendix F, Client/Server Systems, located in the Premium
Website for this book.

586 C H A P T E R 1 4

3. The Web-to-database middleware reads, validates, and executes the script. In this case, it connects to the
database and passes the query using the database connectivity layer.

4. The database server executes the query and passes the result back to the Web-to-database middleware.

5. The Web-to-database middleware compiles the result set, dynamically generates an HTML-formatted page that
includes the data retrieved from the database, and sends it to the Web server.

6. The Web server returns the just-created HTML page, which now includes the query result, to the client browser.

7. The client browser displays the page on the local computer.

CLIENT
COMPUTER

HTML
PAGE

The result of the
database query is

displayed in
HTML format

HTTP page
request

Web server
receives
request

WEB
SERVER

Web server determines the
page contains script language
and passes the script page to

the Web-to-database
middleware

Web-to-database
middleware
connects
 to the database
and passes query
using database
connectivity layer

SCRIPT
PAGE

SERVER
COMPUTER

HTML
PAGE

Database server
passes the query

results back to the
Web-to-database

middleware

RDBMS
Computer

Web server
sends the HTML
formatted page

to the client
Web-to-database

middleware passes the
query results in HTML

format back to the
Web server

FIGURE
14.8

Web-to-database middleware

WEB-TO-DATABASE
MIDDLEWARE

JDBC
ADO.NET

ADO
OLE-DB
ODBC

5
RDBMS
SERVER

DATABASE

TCP/IP
NETWORK

7

6

4

3

2

1

8

587D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

The interaction between the Web server and the Web-to-database middleware is crucial to the development of a
successful Internet database implementation. Therefore, the middleware must be well integrated with the other Internet
services and the components that are involved in its use. For example, when installing Web-to-database middleware,
the middleware must verify the type of Web server being used and install itself to match that Web server’s requirements.
In addition, how well the Web server and the Web-to-database service interact will depend on the Web server interfaces
that are supported by the Web server.

14.2.2 Web Server Interfaces

Extending Web server functionality implies that the Web server and the Web-to-database middleware will properly
communicate with each other. (Database professionals often use the word interoperate to indicate that each party can
respond to the communications of the other. This book’s use of communicate assumes interoperation.) If a Web server
is to communicate successfully with an external program, both programs must use a standard way to exchange
messages and to respond to requests. A Web server interface defines how a Web server communicates with external
programs. Currently, there are two well-defined Web server interfaces:

� Common Gateway Interface (CGI).

� Application programming interface (API).

The Common Gateway Interface (CGI) uses script files that perform specific functions based on the client’s
parameters that are passed to the Web server. The script file is a small program containing commands written in a
programming language—usually Perl, C#, or Visual Basic. The script file’s contents can be used to connect to the
database and to retrieve data from it, using the parameters passed by the Web server. Next, the script converts
the retrieved data to HTML format and passes the data to the Web server, which sends the HTML-formatted page to
the client.

The main disadvantage of using CGI scripts is that the script file is an external program that is individually executed
for each user request. That scenario decreases system performance. For example, if you have 200 concurrent
requests, the script is loaded 200 different times, which takes significant CPU and memory resources away from the
Web server. The language and method used to create the script can also affect system performance. For example,
performance is degraded by using an interpreted language or by writing the script inefficiently.

An application programming interface (API) is a newer Web server interface standard that is more efficient and faster
than a CGI script. APIs are more efficient because they are implemented as shared code or as dynamic-link libraries
(DLLs). That means the API is treated as part of the Web server program that is dynamically invoked when needed.

APIs are faster than CGI scripts because the code resides in memory, so there is no need to run an external program
for each request. Instead, the same API serves all requests. Another advantage is that an API can use a shared
connection to the database instead of creating a new one every time, as is the case with CGI scripts.

Although APIs are more efficient in handling requests, they have some disadvantages. Because the APIs share the
same memory space as the Web server, an API error can bring down the server. The other disadvantage is that APIs
are specific to the Web server and to the operating system.

At the time of this writing, there are four well-established Web server APIs:

� Internet Server API (ISAPI) for Microsoft Windows Web servers.

� WebSite API (WSAPI) for O’Reilly Web servers.

� JDBC to provide database connectivity for Java applications.

The various types of Web interfaces are illustrated in Figure 14.9.

588 C H A P T E R 1 4

Regardless of the type of Web server interface used, the Web-to-database middleware program must be able to connect
with the database. That connection can be accomplished in one of two ways:

� Use the native SQL access middleware provided by the vendor. For example, you can use SQL*Net if you are
using Oracle.

� Use the services of general database connectivity standards such as Open Database Connectivity (ODBC),
Object Linking and Embedding for Database (OLE-DB), ActiveX Data Objects (ADO), the ActiveX Data Objects
for .NET (ADO.NET) interface, or Java Database Connectivity (JDBC) for Java.

14.2.3 The Web Browser

The Web browser is the application software in the client computer, such as Microsoft Internet Explorer, Apple Safari,
or Mozilla Firefox, that lets end users navigate (browse) the Web. Each time the end user clicks a hyperlink, the browser
generates an HTTP GET page request that is sent to the designated Web server, using the TCP/IP Internet protocol.

FIGURE
14.9

Web server CGI and API interfaces

CLIENT
COMPUTER

WEB
SERVER

CGI

SERVER
COMPUTER

RDBMS
COMPUTER

API
(DLL call)

TCP/IP
network

External
program

JDBC
ADO.NET

ADO
OLE-DB
ODBC

RDBMS
SERVER

DATABASE

Database Connectivity
Middleware

589D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

The Web browser’s job is to interpret the HTML code that it receives from the Web server and to present the various
page components in a standard formatted way. Unfortunately, the browser’s interpretation and presentation
capabilities are not sufficient to develop Web-based applications. That is because the Web is a stateless system—
which means that at any given time, a Web server does not know the status of any of the clients communicating with
it. That is, there is no open communication line between the server and each client accessing it, which, of course, is
impractical in a worldwide Web! Instead, client and server computers interact in very short “conversations” that follow
the request-reply model. For example, the browser is concerned only with the current page, so there is no way for the
second page to know what was done in the first page. The only time the client and server computers communicate
is when the client requests a page—when the user clicks a link—and the server sends the requested page to the client.
Once the client receives the page and its components, the client/server communication is ended. Therefore, although
you may be browsing a page and think that the communication is open, you are actually just browsing the HTML
document stored in the local cache (temporary directory) of your browser. The server does not have any idea what the
end user is doing with the document, what data is entered in a form, what option is selected, and so on. On the Web,
if you want to act on a client’s selection, you need to jump to a new page (go back to the Web server), thus losing track
of whatever was done before!

A Web browser’s function is to display a page on the client computer. The browser—through its use of HTML—does
not have computational abilities beyond formatting output text and accepting form field inputs. Even when the browser
accepts form field data, there is no way to perform immediate data entry validation. Therefore, to perform such crucial
processing in the client, the Web defers to other Web programming languages such as Java, JavaScript, and VBScript.
The browser resembles a dumb terminal that displays only data and can perform only rudimentary processing such as
accepting form data inputs. To improve the capabilities of the Web browser, you must use plug-ins and other client-side
extensions. On the server side, Web application servers provide the necessary processing power.

14.2.4 Client-Side Extensions

Client-side extensions add functionality to the Web browser. Although client-side extensions are available in various
forms, the most commonly encountered extensions are:

� Plug-ins.

� Java and JavaScript.

� ActiveX and VBScript.

A plug-in is an external application that is automatically invoked by the browser when needed. Because it is an
external application, the plug-in is operating-system-specific. The plug-in is associated with a data object—generally
using the file extension—to allow the Web server to properly handle data that are not originally supported. For
example, if one of the page components is a PDF document, the Web server will receive the data, recognize it as a
“Portable Document Format” object, and launch Adobe Acrobat Reader to present the document on the client
computer.

As noted earlier, Java runs on top of the Web browser software. Java applications are compiled and stored in the Web
server. (In many respects, Java resembles C++.) Calls to Java routines are embedded inside the HTML page. When
the browser finds this call, it downloads the Java classes (code) from the Web server and runs that code in the client
computer. Java’s main advantage is that it enables application developers to develop their applications once and run
them in many environments. (For developing Web applications, interoperability is a very important issue. Unfortu-
nately, different client browsers are not 100 percent interoperable, thus limiting portability.)

JavaScript is a scripting language (one that enables the running of a series of commands or macros) that allows Web
authors to design interactive sites. Because JavaScript is simpler to generate than Java, it is easier to learn. JavaScript
code is embedded in the Web pages. It is downloaded with the Web page and is activated when a specific event takes
place—such as a mouse click on an object or a page being loaded from the server into memory.

590 C H A P T E R 1 4

ActiveX is Microsoft’s alternative to Java. ActiveX is a specification for writing programs that will run inside the
Microsoft client browser (Internet Explorer). Because ActiveX is oriented mainly toward Windows applications, it has
low portability. ActiveX extends the Web browser by adding “controls” to Web pages. (Examples of such controls are
drop-down lists, a slider, a calendar, and a calculator.) Those controls, downloaded from the Web server when needed,
let you manipulate data inside the browser. ActiveX controls can be created in several programming languages; C++
and Visual Basic are most commonly used. Microsoft’s .NET framework allows for wider interoperability of
ActiveX-based applications (such as ADO.NET) across multiple operating environments.

VBScript is another Microsoft product that is used to extend browser functionality. VBScript is derived from Microsoft
Visual Basic. Like JavaScript, VBScript code is embedded inside an HTML page and is activated by triggering events
such as clicking a link.

From the developer’s point of view, using routines that permit data validation on the client side is an absolute necessity.
For example, when data are entered on a Web form and no data validation is done on the client side, the entire data
set must be sent to the Web server. That scenario requires the server to perform all data validation, thus wasting
valuable CPU processing cycles. Therefore, client-side data input validation is one of the most basic requirements for
Web applications. Most of the data validation routines are done in Java, JavaScript, ActiveX, or VBScript.

14.2.5 Web Application Servers

A Web application server is a middleware application that expands the functionality of Web servers by linking them
to a wide range of services, such as databases, directory systems, and search engines. The Web application server also
provides a consistent run-time environment for Web applications.

Web application servers can be used to:

� Connect to and query a database from a Web page.

� Present database data in a Web page, using various formats.

� Create dynamic Web search pages.

� Create Web pages to insert, update, and delete database data.

� Enforce referential integrity in the application program logic.

� Use simple and nested queries and programming logic to represent business rules.

Web application servers provide features such as:

� An integrated development environment with session management and support for persistent application
variables.

� Security and authentication of users through user IDs and passwords.

� Computational languages to represent and store business logic in the application server.

� Automatic generation of HTML pages integrated with Java, JavaScript, VBScript, ASP, and so on.

� Performance and fault-tolerant features.

� Database access with transaction management capabilities.

� Access to multiple services, such as file transfers (FTP), database connectivity, e-mail, and directory services.

As of this writing, popular Web application servers include ColdFusion/JRun by Adobe, WebSphere Application
Server by IBM, WebLogic Server by Oracle, Fusion by NetObjects, Visual Studio .NET by Microsoft, and WebObjects
by Apple. All Web application servers offer the ability to connect Web servers to multiple data sources and other
services. They vary in terms of the range of available features, robustness, scalability, ease of use, compatibility with
other Web and database tools, and extent of the development environment.

591D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

Current-generation systems involve more than just the development of Web-enabled database applications. They also
require applications capable of communicating with each other and with other systems not based on the Web. Clearly,
systems must be able to exchange data in a standard-based format. That’s the role of XML.

14.3 EXTENSIBLE MARKUP LANGUAGE (XML)

The Internet has brought about new technologies that facilitate the exchange of business data among business partners
and consumers. Companies are using the Internet to create new types of systems that integrate their data to increase
efficiency and reduce costs. Electronic commerce (e-commerce) enables all types of organizations to market and sell
products and services to a global market of millions of users. E-commerce transactions—the sale of products or
services—can take place between businesses (business-to-business, or B2B) or between a business and a consumer
(business-to-consumer, or B2C).

Most e-commerce transactions take place between businesses. Because B2B e-commerce integrates business
processes among companies, it requires the transfer of business information among different business entities. But the
way in which businesses represent, identify, and use data tends to differ substantially from company to company
(“product code” vs. “item ID”).

Until recently, the expectation was that a purchase order traveling over the Web would be in the form of an HTML
document. The HTML Web page displayed on the Web browser would include formatting as well as the order details.
HTML tags describe how something looks on the Web page, such as bold type or heading style, and often come in
pairs to start and end formatting features. For example, the following tags in angle brackets would display FOR SALE
in bold Arial font:

FOR SALE

If an application wants to get the order data from the Web page, there is no easy way to extract the order details (such
as the order number, the date, the customer number, the item, the quantity, the price, or payment details) from an
HTML document. The HTML document can only describe how to display the order in a Web browser; it does not
permit the manipulation of the order’s data elements, that is, date, shipping information, payment details, product
information, and so on. To solve that problem, a new markup language, known as Extensible Markup Language, or
XML, was developed.

Extensible Markup Language (XML) is a meta-language used to represent and manipulate data elements. XML is
designed to facilitate the exchange of structured documents, such as orders and invoices, over the Internet. The World
Wide Web Consortium (W3C)1 published the first XML 1.0 standard definition in 1998. That standard set the stage
for giving XML the real-world appeal of being a true vendor-independent platform. Therefore, it is not surprising that
XML has rapidly become the data exchange standard for e-commerce applications.

The XML metalanguage allows the definition of news, such as <ProdPrice>, to describe the data elements used in an
XML document. This ability to extend the language explains the X in XML; the language is said to be extensible. XML

1 You can visit the W3C Web page, located at www.w3.org, to get additional information about the efforts that were made to develop the XML standard.

O n l i n e C o n t e n t

To see and try a particular Web-to-database interface in action, consult Appendix J, Web Database
Development with ColdFusion, in the Premium Website for this book. This appendix steps you through the
process of creating and using a simple Web-to-database interface, and gives more detailed information on
developing Web databases with Adobe ColdFusion middleware.

592 C H A P T E R 1 4

is derived from the Standard Generalized Markup Language (SGML), an international standard for the publication and
distribution of highly complex technical documents. For example, documents used by the aviation industry and the
military services are too complex and unwieldy for the Web. Just like HTML, which was also derived from SGML, an
XML document is a text file. However, it has a few very important additional characteristics, as follows:

� XML allows the definition of new tags to describe data elements, such as <ProductId>.

� XML is case sensitive: <ProductID> is not the same as <Productid>.

� XMLs must be well formed; that is, tags must be properly formatted. Most openings also have a corresponding
closing. For example, the product identification would require the format <ProductId>2345-AA</ProductId>.

� XMLs must be properly nested. For example, a properly nested XML might look like this:
<Product><ProductId>2345-AA</ProductId></Product>.

� You can use the <-- and --> symbols to enter comments in the XML document.

� The XML and xml prefixes are reserved for XMLs only.

XML is not a new version or replacement for HTML. XML is concerned with the description and representation of
the data, rather than the way the data are displayed. XML provides the semantics that facilitate the sharing, exchange,
and manipulation of structured documents over organizational boundaries. XML and HTML perform complementary,
rather than overlapping, functions. Extensible Hypertext Markup Language (XHTML) is the next generation of HTML
based on the XML framework. The XHTML specification expands the HTML standard to include XML features.
Although more powerful than HTML, XHTML requires very strict adherence to syntax requirements.

As an illustration of the use of XML for data exchange purposes, consider a B2B example in which Company A uses
XML to exchange product data with Company B over the Internet. Figure 14.10 shows the contents of the
ProductList.xml document.

FIGURE
14.10

Contents of the productlist.xml document

593D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

The XML example shown in Figure 14.10 illustrates several important XML features, as follows:

� The first line represents the XML document declaration, and it is mandatory.

� Every XML document has a root element. In the example, the second line declares the ProductList root
element.

� The root element contains child elements or subelements. In the example, line 3 declares Product as a child
element of ProductList.

� Each element can contain subelements. For example, each Product element is composed of several child
elements, represented by P_CODE, P_DESCRIPT, P_INDATE, P_QOH, P_MIN, and P_PRICE.

� The XML document reflects a hierarchical tree structure where elements are related in a parent-child
relationship; each parent element can have many child elements. For example, the root element is ProductList.
Product is the child element of ProductList. Product has six child elements: P_CODE, P_DESCRIPT,
P_INDATE, P_QOH, P_MIN, and P_PRICE.

Once Company B receives the ProductList.xml document, it can process the document—assuming that it understands
the tags created by Company A. The meaning of the XMLs in the example shown in Figure 14.10 is fairly self-evident,
but there is no easy way to validate the data or to check whether the data are complete. For example, you could
encounter a P_INDATE value of “25/14/2009”—but is that value correct? And what happens if Company B expects
a Vendor element as well? How can companies share data descriptions about their business data elements? The next
section will show how Document Type Definitions and XML schemas are used to address those concerns.

14.3.1 Document Type Definitions (DTD) and XML Schemas

B2B solutions require a high degree of business integration between companies. Companies that use B2B transactions
must have a way to understand and validate each other’s tags. One way to accomplish that task is through the use of
Document Type Definitions. A Document Type Definition (DTD) is a file with a .dtd extension that describes XML
elements—in effect, a DTD file provides the composition of the database’s logical model and defines the syntax rules
or valid elements for each type of XML document. (The DTD component is similar to having a public data dictionary
for business data.) Companies that intend to engage in e-commerce business transactions must develop and share
DTDs. Figure 14.11 shows the productlist.dtd document for the productlist.xml document shown earlier in
Figure 14.10.

In Figure 14.11, note that the productlist.dtd file provides definitions of the elements in the productlist.xml document.
In particular, note that:

� The first line declares the ProductList root element.

� The ProductList root element has one child, the Product element.

� The plus “+” symbol indicates that Product occurs one or more times within ProductList.

� An asterisk “*” would mean that the child element occurs zero or more times.

� A question mark “?” would mean that the child element is optional.

FIGURE
14.11

Contents of the productlist.dtd document

594 C H A P T E R 1 4

� The second line describes the Product element.

� The question mark “?” after the P_INDATE and P_MIN indicates that they are optional elements.

� The third through eighth lines show that the Product element has six child elements.

� The #PCDATA keyword represents the actual text data.

To be able to use a DTD file to define elements within an XML document, the DTD must be referenced from within
that XML document. Figure 14.12 shows the productlistv2.xml document that includes the reference to the
productlist.dtd in the second line.

In Figure 14.12, note that P_INDATE and P_MIN do not appear in all Product definitions because they were declared
to be optional elements. The DTD can be referenced by many XML documents of the same type. For example, if
Company A routinely exchanges product data with Company B, it will need to create the DTD only once. All
subsequent XML documents will refer to the DTD, and Company B will be able to verify the data being received.

To further demonstrate the use of XML and DTD for e-commerce business data exchanges, assume the case of two
companies exchanging order data. Figure 14.13 shows the DTD and XML documents for that scenario.

Although the use of DTDs is a great improvement for data sharing over the Web, a DTD only provides descriptive
information for understanding how the elements—root, parent, child, mandatory, or optional—relate to one another.
A DTD provides limited additional semantic value, such as data type support or data validation rules. That information
is very important for database administrators who are in charge of large e-commerce databases. To solve the DTD
problem, the W3C published an XML Schema standard in May 2001 and updated it in October 2004 to provide a
better way to describe XML data.

The XML schema is an advanced data definition language that is used to describe the structure (elements, data types,
relationship types, ranges, and default values) of XML data documents. One of the main advantages of an XML schema
is that it more closely maps to database terminology and features. For example, an XML schema will be able to define
common database types such as date, integer, or decimal; minimum and maximum values; a list of valid values; and
required elements. Using the XML schema, a company would be able to validate the data for values that may be out
of range, incorrect dates, valid values, and so on. For example, a university application must be able to specify that
a GPA value is between 0 and 4.0, and it must be able to detect an invalid birth date such as “14/13/1987.” (There
is no 14th month.) Many vendors are adopting this new standard and are supplying tools to translate DTD documents
into XML Schema Definition (XSD) documents. It is widely expected that XML schemas will replace DTD as the
method to describe XML data.

FIGURE
14.12

Contents of the productlistv2.xml document

595D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

Unlike a DTD document, which uses a unique syntax, an XML schema definition (XSD) file uses a syntax that
resembles an XML document. Figure 14.14 shows the XSD document for the OrderData XML document.

The code shown in Figure 14.14 is a simplified version of the XML schema document. As you can see, the XML
schema syntax is similar to the XML document syntax. In addition, the XML schema introduces additional semantic
information for the OrderData XML document, such as string, date, and decimal data types; required elements; and
minimum and maximum cardinalities for the data elements.

14.3.2 XML Presentation

One of the main benefits of XML is that it separates data structure from its presentation and processing. By separating
data and presentation, you are able to present the same data in different ways—which is similar to having views in
SQL. But what mechanisms are used to present data?

The Extensible Style Language (XSL) specification provides the mechanism to display XML data. XSL is used to define
the rules by which XML data are formatted and displayed. The XSL specification is divided in two parts: Extensible
Style Language Transformations (XSLT) and XSL style sheets.

� Extensible Style Language Transformations (XSLT) describe the general mechanism that is used to extract
and process data from one XML document and enable its transformation within another document. Using

FIGURE
14.13

DTD and XML documents for order data

OrderData.dtd

OrderData.xml

“+” sign indicates
one or more

ORD_PRODS elements

Two ORD_PRODS
 elements in XML

document

596 C H A P T E R 1 4

XSLT, you can extract data from an XML document and convert it into a text file, an HTML Web page, or a
Web page that is formatted for a mobile device. What the user sees in those cases is actually a view (or HTML
representation) of the actual XML data. XSLT can also be used to extract certain elements from an XML
document, such as the product codes and product prices, to create a product catalog. XSLT can even be used
to transform one XML document into another XML document.

� XSL style sheets define the presentation rules applied to XML elements—somewhat like presentation
templates. The XSL style sheet describes the formatting options to apply to XML elements when they are
displayed on a browser, cellular phone display, PDA screen, and so on.

Figure 14.15 illustrates the framework used by the various components to translate XML documents into viewable Web
pages, an XML document, or some other document.

To display the XML document with Windows Internet Explorer (IE) 5.0 or later, enter the URL of the XML document
in the browser’s address bar. Figure 14.16 is based on the productlist.xml document created earlier. As you examine
Figure 14.16, note that IE shows the XML data in a color-coded, collapsible, treelike structure. (Actually, this is the IE
default style sheet that is used to render XML documents.)

Internet Explorer also provides data binding of XML data to HTML documents. Figure 14.17 shows the HTML code
that is used to bind an XML document to an HTML table. The example uses the <xml> to include the XML data in
the HTML document to later bind it to the HTML table. This example works in IE 5.0 or later.

14.3.3 XML Applications

Now that you have some idea what XML is, the next question is, how can you use it? What kinds of applications lend
themselves particularly well to XML? This section will list some of the uses of XML. Keep in mind that the future use
of XML is limited only by the imagination and creativity of the developers, designers, and programmers.

� B2B exchanges. As noted earlier, XML enables the exchange of B2B data, providing the standard for all
organizations that need to exchange data with partners, competitors, the government, or customers. In
particular, XML is positioned to replace EDI as the standard for the automation of the supply chain because
it is less expensive and more flexible.

FIGURE
14.14

The XML schema document for the order data

597D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

FIGURE
14.15

Framework for XML transformations

HTML

XML
document

HTML

XSL
transformations

XSL
style sheets

•Extract
•Convert

XSLT can be used to transform one XML
document into another XML document.

Apply
formatting

rules to
XML

elements The process can render
different Web pages

for different purposes,
such as one page for a

Web browser and
another for a mobile device.

New
XML

document

FIGURE
14.16

Displaying XML documents

598 C H A P T E R 1 4

� Legacy systems integration. XML provides the “glue” to integrate legacy system data with modern
e-commerce Web systems. Web and XML technologies could be used to inject some new life in “old but
trusted” legacy applications. Another example is the use of XML to import transaction data from multiple
operational databases to a data warehouse database.

� Web page development. XML provides several features that make it a good fit for certain Web development
scenarios. For example, Web portals with large amounts of personalized data can use XML to pull data from
multiple external sources (such as news, weather, and stocks) and apply different presentation rules to format
pages on desktop computers as well as mobile devices.

� Database support. Databases are at the heart of e-commerce applications. A DBMS that supports XML
exchanges will be able to integrate with external systems (Web, mobile data, legacy systems, and so on) and
thus enable the creation of new types of systems. These databases can import or export data in XML format
or generate XML documents from SQL queries while still storing the data, using their native data model format.
Alternatively, a DBMS can also support an XML data type to store XML data in its native format. The
implications of these capabilities are far-reaching—you would even be able to store a hierarchical-like tree
structure inside a relational structure. Of course, such activities would also require that the query language be
extended to support queries on XML data.

� Database meta-dictionaries. XML can also be used to create meta-dictionaries, or vocabularies, for databases.
These meta-dictionaries can be used by applications that need to access other external data sources. (Until now,
each time an application wanted to exchange data with another application, a new interface had to be built for
that purpose.) DBMS vendors can publish meta-dictionaries to facilitate data exchanges and the creation of data

FIGURE
14.17

XML data binding

599D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

views from multiple applications—hierarchical, relational, object-oriented, object-relational, or extended-
relational. The meta-dictionaries would all use a common language regardless of the DBMS type. The
development of industry-specific meta-dictionaries is expected. These meta-dictionaries would enable the
development of complex B2B interactions, such as those likely to be found in the aviation, automotive, and
pharmaceutical industries. Also likely are application-specific initiatives that would create XML meta-dictionaries
for data warehousing, system management, and complex statistical applications. Even the United Nations and a
not-for-profit standards-promoting organization named Oasis are working on a new specification called ebXML
that will create a standard XML vocabulary for e-business. Other examples of meta-dictionaries are HR-XML
for the human resources industry, the metadata encoding and transmission standard (METS) from the Library
of Congress, the clinical accounting information (CLAIM) data exchange standard for patient data exchange in
electronic medical record systems, and the extensible business reporting language (XBRL) standard for
exchanging business and financial information.

� XML databases.2 Given the huge number of expected XML-based data exchanges, businesses are already
looking for ways to better manage and utilize the data. Currently, many different products are on the market
to address this problem. The approaches range from simple middleware XML software, to object databases
with XML interfaces, to full XML database engines and servers. The current generation of relational databases
is tuned for the storage of normalized rows—that is, manipulating one row of data at a time. Because business
data do not always conform to such a requirement, XML databases provide for the storage of data in complex
relationships. For example, an XML database would be well suited to store the contents of a book. (The book’s
structure would dictate its database structure: a book typically consists of chapters, sections, paragraphs,
figures, charts, footnotes, endnotes, and so on.) Examples of XML databases are Oracle, IBM DB2, MS SQL
Server, Ipedo XML Database (www.ipedo.com), Tamino from Software AG (www.softwareag.com), and the
open source dbXML from http://sourceforge.net/projects/dbxml-core.

� XML services. Many companies are already working on the development of a new breed of services based on
XML and Web technologies. These services promise to break down the interoperability barriers among systems
and companies alike. XML provides the infrastructure that facilitates heterogeneous systems to work together
across the desk, the street, and the world. Services would use XML and other Internet technologies to publish
their interfaces. Other services, wanting to interact with existing services, would locate them and learn their
vocabulary (service request and replies) to establish a “conversation.”

14.4 SQL DATA SERVICES

As you have seen in this chapter, data access technologies have evolved from simple ODBC data retrieval to advanced
remote data processing using ADO.NET and XML. At the same time, companies are looking for ways to better
manage the ever-growing amounts of data while controlling costs without sacrificing data management features.
Meanwhile, the Internet has grown into a relatively stable and reliable platform for developing and deploying business
services. Database vendors have taken notice of all these changes and needs and have expanded their services to
include the offering of SQL data services. SQL data services (SDS) refers to a new wave of Internet-based data
management services that provide relational data storage, access, and management to companies of any size without
the typically high costs of in-house hardware, software, infrastructure and personnel. In effect, this type of service
leverages the Internet to provide:

� Hosted data management. SDS typically uses a cluster of database servers that provide a large subset of
database functionality over the Internet to database administrators and users. Typically, features such as SQL
queries, indexing, stored procedures, triggers, reporting, and analytical functions are available to the end users.
Other features such as data synchronization, data backup and restore, and data importing and exporting are
available for administrative purposes.

2 For a comprehensive analysis of XML database products, see “XML Database Products” by Ronald Bourret at www.rpbourret.com.

600 C H A P T E R 1 4

� Standard protocols. SDS uses standard data communication protocols and relational data access protocols.
Typically, these services encapsulate SQL networking protocols [such as SQL-Net for Oracle databases and
Tabular Data Services (TDS) for Microsoft SQL Server databases] inside the TCP/IP networking protocol.

� A common programming interface. SDS is transparent to application developers. Programmers continue to
use familiar programming interfaces such as ADO.NET and Visual Studio .NET to manipulate the data. The
programmer writes embedded SQL code in his/her applications and connects to the database as if the data
were stored locally instead of in a remote location on the Internet. One potential disadvantage, however, is that
some specialized data types may not be supported by SDS.

SQL data services offer some advantages when compared with in-house systems:

� Highly reliable and scalable relational database for a fraction of the cost,

� High level of failure tolerance because data are normally distributed and replicated among multiple servers,

� Dynamic and automatic load balancing,

� Automated data backup and disaster recovery is included with the service,

� Dynamic creation and allocation of database processes and storage.

The use of SQL data services could enable rapid application development for businesses with limited information
technology resources (hardware, software, personnel, or funding), and could enable them to deploy services in new and
innovative ways. However, having access to relational database technology via a SQL data service is just the start—you
still need to be knowledgeable in database design and SQL in order to develop high-quality applications.

601D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

S u m m a r y

◗ Database connectivity refers to the mechanisms through which application programs connect and communicate
with data repositories. Database connectivity software is also known as database middleware. The data repository
is also known as the data source because it represents the data management application (that is, an Oracle RDBMS,
SQL Server DBMS, or IBM DBMS) that will be used to store the data generated by the application program.

◗ Microsoft database connectivity interfaces are dominant players in the market and enjoy the support of most
database vendors. In fact, ODBC, OLE-DB, and ADO.NET form the backbone of Microsoft’s Universal Data
Access (UDA) architecture. UDA is a collection of technologies used to access any type of data source and manage
any type of data, using a common interface.

◗ Native database connectivity refers to the connection interface that is provided by the database vendor and is unique
to that vendor. Open Database Connectivity (ODBC) is Microsoft’s implementation of a superset of the SQL Access
Group Call Level Interface (CLI) standard for database access. ODBC is probably the most widely supported
database connectivity interface. ODBC allows any Windows application to access relational data sources, using
standard SQL. Data Access Objects (DAO) is an older object-oriented application interface. Remote Data Objects
(RDO) is a higher-level object-oriented application interface used to access remote database servers. RDO uses the
lower-level DAO and ODBC for direct access to databases. RDO was optimized to deal with server-based databases,
such as MS SQL Server and Oracle.

◗ Based on Microsoft’s Component Object Model (COM), Object Linking and Embedding for Database (OLE-DB) is
database middleware developed with the goal of adding object-oriented functionality for access to relational and
nonrelational data. ActiveX Data Objects (ADO) provides a high-level application-oriented interface to interact with
OLE-DB, DAO, and RDO. Based on ADO, ADO.NET is the data access component of Microsoft’s .NET
application development framework, a component-based platform for developing distributed, heterogeneous,
interoperable applications aimed at manipulating any type of data over any network under any operating system
and any programming language. Java Database Connectivity (JDBC) is the standard way to interface Java
applications with data sources (relational, tabular, and text files).

◗ Database access through the Web is achieved through middleware. To improve the capabilities on the client side
of the Web browser, you must use plug-ins and other client-side extensions such as Java and JavaScript, or ActiveX
and VBScript. On the server side, Web application servers are middleware that expands the functionality of Web
servers by linking them to a wide range of services, such as databases, directory systems, and search engines.

◗ Extensible Markup Language (XML) facilitates the exchange of B2B and other data over the Internet. XML provides
the semantics that facilitates the exchange, sharing, and manipulation of structured documents across organiza-
tional boundaries. XML produces the description and the representation of data, thus setting the stage for data
manipulation in ways that were not possible before XML. XML documents can be validated through the use of
Document Type Definition (DTD) documents and XML schema definition (XSD) documents. The use of DTD, XML
schemas, and XML documents permits a greater level of integration among diverse systems than was possible
before this technology was made available.

◗ SQL data services (SDS) are Internet-based data storage, access, and management services. These services provide
access to a large subset of database functionality over the Internet using standard protocols, and are accessed using
common programming interfaces.

602 C H A P T E R 1 4

K e y T e r m s

ActiveX, 591

ActiveX Data Objects (ADO), 580

ADO.NET, 581

application programming interface
(API), 575

Call Level Interface (CLI), 575

client-side extensions, 590

Common Gateway Interface
(CGI), 588

Data Access Objects (DAO), 576

data source name (DSN), 577

database middleware, 575

DataSet, 581

Document Type Definition
(DTD), 594

dynamic-link libraries (DLLs), 576

Extensible Markup Language
(XML), 592

Java, 583

Java Database Connectivity
(JDBC), 584

JavaScript, 590

Microsoft .NET framework, 581

Object Linking and Embedding for
Database (OLE-DB), 579

Open Database Connectivity
(ODBC), 575

plug-in, 590

Remote Data Objects (RDO), 576

script, 580

server-side extension, 586

SQL data services (SDS), 600

stateless system, 590

tags, 592

Universal Data Access (UDA), 575

VBScript, 591

XML schema, 595

XML schema definition (XSD), 596

Web application server, 591

Web-to-database middleware, 586

R e v i e w Q u e s t i o n s

1. Give some examples of database connectivity options and what they are used for.

2. What are ODBC, DAO, and RDO? How are they related?

3. What is the difference between DAO and RDO?

4. What are the three basic components of the ODBC architecture?

5. What steps are required to create an ODBC data source name?

6. What is OLE-DB used for, and how does it differ from ODBC?

7. Explain the OLE-DB model based on its two types of objects.

8. How does ADO complement OLE-DB?

9. What is ADO.NET, and what two new features make it important for application development?

10. What is a DataSet, and why is it considered to be disconnected?

11. What are Web server interfaces used for? Give some examples.

12. Search the Internet for Web application servers. Choose one and prepare a short presentation for your class.

13. What does this statement mean: “The Web is a stateless system.” What implications does a stateless system have
for database application developers?

14. What is a Web application server, and how does it work from a database perspective?

15. What are scripts, and what is their function? (Think in terms of database application development.)

16. What is XML, and why is it important?

O n l i n e C o n t e n t

Answers to selected ReviewQuestions and Problems for this chapter are contained in the PremiumWebsite for
this book.

603D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

17. What are Document Type Definition (DTD) documents, and what do they do?

18. What are XML schema definition (XSD) documents, and what do they do?

19. What is JDBC, and what is it used for?

20. Define SQL data services and list their advantages.

P r o b l e m s

In the following exercises, you will set up database connectivity using MS Excel.

1. Use MS Excel to connect to the Ch02_InsureCo MS Access database using ODBC, and retrieve all of the AGENTs.

2. Use MS Excel to connect to the Ch02_InsureCo MS Access database using ODBC, and retrieve all of the
CUSTOMERs.

3. Use MS Excel to connect to the Ch02_InsureCo MS Access database using ODBC, and retrieve the customers
whose AGENT_CODE is equal to 503.

4. Create an ODBC System Data Source Name Ch02_SaleCo using the Control Panel, Administrative Tools, Data
Sources (ODBC) option.

5. Use MS Excel to list all of the invoice lines for Invoice 103 using the Ch02_SaleCo System DSN.

6. Create an ODBC System Data Source Name Ch02_Tinycollege using the Control Panel, Administrative Tools,
Data Sources (ODBC) option.

7. Use MS Excel to list all classes taught in room KLR200 using the Ch02_TinyCollege System DSN.

8. Create a sample XML document and DTD for the exchange of customer data.

9. Create a sample XML document and DTD for the exchange of product and pricing data.

10. Create a sample XML document and DTD for the exchange of order data.

11. Create a sample XML document and DTD for the exchange of student transcript data. Use your college transcript
as a sample.

(Hint: To answer Problems 8−11, use Section 14.3.1 as your guide.)

O n l i n e C o n t e n t

The databases used in the Problems for this chapter can be found in the Premium Website for this book.

604 C H A P T E R 1 4

This page intentionally left blank

PART

VI
Database

Administration

15Database Administration and Security

B
V

usiness
ignette

The Rising SQL Injection Threat

In 2009, a former Secret Service informant and a group of fellow hackers were charged

with identity theft in the largest data-breach case in the history of the United States.They

stole at least 130 million debit and credit card numbers from the networks of several

national retail companies. The hackers had broken into the networks using an SQL

injection attack.This type of attack has risen steeply in recent years, originating primarily

from Russia, Brazil, and China, and and targeting countries all over the world. It is now

the top Web-based attack technique.

SQL injection attacks take advantage of vulnerabilities in Web applications. Hackers

search for Web-based forms on sites that feed data directly into databases. If these forms

do not validate the data before they are entered into the database, the system is

susceptible. Hackers enter SQL commands into the user-input fields within the form that

are then executed, giving hackers access to the company’s or organization’s computer

network. Once in the door, the hackers plant tools that detect and then allow them to

steal personal and financial information.

Unlike viruses or worms, the purpose of these attacks is not to overload or harm IT

systems. Furthermore, these hackers are not working indiscriminately—they are targeting

specific institutions. Hackers managed to penetrate not only retail sites but also banks,

security companies, and even the U.S. Department of Homeland Security.These attacks

are carried out with one purpose: to steal data.

These attacks were carried out manually until 2008, when someone figured out how to

automate the process.The number of attacks skyrocketed. In April 2008, hackers broke

into the British civil service, the U.S. Environmental Protection Agency, and the United

Nations systems.The number of attacks on IBM’s site rose from 5,000 per day to 400,000

per day. Experts estimated that hackers could enter the networks of about one in ten

Web sites and then take over the server.The most popular databases, including Microsoft

SQL Server, MySQL, and PostgreSQL, were susceptible to these attacks. Hackers could

plant malicious code in a Web site’s database and then use it to sabotage the computers

of visitors, whose systems would then spread the infection, allowing hackers to gather

more and more login, credit card, or other valuable information.

As the number of attacks has risen, the IT community has scrambled to find fixes. Browsers

have released patches. Credit card companies have revised their security rules for online

merchants. IT companies such as Microsoft have provided tools to detect vulnerabilities.

Many Web sites and blogs provide information on how to protect systems from SQL

injection attacks.Yet the number of attacks continues to rise, as hackers come up with new

variations. Clearly, it will take a sustained and concerted effort to tackle this growing threat.

Preview

Database Administration and Security

In this chapter, you will learn:

� That data are a valuable business asset requiring careful management

� How a database plays a critical role in an organization

� That the introduction of a DBMS has important technological, managerial, and cultural
consequences for an organization

� What the database administrator’s managerial and technical roles are

� About data security, database security, and the information security framework

� About several database administration tools and strategies

� How various database administration technical tasks are performed with Oracle

This chapter shows you the basis for a successful database administration strategy. Such a

strategy requires that data be considered important and valuable resources to be treated

and managed as corporate assets.

The chapter explores how a database fits within an organization, what the data views and

requirements are at various management levels, and how the DBMS supports those views

and requirements. Database administration must be fully understood and accepted within an

organization before a sound data administration strategy can be implemented. In this

chapter, you will learn about important data management issues by looking at the managerial

and technical roles of the database administrator (DBA). This chapter also explores

database security issues, such as the confidentiality, integrity, and availability of data. In our

information-based society, one of the key aspects of data management is to ensure that the

data are protected against intentional or unintentional access by unauthorized personnel. It

is also essential to ensure that the data are available when and where needed, even in the

face of natural disaster or hardware failure, and to maintain the integrity of the data in the

database.

The technical aspects of database administration are augmented by a discussion of database

administration tools and the corporate-wide data architectural framework.The managerial

aspects of database administration are explained by showing you how the database

administration function fits within classical organizational structures. Because Oracle is the

current leader in mid- to high-level corporate database markets, you will learn how a DBA

performs some typical database management functions in Oracle.

15
F

I
F

T
E

E
N

15.1 DATA AS A CORPORATE ASSET

In Chapter 1, Database Systems, you learned that data are the raw material from which information is produced.
Therefore, it is not surprising that in today’s information-driven environment, data are a valuable asset that requires
careful management.

To assess data’s monetary value, take a look at what’s stored in a company database: data about customers, suppliers,
inventory, operations, and so on. How many opportunities are lost if the data are lost? What is the actual cost of data loss?
For example, an accounting firm whose entire database is lost would incur significant direct and indirect costs. The
accounting firm’s problems would be magnified if the data loss occurred during tax season. Data loss puts any company
in a difficult position. The company might be unable to handle daily operations effectively, it might be faced with the loss
of customers who require quick and efficient service, and it might lose the opportunity to gain new customers.

Data are a valuable resource that can translate into information. If the information is accurate and timely, it is likely
to trigger actions that enhance the company’s competitive position and generate wealth. In effect, an organization is
subject to a data-information-decision cycle; that is, the data user applies intelligence to data to produce information
that is the basis of knowledge used in decision making by the user. This cycle is illustrated in Figure 15.1.

Note in Figure 15.1 that the decisions made by high-level managers trigger actions within the organization’s lower
levels. Such actions produce additional data to be used for monitoring company performance. In turn, the additional
data must be recycled within the data-information-decision framework. Thus, data form the basis for decision making,
strategic planning, control, and operations monitoring.

A critical success factor of an organization is efficient asset management. To manage data as a corporate asset,
managers must understand the value of information—that is, processed data. In fact, there are companies (for
example, those that provide credit reports) whose only product is information and whose success is solely a function
of information management.

FIGURE
15.1

The data-information-decision-making cycle

Decision making
User

Information

Actions

Data

Knowledge

used in

triggers

which
generate

more

that is
the basis of

applies
intelligence

over
Analysis

to produce

609D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

Most organizations continually seek new ways to leverage their data resources to get greater returns. This leverage can
take many forms, from data warehouses that support improved customer relationship management to tighter
integration with customers and suppliers in support of electronic supply chain management. As organizations become
more dependent on information, the accuracy of that information becomes ever more critical. Dirty data, or data that
suffer from inaccuracies and inconsistencies, becomes an even greater threat to these organizations. Data can become
dirty for many reasons, such as:

� Lack of enforcement of integrity constraints (not null, uniqueness, referential integrity, etc.).

� Data entry typographical errors.

� Use of synonyms and/or homonyms across systems.

� Nonstandardized use of abbreviations in character data.

� Different decompositions of composite attributes into simple attributes across systems.

Some causes of dirty data can be addressed at the individual database level, such as the proper implementation of
constraints. However, addressing other causes of dirty data is more complicated. Some sources of dirty data come from
the movement of data across systems, as in the creation of a data warehouse. Efforts to control dirty data are generally
referred to as data quality initiatives.

Data quality is a comprehensive approach to ensuring the accuracy, validity, and timeliness of the data. The idea that
data quality is comprehensive is important. Data quality is concerned with more than just cleaning dirty data; it also
focuses on the prevention of future inaccuracies in the data, and building user confidence in the data. Large-scale data
quality initiatives tend to be complex and expensive projects. As such, the alignment of these initiatives with business
goals is a must, as is buy-in from top management. While data quality efforts vary greatly from one organization to
another, most involve an interaction of:

� A data governance structure that is responsible for data quality.

� Measurements of current data quality.

� Definition of data quality standards in alignment with business goals.

� Implementation of tools and processes to ensure future data quality.

There are a number of tools that can assist in the implementation of data quality initiatives. In particular, data profiling
and master data management software is available from many vendors to assist in ensuring data quality. Data
profiling software consists of programs that gather statistics and analyze existing data sources. These programs
analyze existing data and the metadata to determine data patterns, and can compare the existing data patterns against
standards that the organization has defined. This analysis can help the organization to understand the quality of the
data that is currently in place and identify sources of dirty data. Master data management (MDM) software helps
to prevent dirty data by coordinating common data across multiple systems. MDM provides a �master� copy of entities,
such as customers, that appear in numerous systems throughout the organization.

While these technological approaches provide an important piece of data quality, the overall solution to high-quality
data within an organization still relies heavily on the administration and management of the data.

15.2 THE NEED FOR AND ROLE OF A DATABASE IN AN ORGANIZATION

Data are used by different people in different departments for different reasons. Therefore, data management must
address the concept of shared data. Chapter 1 showed how the need for data sharing made the DBMS almost
inevitable. Used properly, the DBMS facilitates:

� Interpretation and presentation of data in useful formats by transforming raw data into information.

� Distribution of data and information to the right people at the right time.

610 C H A P T E R 1 5

� Data preservation and monitoring the data usage for adequate periods of time.

� Control over data duplication and use, both internally and externally.

Whatever the type of organization, the database’s predominant role is to support managerial decision making at all
levels in the organization while preserving data privacy and security.

An organization’s managerial structure might be divided into three levels: top, middle, and operational. Top-level
management makes strategic decisions, middle management makes tactical decisions, and operational management
makes daily operational decisions. Operational decisions are short term and affect only daily operations; for example,
deciding to change the price of a product to clear it from inventory. Tactical decisions involve a longer time frame and
affect larger-scale operations; for example, changing the price of a product in response to competitive pressures.
Strategic decisions are those that affect the long-term well-being of the company or even its survival; for example,
changing pricing strategy across product lines to capture market share.

The DBMS must provide tools that give each level of management a useful view of the data and that support the
required level of decision making. The following activities are typical of each management level.

At the top management level, the database must be able to:

� Provide the information necessary for strategic decision making, strategic planning, policy formulation, and
goals definition.

� Provide access to external and internal data to identify growth opportunities and to chart the direction of such
growth. (Direction refers to the nature of the operations: Will a company become a service organization, a
manufacturing organization, or some combination of the two?)

� Provide a framework for defining and enforcing organizational policies. (Remember that such polices are
translated into business rules at lower levels in the organization.)

� Improve the likelihood of a positive return on investment for the company by searching for new ways to reduce
costs and/or by boosting productivity.

� Provide feedback to monitor whether the company is achieving its goals.

At the middle management level, the database must be able to:

� Deliver the data necessary for tactical decisions and planning.

� Monitor and control the allocation and use of company resources and evaluate the performance of the various
departments.

� Provide a framework for enforcing and ensuring the security and privacy of the data in the database. Security
means protecting the data against accidental or intentional use by unauthorized users. Privacy deals with the
rights of individuals and the organization to determine the “who, what, when, where, and how” of data usage.

At the operational management level, the database must be able to:

� Represent and support the company operations as closely as possible. The data model must be flexible enough
to incorporate all required present and expected data.

� Produce query results within specified performance levels. Keep in mind that the performance requirements
increase for lower levels of management and operations. Thus, the database must support fast responses to a
greater number of transactions at the operational management level.

� Enhance the company’s short-term operational ability by providing timely information for customer support
and for application development and computer operations.

A general objective for any database is to provide a seamless flow of information throughout the company.

The company’s database is also known as the corporate or enterprise database. The enterprise database might be
defined as “the company’s data representation that provides support for all present and expected future operations.”

611D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

Most of today’s successful organizations depend on the enterprise database to provide support for all of their
operations—from design to implementation, from sales to services, and from daily decision making to strategic
planning.

15.3 INTRODUCTION OF A DATABASE: SPECIAL CONSIDERATIONS

Having a computerized database management system does not guarantee that the data will be properly used to provide
the best solutions required by managers. A DBMS is a tool for managing data; like any tool, it must be used effectively
to produce the desired results. Consider this analogy: in the hands of a carpenter, a hammer can help produce
furniture; in the hands of a child, it might do damage. The solution to company problems is not the mere existence
of a computer system or its database, but, rather, its effective management and use.

The introduction of a DBMS represents a big change and challenge; throughout the organization, the DBMS is likely to
have a profound impact, which might be positive or negative depending on how it is administered. For example, one key
consideration is adapting the DBMS to the organization rather than forcing the organization to adapt to the DBMS. The
main issue should be the organization’s needs rather than the DBMS’s technical capabilities. However, the introduction of
a DBMS cannot be accomplished without affecting the organization. The flood of new DBMS-generated information has
a profound effect on the way the organization functions and, therefore, on its corporate culture.

The introduction of a DBMS into an organization has been described as a process that includes three important aspects:1

� Technological. DBMS software and hardware.

� Managerial. Administrative functions.

� Cultural. Corporate resistance to change.

The technological aspect includes selecting, installing, configuring, and monitoring the DBMS to make sure that it
efficiently handles data storage, access, and security. The person or people in charge of addressing the technological
aspect of the DBMS installation must have the technical skills necessary to provide or secure adequate support for the
various users of the DBMS: programmers, managers, and end users. Therefore, database administration staffing is a
key technological consideration in the DBMS introduction. The selected personnel must exhibit the right mix of
technical and managerial skills to provide a smooth transition to the new shared-data environment.

The managerial aspect of the DBMS introduction should not be taken lightly. A high-quality DBMS does not guarantee
a high-quality information system, just as having the best race car does not guarantee winning a race.

The introduction of a DBMS into an organization requires careful planning to create an appropriate organizational
structure to accommodate the person or people responsible for administering the DBMS. The organizational structure
must also be subject to well-developed monitoring and controlling functions. The administrative personnel must have
excellent interpersonal and communications skills combined with broad organizational and business understanding.
Top management must be committed to the new system and must define and support the data administration
functions, goals, and roles within the organization.

The cultural impact of the introduction of a database system must be assessed carefully. The DBMS’s existence is likely
to have an effect on people, functions, and interactions. For example, additional personnel might be added, new roles
might be allocated to existing personnel, and employee performance might be evaluated using new standards.

A cultural impact is likely because the database approach creates a more controlled and structured information flow.
Department managers who are used to handling their own data must surrender their subjective ownership to the data
administration function and must share their data with the rest of the company. Application programmers must learn
and follow new design and development standards. Managers might be faced with what they consider to be an
information overload and might require some time to adjust to the new environment.

1Murray, John P. “The Managerial and Cultural Issues of a DBMS,” 370/390 Database Management 1(8), September 1991, pp. 32–33.

612 C H A P T E R 1 5

When the new database comes online, people might be reluctant to use the information provided by the system and
might question its value or accuracy. (Many will be surprised and possibly chagrined to discover that the information
does not fit their preconceived notions and strongly held beliefs.) The database administration department must be
prepared to open its doors to end users, listen to their concerns, act on those concerns when possible, and educate
end users about the system’s uses and benefits.

15.4 THE EVOLUTION OF DATABASE ADMINISTRATION FUNCTION

Data administration has its roots in the old, decentralized world of the file system. The cost of data and managerial
duplication in such file systems gave rise to a centralized data administration function known as the electronic data
processing (EDP) or data processing (DP) department. The DP department’s task was to pool all computer resources
to support all departments at the operational level. The DP administration function was given the authority to manage
all existing company file systems as well as resolve data and managerial conflicts created by the duplication and/or
misuse of data.

The advent of the DBMS and its shared view of data produced a new level of data management sophistication and led
the DP department to evolve into an information systems (IS) department. The responsibilities of the IS
department were broadened to include:

� A service function to provide end users with active data management support.

� A production function to provide end users with specific solutions for their information needs through
integrated application or management information systems.

The functional orientation of the IS department was reflected in its internal organizational structure. IS departments
typically were structured as shown in Figure 15.2. As the demand for application development grew, the IS application
development segment was subdivided by the type of supported system: accounting, inventory, marketing, and so on.
However, this development meant that the database administration responsibilities were divided. The application
development segment was in charge of gathering database requirements and logical database design, whereas the
database operations segment took charge of implementing, monitoring, and controlling the DBMS operations.

As the number of database applications grew, data manage-
ment became an increasingly complex job, thus leading to
the development of the database administration function.
The person responsible for the control of the centralized
and shared database became known as the database
administrator (DBA).

The size and role of the DBA function varies from company
to company, as does its placement within a company’s
organizational structure. On the organization chart, the DBA
function might be defined as either a staff or line position.
Placing the DBA function in a staff position often creates a
consulting environment in which the DBA is able to devise
the data administration strategy but does not have the
authority to enforce it or to resolve possible conflicts.2 The
DBA function in a line position has both the responsibility

2 For a historical perspective on the development of the DBA function and a broader coverage of its organizational placement alternatives, refer to
Jay-Louise Weldon’s classic Data Base Administration (New York, Plenum Press, 1981). Although you might think that the book’s publication date
renders it obsolete, a surprising number of its topics are returning to the current operational database scene.

FIGURE
15.2

Information
systems (IS)

Application
development

Database
operations

The IS department internal
organization

613D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

and the authority to plan, define, implement, and enforce the policies, standards, and procedures used in the data
administration activity. The two possible DBA function placements are illustrated in Figure 15.3.

There is no standard for how the DBA function fits in an organization’s structure. In part, that is because the DBA
function itself is probably the most dynamic of any organization’s functions. In fact, the fast-paced changes in DBMS
technology dictate changing organizational styles. For example:

� The development of distributed databases can force an organization to decentralize the data administration
function further. The distributed database requires the system DBA to define and delegate the responsibilities
of each local DBA, thus imposing new and more complex coordinating activities on the system DBA.

� The growing use of Internet-accessible data and the growing number of data-warehousing applications are
likely to add to the DBA’s data modeling and design activities, thus expanding and diversifying the DBA’s job.

� The increasing sophistication and power of microcomputer-based DBMS packages provide an easy platform
for the development of user-friendly, cost-effective, and efficient solutions to the needs of specific departments.
But such an environment also invites data duplication, not to mention the problems created by people who lack
the technical qualifications to produce good database designs. In short, the new microcomputer environment
requires the DBA to develop a new set of technical and managerial skills.

It is common practice to define the DBA function by dividing the DBA operations according to the Database Life Cycle
(DBLC) phases. If that approach is used, the DBA function requires personnel to cover the following activities:

� Database planning, including the definition of standards, procedures, and enforcement.

� Database requirements gathering and conceptual design.

� Database logical and transaction design.

� Database physical design and implementation.

Information
systems (IS)

Application
development

Database
operations

Database
administration

Information
systems (IS)

Application
development

Database
operations

Database
administration

Line Authority Position

Staff Consulting Position

FIGURE
15.3

The placement of the DBA function

614 C H A P T E R 1 5

� Database testing and debugging.

� Database operations and maintenance, including installation, conversion, and migration.

� Database training and support.

� Data quality monitoring and management.

Figure 15.4 represents an appropriate DBA functional organization according to that model.

Keep in mind that a company might have several different and incompatible DBMSs installed to support different
operations. For example, it is not uncommon to find corporations with a hierarchical DBMS to support the daily
transactions at the operational level and a relational database to support middle and top management’s ad hoc
information needs. There may also be a variety of microcomputer DBMSs installed in the different departments. In
such an environment, the company might have one DBA assigned for each DBMS. The general coordinator of all
DBAs is sometimes known as the systems administrator; that position is illustrated in Figure 15.5.

There is a growing trend toward specialization in the data management function. For example, the organization charts
used by some of the larger corporations make a distinction between a DBA and the data administrator (DA). The

DBA

Planning Design Implementation Operations Training

Conceptual Logical Physical Testing

FIGURE
15.4

A DBA functional organization

Systems
administrator

DBA DBA DBA DBA
Microcomputer
DBMS manager

DB2
relational

Oracle
relational

IDS-II
network

SQL Server
relational

FIGURE
15.5

Multiple database administrators in an organization

615D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

DA, also known as the information resource manager (IRM), usually reports directly to top management and is
given a higher degree of responsibility and authority than the DBA, although the two roles overlap some.

The DA is responsible for controlling the overall corporate data resources, both computerized and manual. Thus, the
DA’s job description covers a larger area of operations than that of the DBA because the DA is in charge of controlling
not only the computerized data but also the data outside the scope of the DBMS. The placement of the DBA within
the expanded organizational structure may vary from company to company. Depending on the structure’s compo-
nents, the DBA might report to the DA, the IRM, the IS manager, or directly to the company’s CEO.

15.5 THE DATABASE ENVIRONMENT’S HUMAN COMPONENT

A substantial portion of this book is devoted to relational database design and implementation and to examining DBMS
features and characteristics. Thus far, the book has focused on the very important technical aspects of the database.
However, there is another important side of the database coin: even the most carefully crafted database system cannot
operate without the human component. So in this section, you will explore how people perform the data
administration activities that make a good database design useful.

Effective data administration requires both technical and managerial skills. For example, the DA’s job typically has a strong
managerial orientation with company-wide scope. In contrast, the DBA’s job tends to be more technically oriented and has
a narrower DBMS-specific scope. However, the DBA, too, must have a considerable store of people skills. After all, both
the DA and the DBA perform “people” functions common to all departments in an organization. For example, both the
DA and DBA direct and control personnel staffing and training within their respective departments.

Table 15.1 contrasts the general characteristics of both positions by summarizing the typical DA and DBA activities.
All activities flowing from the characteristics shown in Table 15.1 are invested in the DBA if the organization does not
employ both a DA and a DBA.

TABLE
15.1

Contrasting DA and DBA Activities and Characteristics

DATA ADMINISTRATOR (DA) DATABASE ADMINISTRATOR (DBA)
Does strategic planning Controls and supervises
Sets long-term goals Executes plans to reach goals
Sets policies and standards Enforces policies and procedures

Enforces programming standards
Is broad in scope Is narrow in scope
Focuses on the long term Focuses on the short term (daily operations)
Has a managerial orientation Has a technical orientation
Is DBMS-independent Is DBMS-specific

Note that the DA is responsible for providing a global and comprehensive administrative strategy for all of the
organization’s data. In other words, the DA’s plans must consider the entire data spectrum. Thus, the DA is responsible
for the consolidation and consistency of both manual and computerized data.

The DA must also set data administration goals. Those goals are defined by issues such as:

� Data “sharability” and time availability.

� Data consistency and integrity.

� Data security and privacy.

� Data quality standards.

� Extent and type of data use.

616 C H A P T E R 1 5

Naturally, that list can be expanded to fit the organization’s specific data needs. Regardless of how data management
is conducted—and despite the fact that much authority is invested in the DA or DBA to define and control the way
company data are used—the DA and DBA do not own the data. Instead, DA and DBA functions are defined to
emphasize that data are a shared company asset.

The preceding discussion should not lead you to believe that there are universally accepted DA and DBA administrative
standards. As a matter of fact, the style, duties, organizational placement, and internal structure of both functions vary
from company to company. For example, many companies distribute DA duties between the DBA and the manager
of information systems. For simplicity and to avoid confusion, the label DBA is used here as a general title that
encompasses all appropriate data administration functions. Having made that point, let’s move on to the DBA’s role
as an arbitrator between data and users.

The arbitration of interactions between the two most important assets of any organization, people and data, places the
DBA in the dynamic environment portrayed in Figure 15.6.

As you examine Figure 15.6, note that the DBA is the focal point for data/user interaction. The DBA defines and
enforces the procedures and standards to be used by programmers and end users during their work with the DBMS.
The DBA also verifies that programmer and end-user access meets the required quality and security standards.

Database users might be classified by the:

� Type of decision-making support required (operational, tactical, or strategic).

� Degree of computer knowledge (novice, proficient, or expert).

� Frequency of access (casual, periodic, or frequent).

Procedures
and standards

defines and enforces

used by

Application
programs

Programmer

verifies

writes

Managers
and clerks

DBMS
interface

and/or

DBMS

manages

Manages and
monitors

use

End users

Data

DBA

DBA
interface

FIGURE
15.6

A summary of DBA activities

617D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

Those classifications are not exclusive and usually overlap. For example, an operational user can be an expert with
casual database access. Nevertheless, a typical top-level manager might be a strategic novice user with periodic
database access. On the other hand, a database application programmer is an operational expert and frequent
database user. Thus, each organization employs people whose levels of database expertise span an entire spectrum.
The DBA must be able to interact with all of those people, understand their different needs, answer questions at all
levels of the expertise scale, and communicate effectively.

The DBA activities portrayed in Figure 15.6 suggest the need for a diverse mix of skills. In large companies, such skills
are likely to be distributed among several people who work within the DBA function. In small companies, the skills
might be the domain of just one individual. The skills can be divided into two categories—managerial and technical—as
summarized in Table 15.2.

TABLE
15.2

Desired DBA Skills

MANAGERIAL TECHNICAL
Broad business understanding Broad data-processing background
Coordination skills Systems Development Life Cycle knowledge
Analytical skills Structured methodologies:

Data flow diagrams
Structure charts
Programming languages

Conflict resolution skills Database Life Cycle knowledge
Communications skills (oral and written) Database modeling and design skills

Conceptual
Logical
Physical

Negotiation skills Operational skills: Database implementation, data
dictionary management, security, and so on

Experience: 10 years in a large DP department

As you examine Table 15.2, keep in mind that the DBA must perform two distinct roles. The DBA’s managerial role
is focused on personnel management and on interactions with the end-user community. The DBA’s technical role
involves the use of the DBMS—database design, development, and implementation—as well as the production,
development, and use of application programs. The DBA’s managerial and technical roles will be examined in greater
detail in the following sections.

15.5.1 The DBA’s Managerial Role

As a manager, the DBA must concentrate on the control and planning dimensions of database administration.
Therefore, the DBA is responsible for:

� Coordinating, monitoring, and allocating database administration resources: people and data.

� Defining goals and formulating strategic plans for the database administration function.

More specifically, the DBA’s responsibilities are shown in Table 15.3.

618 C H A P T E R 1 5

Table 15.3 illustrates that the DBA is generally responsible for planning, organizing, testing, monitoring, and delivering
quite a few services. Those services might be performed by the DBA or, more likely, by the DBA’s personnel. Let’s
examine the services in greater detail.

End-User Support
The DBA interacts with the end user by providing data and information support services to the organization’s
departments. Because end users usually have dissimilar computer backgrounds, end-user support services include:

� Gathering user requirements. The DBA must work within the end-user community to help gather the data
required to identify and describe the end-users’ problems. The DBA’s communications skills are very important
at this stage because the DBA works closely with people who have varying computer backgrounds and
communication styles. The gathering of user requirements requires the DBA to develop a precise understand-
ing of the users’ views and needs and to identify present and future information needs.

� Building end-user confidence. Finding adequate solutions to end-users’ problems increases end-user trust and
confidence in the DBA function. The DBA function is also to educate the end-user about the services provided
and how those services enhance data stewardship and data security.

� Resolving conflicts and problems. Finding solutions to end-users’ problems in one department might trigger
conflicts with other departments. End users are typically concerned with their own specific data needs rather
than with those of others, and they are not likely to consider how their data affect other departments within
the organization. When data/information conflicts arise, the DBA function has the authority and responsibility
to resolve them.

� Finding solutions to information needs. The ability and authority to resolve data conflicts enables the DBA
to develop solutions that will properly fit within the existing data management framework. The DBA’s primary
objective is to provide solutions to address the end-users’ information needs. Given the growing importance of
the Internet, those solutions are likely to require the development and management of Web servers to interface
with the databases. In fact, the explosive growth of e-commerce requires the use of dynamic interfaces to
facilitate interactive product queries and product sales.

� Ensuring quality and integrity of data and applications. Once the right solution has been found, it must be
properly implemented and used. Therefore, the DBA must work with both application programmers and end
users to teach them the database standards and procedures required for data quality, access, and manipulation.
The DBA must also make sure that the database transactions do not adversely affect the quality of the data.
Likewise, certifying the quality of the application programs that access the database is a crucial DBA function.
Special attention must be given to the DBMS Internet interfaces because those interfaces are prone to security
issues.

� Managing the training and support of DBMS users. One of the most time-consuming DBA activities is
teaching end users how to properly use the database. The DBA must ensure that all users accessing the
database have a basic understanding of the functions and use of the DBMS software. The DBA coordinates and
monitors all activities concerning end-user education.

TABLE
15.3

DBA Activities and Services

DBA ACTIVITY DBA SERVICE
Planning End-user support
Organizing Policies, procedures, and standards
Testing of Data security, privacy, and integrity
Monitoring Data backup and recovery
Delivering Data distribution and use

619D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

Policies, Procedures, and Standards
A prime component of a successful data administration strategy is the continuous enforcement of the policies,
procedures, and standards for correct data creation, usage, distribution, and deletion within the database. The DBA
must define, document, and communicate the policies, procedures, and standards before they can be enforced.
Basically:

� Policies are general statements of direction or action that communicate and support DBA goals.

� Standards describe the minimum requirements of a given DBA activity; they are more detailed and specific
than policies. In effect, standards are rules that are used to evaluate the quality of the activity. For example,
standards define the structure of application programs and the naming conventions programmers must use.

� Procedures are written instructions that describe a series of steps to be followed during the performance of
a given activity. Procedures must be developed within existing working conditions, and they must support and
enhance that environment.

To illustrate the distinctions among policies, standards, and procedures, look at the following examples:

Policies

All users must have passwords.

Passwords must be changed every six months.

Standards

A password must have a minimum of five characters.

A password must have a maximum of 12 characters.

Social Security numbers, names, and birth dates cannot be used as passwords.

Procedures

To create a password, (1) the end user sends to the DBA a written request for the creation of an account; (2)
the DBA approves the request and forwards it to the computer operator; (3) the computer operator creates the
account, assigns a temporary password, and sends the account information to the end user; (4) a copy of the
account information is sent to the DBA; and (5) the user changes the temporary password to a permanent one.

Standards and procedures defined by the DBA are used by all end users who want to benefit from the database.
Standards and procedures must complement each other and must constitute an extension of data administration
policies. Procedures must facilitate the work of end users and the DBA. The DBA must define, communicate, and
enforce procedures that cover areas such as:

� End-user database requirements gathering. What documentation is required? What forms must be used?

� Database design and modeling. What database design methodology is to be used (normalization or
object-oriented methodology)? What tools are to be used (CASE tools, data dictionaries, UML or ER diagrams)?

� Documentation and naming conventions. What documentation must be used in the definition of all data
elements, sets, and programs that access the database?

� Design, coding, and testing of database application programs. The DBA must define the standards for
application program coding, documentation, and testing. The DBA standards and procedures are given to the
application programmers, and the DBA must enforce those standards.

� Database software selection. The selection of the DBMS package and any other software related to the
database must be properly managed. For example, the DBA might require that software be properly interfaced
with existing software, that it have the features needed by the organization, and that it provide a positive return
on investment. In today’s Internet environment, the DBA must also work with Web administrators to
implement efficient and secure Web-to-database connectivity.

620 C H A P T E R 1 5

� Database security and integrity. The DBA must define the policies governing security and integrity. Database
security is especially crucial. Security standards must be clearly defined and strictly enforced. Security
procedures must be designed to handle a multitude of security scenarios to ensure that security problems are
minimized. Although no system can ever be completely secure, security procedures must be designed to meet
critical standards. The growing use of Internet interfaces to databases opens the door to new security threats
that are far more complex and difficult to manage than those encountered with more traditional internally
generated and controlled interfaces. Therefore, the DBA must work closely with Internet security specialists to
ensure that the databases are properly protected from attacks launched inadvertently or deliberately.

� Database backup and recovery. Database backup and recovery procedures must include the information
necessary to guarantee proper execution and management of the backups.

� Database maintenance and operation. The DBMS’s daily operations must be clearly documented. Operators
must keep job logs, and they must write operator instructions and notes. Such notes are helpful in pinpointing
the causes and solutions of problems. Operational procedures must also include precise information concern-
ing backup and recovery procedures.

� End-user training. A full-featured training program must be established within the organization, and
procedures governing the training must be clearly specified. The objective is to clearly indicate who does what,
when, and how. Each end user must be aware of the type and extent of the available training methodology.

Procedures and standards must be revised at least annually to keep them up to date and to ensure that the organization
can adapt quickly to changes in the work environment. Naturally, the introduction of new DBMS software, the
discovery of security or integrity violations, the reorganization of the company, and similar changes require revision of
the procedures and standards.

Data Security, Privacy, and Integrity
The security, privacy, and integrity of the data in the database are of great concern to DBAs who manage current
DBMS installations. Technology has pointed the way to greater productivity through information management.
Technology has also resulted in the distribution of data across multiple sites, thus making it more difficult to maintain
data control, security, and integrity. The multiple-site data configuration has made it imperative that the DBA use the
security and integrity mechanisms provided by the DBMS to enforce the database administration policies defined in the
previous section. In addition, DBAs must team up with Internet security experts to build security mechanisms to
safeguard data from possible attacks or unauthorized access. Section 15.6 covers security issues in more detail.

Data Backup and Recovery
When data are not readily available, companies face potentially ruinous losses. Therefore, data backup and recovery
procedures are critical in all database installations. The DBA must also ensure that the data in the database can be fully
recovered in case of physical data loss or loss of database integrity.

Data loss can be partial or total. A partial loss is caused by a physical loss of part of the database or when part of the
database has lost integrity. A total loss might mean that the database continues to exist but its integrity is entirely lost
or that the entire database is physically lost. In any case, backup and recovery procedures are the cheapest database
insurance you can buy.

The management of database security, integrity, backup, and recovery is so critical that many DBA departments have
created a position called the database security officer (DSO). The DSO’s sole job is to ensure database security and
integrity. In large organizations, the DSO’s activities are often classified as disaster management.

621D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

Disaster management includes all of the DBA activities designed to secure data availability following a physical
disaster or a database integrity failure. Disaster management includes all planning, organizing, and testing of database
contingency plans and recovery procedures. The backup and recovery measures must include at least:

� Periodic data and applications backups. Some DBMSs include tools to ensure backup and recovery of the
data in the database. The DBA should use those tools to render the backup and recovery tasks automatic.
Products such as IBM’s DB2 allow the creation of different backup types: full, incremental, and concurrent. A
full backup, also known as a database dump, produces a complete copy of the entire database. An
incremental backup produces a backup of all data since the last backup date; a concurrent backup takes
place while the user is working on the database.

� Proper backup identification. Backups must be clearly identified through detailed descriptions and date
information, thus enabling the DBA to ensure that the correct backups are used to recover the database. The
most common backup medium has traditionally been tape; the storage and labeling of tapes must be done
diligently by the computer operators, and the DBA must keep track of tape currency and location. However,
organizations that are large enough to hire a DBA do not typically use CDs and DVDs for enterprise backup.
Other emerging backup solutions include optical and disk-based backup devices. Such backup solutions include
online storage based on Network Attached Storage (NAS) and Storage Area Networks (SAN). Enterprise
backup solutions use a layered backup approach in which the data are first backed up to fast disk media for
intermediate storage and fast restoration. Later, the data is transferred to tape for archival storage.

� Convenient and safe backup storage. There must be multiple backups of the same data, and each backup
copy must be stored in a different location. The storage locations must include sites inside and outside the
organization. (Keeping different backups in the same place defeats the purpose of having multiple backups in
the first place.) The storage locations must be properly prepared and may include fire-safe and quakeproof
vaults, as well as humidity and temperature controls. The DBA must establish a policy to respond to two
questions: (1) Where are the backups to be stored? (2) How long are backups to be stored?

� Physical protection of both hardware and software. Protection might include the use of closed installations
with restricted access, as well as preparation of the computer sites to provide air conditioning, backup power,
and fire protection. Physical protection also includes the provision of a backup computer and DBMS to be used
in case of emergency. For example, when Hurricane Katrina hit the U.S. Gulf Coast in 2005, New Orleans
suffered almost total destruction of its communications infrastructure. The storm served as a “wake-up call” for
many organizations and educational institutions that did not have adequate disaster recovery plans for such an
extreme level of service interruption.

� Personal access control to the software of a database installation. Multilevel passwords and privileges and
hardware and software challenge/response tokens can be used to properly identify authorized users of
resources.

� Insurance coverage for the data in the database. The DBA or security officer must secure an insurance policy
to provide financial protection in the event of a database failure. The insurance might be expensive, but it is
less expensive than the disaster created by massive data loss.

Two additional points are worth making.

� Data recovery and contingency plans must be thoroughly tested and evaluated, and they must be practiced
frequently. So-called fire drills are not to be disparaged, and they require top-level management’s support and
enforcement.

� A backup and recovery program is not likely to cover all components of an information system. Therefore, it
is appropriate to establish priorities concerning the nature and extent of the data recovery process.

Data Distribution and Use
Data are useful only when they reach the right users in a timely fashion. The DBA is responsible for ensuring that the
data are distributed to the right people, at the right time, and in the right format. The DBA’s data distribution and use

622 C H A P T E R 1 5

tasks can become very time-consuming, especially when the data delivery capacity is based on a typical applications
programming environment, where users depend on programmers to deliver the programs to access the data in the
database. Although the Internet and its intranet and extranet extensions have opened databases to corporate users,
their use has also created a new set of challenges for the DBA.

Current data distribution philosophy makes it easy for authorized end users to access the database. One way to
accomplish that task is to facilitate the use of a new generation of more sophisticated query tools and the new Internet
Web front ends. They enable the DBA to educate end users to produce the required information without being
dependent on applications programmers. Naturally, the DBA must ensure that all users adhere to appropriate
standards and procedures.

This data-sharing philosophy is common today, and it is likely that it will become more common as database
technology marches on. Such an environment is more flexible for the end user. Clearly, enabling end users to become
relatively self-sufficient in the acquisition and use of data can lead to more efficient use of data in the decision process.
Yet this “data democracy” can also produce some troublesome side effects. Letting end users micromanage their data
subsets could inadvertently sever the connection between those users and the data administration function. The DBA’s
job under those circumstances might become sufficiently complicated to compromise the efficiency of the data
administration function. Data duplication might flourish again without checks at the organizational level to ensure the
uniqueness of data elements. Thus, end users who do not completely understand the nature and sources of data might
make improper use of the data elements.

15.5.2 The DBA’s Technical Role

The DBA’s technical role requires a broad understanding of DBMS functions, configuration, programming languages,
data modeling and design methodologies, and so on. For example, the DBA’s technical activities include the selection,
installation, operation, maintenance, and upgrading of the DBMS and utility software, as well as the design,
development, implementation, and maintenance of the application programs that interact with the database.

Many of the DBA’s technical activities are a logical extension of the DBA’s managerial activities. For example, the
DBA deals with database security and integrity, backup and recovery, and training and support. Thus, the DBA’s dual
role might be conceptualized as a capsule whose technical core is covered by a clear managerial shell.

The technical aspects of the DBA’s job are rooted in the following areas of operation:

� Evaluating, selecting, and installing the DBMS and related utilities.

� Designing and implementing databases and applications.

� Testing and evaluating databases and applications.

� Operating the DBMS, utilities, and applications.

� Training and supporting users.

� Maintaining the DBMS, utilities, and applications.

The following sections will explore the details of those operational areas.

Evaluating, Selecting, and Installing the DBMS and Utilities
One of the DBA’s first and most important technical responsibilities is selecting the database management system,
utility software, and supporting hardware to be used in the organization. Therefore, the DBA must develop and execute
a plan for evaluating and selecting the DBMS, utilities, and hardware. That plan must be based primarily on the
organization’s needs rather than on specific software and hardware features. The DBA must recognize that the search
is for solutions to problems rather than for a computer or DBMS software. Put simply, a DBMS is a management tool
and not a technological toy.

623D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

The first and most important step of the evaluation and acquisition plan is to determine company needs. To establish
a clear picture of those needs, the DBA must make sure that the entire end-user community, including top- and
mid-level managers, is involved in the process. Once the needs are identified, the objectives of the data administration
function can be clearly established and the DBMS features and selection criteria can be defined.

To match DBMS capability to the organization’s needs, the DBA would be wise to develop a checklist of desired DBMS
features. That DBMS checklist should address at least these issues:

� DBMS model. Are the company’s needs better served by a relational, object-oriented, or object/relational
DBMS? If a data warehouse application is required, should a relational or multidimensional DBMS be used?
Does the DBMS support star schemas?

� DBMS storage capacity. What maximum disk and database size is required? How many disk packages must
be supported? How many tape units are needed? What are other storage needs?

� Application development support. Which programming languages are supported? What application devel-
opment tools (database schema design, data dictionary, performance monitoring, and screen and menu
painters) are available? Are end-user query tools provided? Does the DBMS provide Web front-end access?

� Security and integrity. Does the DBMS support referential and entity integrity rules, access rights, and so on?
Does the DBMS support the use of audit trails to spot errors and security violations? Can the audit trail size
be modified?

� Backup and recovery. Does the DBMS provide some automated backup and recovery tools? Does the
DBMS support tape, optical disc, or network-based backups? Does the DBMS automatically back up the
transaction logs?

� Concurrency control. Does the DBMS support multiple users? What levels of isolation (table, page, row) does
the DBMS offer? How much manual coding is needed in the application programs?

� Performance. How many transactions per second does the DBMS support? Are additional transaction
processors needed?

� Database administration tools. Does the DBMS offer some type of DBA management interface? What type
of information does the DBA interface provide? Does the DBMS provide alerts to the DBA when errors or
security violations occur?

� Interoperability and data distribution. Can the DBMS work with other DBMS types in the same
environment? What coexistence or interoperability level is achieved? Does the DBMS support READ and
WRITE operations to and from other DBMS packages? Does the DBMS support a client/server architecture?

� Portability and standards. Can the DBMS run on different operating systems and platforms? Can the DBMS
run on mainframes, midrange computers, and personal computers? Can the DBMS applications run without
modification on all platforms? What national and industry standards does the DBMS follow?

� Hardware. What hardware does the DBMS require?

� Data dictionary. Does the DBMS have a data dictionary? If so, what information is kept in it? Does the DBMS
interface with any data dictionary tool? Does the DBMS support any CASE tools?

� Vendor training and support. Does the vendor offer in-house training? What type and level of support does
the vendor provide? Is the DBMS documentation easy to read and helpful? What is the vendor’s upgrade
policy?

� Available third-party tools. What additional tools are offered by third-party vendors (query tools, data
dictionary, access management and control, and/or storage allocation management tools)?

� Cost. What costs are involved in the acquisition of the software and hardware? How many additional personnel
are required, and what level of expertise is required of them? What are the recurring costs? What is the
expected payback period?

624 C H A P T E R 1 5

Pros and cons of several alternative solutions must be evaluated during the selection process. Available alternatives are
often restricted because software must be compatible with the organization’s existing computer system. Remember
that a DBMS is just part of a solution; it requires support from collateral hardware, application software, and utility
programs. For example, the DBMS’s use is likely to be constrained by the available CPU(s), front-end processor(s),
auxiliary storage devices, data communication devices, the operating system, a transaction processor system, and so
on. The costs associated with the hardware and software components must be included in the estimations.

The selection process must also consider the site’s preparation costs. For example, the DBA must include both
one-time and recurring expenditures involved in the preparation and maintenance of the computer room installations.

The DBA must supervise the installation of all software and hardware designated to support the data administration
strategy, must have a thorough understanding of the components being installed, and must be familiar with the
installation, configuration, and startup procedures of such components. The installation procedures include details such
as the location of backup and transaction log files, network configuration information, and physical storage details.

Keep in mind that installation and configuration details are DBMS-dependent. Therefore, such details cannot be
addressed in this book. Consult the installation and configuration sections of your system’s DBMS administration guide
for those details.

Designing and Implementing Databases and Applications
The DBA function also provides data-modeling and design services to end users. Such services are often coordinated
with an application development group within the data-processing department. Therefore, one of the primary activities
of a DBA is to determine and enforce standards and procedures to be used. Once the appropriate standards and
procedures framework are in place, the DBA must ensure that the database-modeling and design activities are
performed within the framework. The DBA then provides the necessary assistance and support during the design of
the database at the conceptual, logical, and physical levels. (Remember that the conceptual design is both DBMS- and
hardware-independent, the logical design is DBMS-dependent and hardware-independent, and the physical design is
both DBMS- and hardware-dependent.)

The DBA function usually requires that several people be dedicated to database modeling and design activities. Those
people might be grouped according to the organizational areas covered by the application. For example, database
modeling and design personnel may be assigned to production systems, financial and managerial systems, or executive
and decision support systems. The DBA schedules the design jobs to coordinate the data design and modeling
activities. That coordination may require reassignment of available resources based on externally determined priorities.

The DBA also works with applications programmers to ensure the quality and integrity of database design and
transactions. Such support services include reviewing the database application design to ensure that transactions are:

� Correct. The transactions mirror real-world events.

� Efficient. The transactions do not overload the DBMS.

� Compliant. Complies with integrity rules and standards.

These activities require personnel with broad database design and programming skills.

The implementation of the applications requires the implementation of the physical database. Therefore, the DBA
must provide assistance and oversight during the physical design, including storage space determination and creation,
data loading, conversion, and database migration services. The DBA’s implementation tasks also include the
generation, compilation, and storage of the application’s access plan. An access plan is a set of instructions
generated at application compilation time that predetermines how the application will access the database at run time.
To be able to create and validate the access plan, the user must have the required rights to access the database (see
Chapter 11, Database Performance Tuning and Query Optimization).

625D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

Before an application comes online, the DBA must develop, test, and implement the operational procedures required
by the new system. Such operational procedures include utilizing training, security, and backup and recovery plans, as
well as assigning responsibility for database control and maintenance. Finally, the DBA must authorize application
users to access the database from which the applications draw the required data.

The addition of a new database might require the fine-tuning and/or reconfiguring of the DBMS. Remember that the
DBMS assists all applications by managing the shared corporate data repository. Therefore, when data structures are
added or modified, the DBMS might require the assignment of additional resources to service the new and original
users with equal efficiency (see Chapter 11).

Testing and Evaluating Databases and Applications
The DBA must also provide testing and evaluation services for all of the database and end-user applications. Those
services are the logical extension of the design, development, and implementation services described in the preceding
section. Clearly, testing procedures and standards must already be in place before any application program can be
approved for use in the company.

Although testing and evaluation services are closely related to database design and implementation services, they
usually are maintained independently. The reason for the separation is that application programmers and designers are
often too close to the problem being studied to detect errors and omissions.

Testing usually starts with the loading of the testbed database. That database contains test data for the applications,
and its purpose is to check the data definition and integrity rules of the database and application programs.

The testing and evaluation of a database application cover all aspects of the system—from the simple collection and
creation of data to its use and retirement. The evaluation process covers:

� Technical aspects of both the applications and the database. Backup and recovery, security and integrity, use
of SQL, and application performance must be evaluated.

� Evaluation of the written documentation to ensure that the documentation and procedures are accurate and
easy to follow.

� Observance of standards for naming, documenting, and coding.

� Data duplication conflicts with existing data.

� The enforcement of all data validation rules.

Following the thorough testing of all applications, the database, and the procedures, the system is declared operational
and can be made available to end users.

Operating the DBMS, Utilities, and Applications
DBMS operations can be divided into four main areas:

� System support.

� Performance monitoring and tuning.

� Backup and recovery.

� Security auditing and monitoring.

System support activities cover all tasks directly related to the day-to-day operations of the DBMS and its applications.
These activities include filling out job logs, changing tape, and verifying the status of computer hardware, disk
packages, and emergency power sources. System-related activities include periodic, occasional tasks such as running
special programs and resource configurations for new and/or upgraded versions of database applications.

626 C H A P T E R 1 5

Performance monitoring and tuning require much of the DBA’s attention and time. These activities are designed to
ensure that the DBMS, utilities, and applications maintain satisfactory performance levels. To carry out the
performance monitoring and tuning tasks, the DBA must:

� Establish DBMS performance goals.

� Monitor the DBMS to evaluate whether the performance objectives are being met.

� Isolate the problem and find solutions (if performance objectives are not met).

� Implement the selected performance solutions.

DBMSs often include performance-monitoring tools that allow the DBA to query database usage information.
Performance-monitoring tools are also available from many different sources: DBMS utilities are provided by
third-party vendors, or they might be included in operating system utilities or transaction processor facilities. Most of
the performance-monitoring tools allow the DBA to focus on selected system bottlenecks. The most common
bottlenecks in DBMS performance tuning are related to the use of indexes, query-optimization algorithms, and
management of storage resources.

Because improper index selection can have a deleterious effect on system performance, most DBMS installations
adhere to a carefully defined index creation and usage plan. Such a plan is especially important in a relational database
environment.

To produce satisfactory performance, the DBA is likely to spend much time trying to educate programmers and end
users on the proper use of SQL statements. Typically, DBMS programmers’ manuals and administration manuals
contain useful performance guidelines and examples that demonstrate the proper use of SQL statements, both in the
command-line mode and within application programs. Because relational systems do not give the user an index choice
within a query, the DBMS makes the index selection for the user. Therefore, the DBA should create indexes that can
be used to improve system performance. (For examples of database performance tuning, see Chapter 11.)

Query-optimization routines are usually integrated into the DBMS package, allowing few tuning options. Query-
optimization routines are oriented toward improving concurrent access to the database. Several database packages let
the DBA specify parameters for determining the desired level of concurrency. Concurrency is also affected by the types
of locks used by the DBMS and requested by the applications. Because the concurrency issue is important to the
efficient operation of the system, the DBA must be familiar with the factors that influence concurrency. (See Chapter
10, Transaction Management and Concurrency Control, for more information on that subject.)

During DBMS performance tuning, the DBA must also consider available storage resources in terms of both primary
and secondary memory. The allocation of storage resources is determined when the DBMS is configured. Storage
configuration parameters can be used to determine:

� The number of databases that may be opened concurrently.

� The number of application programs or users supported concurrently.

� The amount of primary memory (buffer pool size) assigned to each database and each database process.

� The size and location of the log files. (Remember that these files are used to recover the database. The log files
can be located in a separate volume to reduce the disk’s head movement and to increase performance.)

Performance-monitoring issues are DBMS-specific. Therefore, the DBA must become familiar with the DBMS
manuals to learn the technical details involved in the performance-monitoring task (see Chapter 11).

Because data loss is likely to be devastating to the organization, backup and recovery activities are of primary concern
during the DBMS operation. The DBA must establish a schedule for backing up database and log files at appropriate
intervals. Backup frequency is dependent on the application type and on the relative importance of the data. All critical
system components—the database, the database applications, and the transaction logs—must be backed up
periodically.

627D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

Most DBMS packages include utilities that schedule automated database backups, be they full or incremental. Although
incremental backups are faster than full backups, an incremental backup requires the existence of a periodic full backup
to be useful for recovery purposes.

Database recovery after a media or systems failure requires application of the transaction log to the correct database
copy. The DBA must plan, implement, test, and enforce a “bulletproof” backup and recovery procedure.

Security auditing and monitoring assumes the appropriate assignment of access rights and the proper use of access
privileges by programmers and end users. The technical aspects of security auditing and monitoring involve creating
users, assigning access rights, using SQL commands to grant and revoke access rights to users and database objects,
and creating audit trails to discover security violations or attempted violations. The DBA must periodically generate an
audit trail report to determine whether there have been actual or attempted security violations—and, if so, from what
locations, and if possible, by whom. For a comprehensive discussion of database security, see Section 15.6.

Training and Supporting Users
Training people to use the DBMS and its tools is included in the DBA’s technical activities. In addition, the DBA
provides or secures technical training in the use of the DBMS and its utilities for the applications programmers.
Applications programmer training covers the use of the DBMS tools as well as the procedures and standards required
for database programming.

Unscheduled, on-demand technical support for end users and programmers is also included in the DBA’s activities. A
technical troubleshooting procedure can be developed to facilitate such support. The technical procedure might include
the development of a technical database used to find solutions to common technical problems.

Part of the support is provided by interaction with DBMS vendors. Establishing good relationships with software
suppliers is one way to ensure that the company has a good external support source. Vendors are the source for
up-to-date information concerning new products and personnel retraining. Good vendor−company relations also are
likely to give organizations an edge in determining the future direction of database development.

Maintaining the DBMS, Utilities, and Applications
The maintenance activities of the DBA are an extension of the operational activities. Maintenance activities are
dedicated to the preservation of the DBMS environment.

Periodic DBMS maintenance includes management of the physical or secondary storage devices. One of the most
common maintenance activities is reorganizing the physical location of data in the database. (That is usually done as
part of the DBMS fine-tuning activities.) The reorganization of a database might be designed to allocate contiguous
disk-page locations to the DBMS to increase performance. The reorganization process also might free the space
allocated to deleted data, thus providing more disk space for new data.

Maintenance activities also include upgrading the DBMS and utility software. The upgrade might require the installation
of a new version of the DBMS software or an Internet front-end tool. Or it might create an additional DBMS gateway
to allow access to a host DBMS running on a different host computer. DBMS gateway services are very common in
distributed DBMS applications running in a client/server environment. Also, new-generation databases include features
such as spatial data support, data warehousing and star query support, and support for Java programming interfaces
for Internet access (see Chapter 14, Database Connectivity and Web Technologies).

Quite often companies are faced with the need to exchange data in dissimilar formats or between databases. The
maintenance efforts of the DBA include migration and conversion services for data in incompatible formats or for
different DBMS software. Such conditions are common when the system is upgraded from one version to another or
when the existing DBMS is replaced by an entirely new DBMS. Database conversion services also include downloading
data from the host DBMS (mainframe-based) to an end user’s personal computer to allow that user to perform a variety
of activities—spreadsheet analysis, charting, statistical modeling, and so on. Migration and conversion services can be

628 C H A P T E R 1 5

done at the logical level (DBMS- or software-specific) or at the physical level (storage media or operating-system-
specific). Current-generation DBMSs support XML as a standard format for data exchange among database systems
and applications (see Chapter 14).

15.6 SECURITY

Security refers to activities and measures to ensure the confidentiality, integrity, and availability of an information
system and its main asset, data.3 It is important to understand that securing data requires a comprehensive,
company-wide approach. That is, you cannot secure data if you do not secure all the processes and systems around
it. Indeed, securing data entails securing the overall information system architecture, including hardware systems,
software applications, the network and its devices, people (internal and external users), procedures, and the data itself.
To understand the scope of data security, let’s discuss each of the three security goals in more detail:

� Confidentiality deals with ensuring that data is protected against unauthorized access, and if the data are
accessed by an authorized user, that the data are used only for an authorized purpose. In other words,
confidentiality entails safeguarding data against disclosure of any information that would violate the privacy
rights of a person or organization. Data must be evaluated and classified according to the level of
confidentiality: highly restricted (very few people have access), confidential (only certain groups have access),
and unrestricted (can be accessed by all users). The data security officer spends a great amount of time ensuring
that the organization is in compliance with the desired levels of confidentiality. Compliance refers to activities
undertaken to meet data privacy and security reporting guidelines. These reporting guidelines are either part
of internal procedures or are imposed by external regulatory agencies such as the federal government.
Examples of U.S. legislation enacted with the purpose of ensuring data privacy and confidentiality include the
Health Insurance Portability and Accountability Act (HIPAA), Gramm-Leach-Bliley Act (GLBA), and Sarbanes-
Oxley Act (SOX).4

� Integrity, within the data security framework, is concerned with keeping data consistent, free of errors, or
anomalies. Integrity focuses on maintaining the data free of inconsistencies and anomalies (see Chapter 1 to
review the concepts of data inconsistencies and data anomalies). The DBMS plays a pivotal role in ensuring
the integrity of the data in the database. However, from the security point of view, integrity deals not only with
the data in the database but also with ensuring that organizational processes, users, and usage patterns
maintain such integrity. For example, a work-at-home employee using the Internet to access product costing
could be considered an acceptable use; however, security standards might require the employee to use a secure
connection and follow strict procedures to manage the data at home (shredding printed reports, using
encryption to copy data to the local hard drive, etc.). Maintaining the integrity of the data is a process that starts
with data collection and continues with data storage, processing, usage, and archival (see Chapter 13, Business
Intelligence and Data Warehouses). The rationale behind integrity is to treat data as the most valuable asset in
the organization and therefore to ensure that rigorous data validation is carried out at all levels within the
organization.

� Availability refers to the accessibility of data whenever required by authorized users and for authorized
purposes. To ensure data availability, the entire system (not only the data component) must be protected from
service degradation or interruption caused by any source (internal or external). Service interruptions could be
very costly for companies and users alike. System availability is an important goal of security.

15.6.1 Security Policies

Normally, the tasks of securing the system and its main asset, the data, are performed by the database security officer
and the database administrator(s), who work together to establish a cohesive data security strategy. Such security

3 M. Krause and H. Tipton, Handbook of Information Security Management, CRC Press LLC, 1999.
4 To find additional information about these various laws, please visit http://library.uis.edu/findinfo/govinfo/federal/law.html.

629D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

strategy begins with defining a sound and comprehensive security policy. A security policy is a collection of
standards, policies, and procedures created to guarantee the security of a system and ensure auditing and compliance.
The security audit process starts by identifying the security vulnerabilities in the organization’s information system
infrastructure and identifying measures to protect the system and data against those vulnerabilities.

15.6.2 Security Vulnerabilities

A security vulnerability is a weakness in a system component that could be exploited to allow unauthorized access
or cause service disruptions. The nature of such vulnerabilities could be of multiple types: technical (such as a flaw in
the operating system or Web browser), managerial (for example, not educating users about critical security issues),
cultural (hiding passwords under the keyboard or not shredding confidential reports), procedural (not requiring complex
passwords or not checking user IDs), and so on. Whatever the case, when a security vulnerability is left unchecked, it
could become a security threat. A security threat is an imminent security violation that could occur at any time due
to unchecked security vulnerability.

A security breach occurs when a security threat is exploited to negatively affect the integrity, confidentiality, or
availability of the system. Security breaches can yield a database whose integrity is either preserved or corrupted:

� Preserved. Action is required to avoid the repetition of similar security problems, but data recovery may not
be necessary. As a matter of fact, most security violations are produced by unauthorized and unnoticed access
for information purposes, but such snooping does not disrupt the database.

� Corrupted. Action is required to avoid the repetition of similar security problems, and the database must be
recovered to a consistent state. Corrupting security breaches include database access by computer viruses and
by hackers whose actions are intended to destroy or alter data.

Table 15.4 illustrates some security vulnerabilities that systems components are exposed to and some measures
typically taken to protect against them.

TABLE
15.4

Sample Security Vulnerabilities and Related Measures

SYSTEM
COMPONENT

SECURITY VULNERABILITY SECURITY MEASURES

People • User sets a blank password.
• Password is short or includes birth date.
• User leaves office door open all
the time.

• User leaves payroll information on
screen for long periods of time.

• Enforce complex password policies.
• Use multilevel authentication.
• Use security screens and screen savers.
• Educate users about sensitive data.
• Install security cameras.
• Use automatic door locks.

Workstation and
Servers

• User copies data to flash drive.
• Workstation is used by multiple users.
• Power failure crashes computer.
• Unauthorized personnel can use
computer.

• Sensitive data stored in laptop
computer.

• Data lost due to stolen hard
disk/laptop.

• Natural disasters—earthquake,
flood, etc.

• Use group policies to restrict use of
flash drives.

• Assign user access rights to workstations.
• Install uninterrupted power supplies (UPSs).
• Add security lock devices to computers.
• Implement a “kill” switch for stolen laptops.
• Create and test data backup and
recovery plans.

• Insure system against natural disasters—use
co-location strategies.

630 C H A P T E R 1 5

TABLE
15.4

Sample Security Vulnerabilities and Related Measures (continued)

SYSTEM
COMPONENT

SECURITY VULNERABILITY SECURITY MEASURES

Operating
System

• Buffer overflow attacks.
• Virus attacks.
• Root kits and worm attacks.
• Denial of service attacks.
• Trojan horses.
• Spyware applications.
• Password crackers.

• Apply OS security patches and updates.
• Apply application server patches.
• Install antivirus and antispyware software.
• Enforce audit trails on the computers.
• Perform periodic system backups.
• Install only authorized applications.
• Use group policies to prevent
unauthorized installs.

Applications • Application bugs—buffer overflow.
• SQL injection, session hijacking, etc.
• Application vulnerabilities—cross-site
scripting, nonvalidated inputs.

• E-mail attacks: spamming, phishing, etc.
• Social engineering e-mails.

• Test application programs extensively.
• Built safeguards in code.
• Do extensive vulnerability testing in
applications.

• Install spam filter/antivirus for e-mail system.
• Use secure coding techniques

(see www.owasp.org).
• Educate users about social engineering

attacks.
Network • IP spoofing.

• Packet sniffers.
• Hacker attacks.
• Clear passwords on network.

• Install firewalls.
• Virtual Private Networks (VPN).
• Intrusion Detection Systems (IDS).
• Network Access Control (NAC).
• Network activity monitoring.

Data • Data shares are open to all users.
• Data can be accessed remotely.
• Data can be deleted from shared
resource.

• Implement file system security.
• Implement share access security.
• Use access permission.
• Encrypt data at the file system or
database level.

15.6.3 Database Security

Database security refers to the use of the DBMS features and other related measures to comply with the security
requirements of the organization. From the DBA’s point of view, security measures should be implemented to protect
the DBMS against service degradation and the database against loss, corruption, or mishandling. In short, the DBA
should secure the DBMS from the point of installation through operation and maintenance.

To protect the DBMS against service degradation there are certain minimum recommended security safeguards. For
example:

� Change default system passwords.

� Change default installation paths.

� Apply the latest patches.

� Secure installation folders with proper access rights.

Note

James Martin provides an excellent enumeration and description of the desirable attributes of a database
security strategy that remains relevant today (James Martin, Managing the Database Environment, Englewood
Cliffs, NJ: Prentice-Hall, 1977). Martin’s security strategy is based on the seven essentials of database security
and may be summarized as one in which:

Data are Protected, Reconstructable, Auditable, Tamperproof
Users are Identifiable, Authorized, Monitored

631D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

� Make sure only required services are running.

� Set up auditing logs.

� Set up session logging.

� Require session encryption.

Furthermore, the DBA should work closely with the network administrator to implement network security to protect
the DBMS and all services running on the network. In current organizations, one of the most critical components in
the information architecture is the network.

Protecting the data in the database is a function of authorization management. Authorization management defines
procedures to protect and guarantee database security and integrity. Those procedures include, but are not limited to,
user access management, view definition, DBMS access control, and DBMS usage monitoring.

� User access management. This function is designed to limit access to the database and likely includes at least
the following procedures:

- Define each user to the database. This is achieved at the operating system level and at the DBMS level.
At the operating system level, the DBA can request the creation of a logon user ID that allows the end user
to log on to the computer system. At the DBMS level, the DBA can either create a different user ID or
employ the same user ID to authorize the end user to access the DBMS.

- Assign passwords to each user. This, too, can be done at both operating system and DBMS levels. The
database passwords can be assigned with predetermined expiration dates. The use of expiration dates
enables the DBA to screen end users periodically and to remind users to change their passwords
periodically, thus making unauthorized access less probable.

- Define user groups. Classifying users into user groups according to common access needs facilitates the
DBA’s job of controlling and managing the access privileges of individual users. Also, the DBA can use
database roles and resource limits to minimize the impact of rogue users in the system (see Section 15.9.6
for more information about these topics).

- Assign access privileges. The DBA assigns access privileges or access rights to specific users to access
specified databases. An access privilege describes the type of authorized access. For example, access rights
may be limited to read-only, or the authorized access might include READ, WRITE, and DELETE privileges.
Access privileges in relational databases are assigned through SQL GRANT and REVOKE commands.

- Control physical access. Physical security can prevent unauthorized users from directly accessing the
DBMS installation and facilities. Some common physical security practices found in large database
installations include secured entrances, password-protected workstations, electronic personnel badges,
closed-circuit video, voice recognition, and biometric technology.

� View definition. The DBA must define data views to protect and control the scope of the data that are
accessible to an authorized user. The DBMS must provide the tools that allow the definition of views that are
composed of one or more tables and the assignment of access rights to a user or a group of users. The SQL
command CREATE VIEW is used in relational databases to define views. Oracle DBMS offers Virtual Private
Database (VPD), which allows the DBA to create customized views of the data for multiple different users. With
this feature, the DBA could restrict a regular user querying a payroll database to see only the rows and columns
necessary, while the department manager would see only the rows and columns pertinent to that department.

� DBMS access control. Database access can be controlled by placing limits on the use of DBMS query and
reporting tools. The DBA must make sure that those tools are used properly and only by authorized personnel.

� DBMS usage monitoring. The DBA must also audit the use of the data in the database. Several DBMS
packages contain features that allow the creation of an audit log, which automatically records a brief
description of the database operations performed by all users. Such audit trails enable the DBA to pinpoint
access violations. The audit trails can be tailored to record all database accesses or just failed database accesses.

632 C H A P T E R 1 5

The integrity of a database could be lost because of external factors beyond the DBA’s control. For example, the
database might be damaged or destroyed by an explosion, a fire, or an earthquake. Whatever the reason, the specter
of database corruption or destruction makes backup and recovery procedures crucial to any DBA.

15.7 DATABASE ADMINISTRATION TOOLS

The importance of the data dictionary as a prime DBA tool cannot be overstated. This section will examine the data
dictionary as a data administration tool, as well as the DBA’s use of computer-aided software engineering (CASE) tools
to support database analysis and design.

15.7.1 The Data Dictionary

In Chapter 1, a data dictionary was defined as “a DBMS component that stores the definition of data characteristics
and relationships.” You may recall that such “data about data” are called metadata. The DBMS data dictionary
provides the DBMS with its self-describing characteristic. In effect, the data dictionary resembles an X-ray of the
company’s entire data set, and it is a crucial element in data administration.

Two main types of data dictionaries exist: integrated and standalone. An integrated data dictionary is included with
the DBMS. For example, all relational DBMSs include a built-in data dictionary or system catalog that is frequently
accessed and updated by the RDBMS. Other DBMSs, especially older types, do not have a built-in data dictionary;
instead, the DBA may use third-party standalone data dictionary systems.

Data dictionaries can also be classified as active or passive. An active data dictionary is automatically updated by
the DBMS with every database access, thereby keeping its access information up to date. A passive data dictionary
is not updated automatically and usually requires running a batch process. Data dictionary access information is
normally used by the DBMS for query optimization purposes.

The data dictionary’s main function is to store the description of all objects that interact with the database. Integrated data
dictionaries tend to limit their metadata to the data managed by the DBMS. Standalone data dictionary systems are usually
more flexible and allow the DBA to describe and manage all of the organization’s data, whether or not they are
computerized. Whatever the data dictionary’s format, its existence provides database designers and end users with a
much-improved ability to communicate. In addition, the data dictionary is the tool that helps the DBA resolve data conflicts.

Although there is no standard format for the information stored in the data dictionary, several features are common.
For example, the data dictionary typically stores descriptions of all:

� Data elements that are defined in all tables of all databases. Specifically, the data dictionary stores the
names, data types, display format, internal storage format, and validation rules. The data dictionary tells where
an element is used, by whom it is used, and so on.

� Tables defined in all databases. For example, the data dictionary is likely to store the name of the table
creator, the date of creation, access authorizations, and the number of columns.

� Indexes defined for each database table. For each index, the DBMS stores at least the index name, the
attributes used, the location, specific index characteristics, and the creation date.

� Defined databases. This includes who created each database, when the database was created, where the
database is located, who the DBA is, and so on.

� End users and administrators of the database.

� Programs that access the database. This includes screen formats, report formats, application programs, and
SQL queries.

� Access authorizations for all users of all databases.

� Relationships among data elements. This includes which elements are involved, whether the relationships are
mandatory or optional, and what the connectivity and cardinality requirements are.

633D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

If the data dictionary can be organized to include data external to the DBMS itself, it becomes an especially flexible tool
for more general corporate resource management. The management of such an extensive data dictionary thus makes
it possible to manage the use and allocation of all of the organization’s information, regardless of whether the
information has its roots in the database data. That is why some managers consider the data dictionary to be a key
element of information resource management. And that is also why the data dictionary might be described as the
information resource dictionary.

The metadata stored in the data dictionary are often the basis for monitoring database use and for assigning access
rights to the database users. The information stored in the data dictionary is usually based on a relational table format,
thus enabling the DBA to query the database with SQL commands. For example, SQL commands can be used to
extract information about the users of a specific table or about the access rights of a particular user. In the following
example, the IBM DB2 system catalog tables will be used as the basis for several examples of how a data dictionary
is used to derive information:

SYSTABLES stores one row for each table or view.

SYSCOLUMNS stores one row for each column of each table or view.

SYSTABAUTH stores one row for each authorization given to a user for a table or view in a database.

Examples of Data Dictionary Usage
Example 1

List the names and creation dates of all tables created by the user JONESVI in the current database.

SELECT NAME, CTIME
FROM SYSTABLES
WHERE CREATOR = 'JONESVI';

Example 2

List the names of the columns for all tables created by JONESVI in the current database.

SELECT NAME
FROM SYSCOLUMNS
WHERE TBCREATOR = 'JONESVI';

Example 3

List the names of all tables for which the user JONESVI has DELETE authorization.

SELECT TTNAME
FROM SYSTABAUTH
WHERE GRANTEE = 'JONESVI' AND DELETEAUTH = 'Y';

Example 4

List the names of all users who have some type of authority over the INVENTORY table.

SELECT DISTINCT GRANTEE
FROM SYSTABAUTH
WHERE TTNAME = 'INVENTORY';

634 C H A P T E R 1 5

Example 5

List the user and table names for all users who can alter the database structure for any table in the database.

SELECT GRANTEE, TTNAME
FROM SYSTABAUTH
WHERE ALTERAUTH = 'Y'
ORDER BY GRANTEE, TTNAME;

As you can see in the preceding examples, the data dictionary can be a tool for monitoring the security of data in the
database by checking the assignment of data access privileges. Although the preceding examples targeted database
tables and users, information about the application programs that access the database can also be drawn from the data
dictionary.

The DBA can use the data dictionary to support data analysis and design. For example, the DBA can create a report
that lists all data elements to be used in a particular application; a list of all users who access a particular program; a
report that checks for data redundancies, duplications, and the use of homonyms and synonyms; and a number of
other reports that describe data users, data access, and data structure. The data dictionary can also be used to ensure
that applications programmers have met all of the naming standards for the data elements in the database and that the
data validation rules are correct. Thus, the data dictionary can be used to support a wide range of data administration
activities and to facilitate the design and implementation of information systems. Integrated data dictionaries are also
essential to the use of computer-aided software engineering tools.

15.7.2 CASE Tools

CASE is the acronym for computer-aided systems engineering. A CASE tool provides an automated framework
for the Systems Development Life Cycle (SDLC). CASE uses structured methodologies and powerful graphical
interfaces. Because they automate many tedious system design and implementation activities, CASE tools play an
increasingly important role in information systems development.

CASE tools are usually classified according to the extent of support they provide for the SDLC. For example,
front-end CASE tools provide support for the planning, analysis, and design phases; back-end CASE tools
provide support for the coding and implementation phases. The benefits associated with CASE tools include:

� A reduction in development time and costs.

� Automation of the SDLC.

� Standardization of systems development methodologies.

� Easier maintenance of application systems developed with CASE tools.

One of the CASE tools’ most important components is an extensive data dictionary, which keeps track of all objects
created by the systems designer. For example, the CASE data dictionary stores data flow diagrams, structure charts,
descriptions of all external and internal entities, data stores, data items, report formats, and screen formats. A CASE
data dictionary also describes the relationships among the components of the system.

Several CASE tools provide interfaces that interact with the DBMS. Those interfaces allow the CASE tool to store its
data dictionary information by using the DBMS. Such CASE/DBMS interaction demonstrates the interdependence
that exists between systems development and database development, and it helps create a fully integrated development
environment.

In a CASE development environment, the database and application designers use the CASE tool to store the
description of the database schema, data elements, application processes, screens, reports, and other data relevant to
the development process. The CASE tool integrates all systems development information in a common repository,
which can be checked by the DBA for consistency and accuracy.

635D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

As an additional benefit, a CASE environment tends to improve the extent and quality of communication among the
DBA, the application designers, and the end users. The DBA can interact with the CASE tool to check the definition
of the data schema for the application, the observance of naming conventions, the duplication of data elements, the
validation rules for the data elements, and a host of other developmental and managerial variables. When the CASE
tool indicates conflicts, rule(s) violations, and inconsistencies, it facilitates making corrections. Better yet, a correction
is transported by the CASE tool to cascade its effects throughout the applications environment, thus greatly simplifying
the job of the DBA and the application designer.

A typical CASE tool provides five components:

� Graphics designed to produce structured diagrams such as data flow diagrams, ER diagrams, class diagrams,
and object diagrams.

� Screen painters and report generators to produce the information system’s input/output formats (for example,
the end-user interface).

� An integrated repository for storing and cross-referencing the system design data. This repository includes a
comprehensive data dictionary.

� An analysis segment to provide a fully automated check on system consistency, syntax, and completeness.

� A program documentation generator.

Figure 15.7 illustrates how Microsoft Visio Professional can be used to produce an ER diagram.

Main menu

Modeling options

Completed ERD

FIGURE
15.7

An example of a CASE tool: Visio Professional

636 C H A P T E R 1 5

One CASE tool, ERwin Data Modeler by Computer Associates, produces fully documented ER diagrams that can be
displayed at different abstraction levels. In addition, ERwin can produce detailed relational designs. The user specifies
the attributes and primary keys for each entity and describes the relations. ERwin then assigns foreign keys based on
the specified relationships among the entities. Changes in primary keys are always updated automatically throughout
the system. Table 15.5 shows a short list of the many available CASE tool vendors.

TABLE
15.5

CASE Tools

COMPANY PRODUCT WEB SITE
Casewise Corporate Modeler Suite www.casewise.com
Computer
Associates

ERwin www.ca.com/us/it-management-products.aspx

Embarcadero
Technologies

ER/Studio www.embarcadero.com/products/er_studio

Microsoft Visio office.microsoft.com/en-us/visio
Oracle Designer www.oracle.com/technology/products/designer
IBM System Architect www.telelogic.com/Products/systemarchitect/
Sybase Power Designer www.sybase.com/products/modelingdevelopment/

powerdesigner
Visible Visible Analyst www.visible.com/Products/Analyst

Major relational DBMS vendors, such as Oracle, now provide fully integrated CASE tools for their own DBMS software
as well as for RDBMSs supplied by other vendors. For example, Oracle’s CASE tools can be used with IBM’s DB2,
SQL/DS, and Microsoft’s SQL Server to produce fully documented database designs. Some vendors even take
nonrelational DBMSs, develop their schemas, and produce the equivalent relational designs automatically.

There is no doubt that CASE has enhanced the database designer’s and the application-programmer’s efficiency. But
no matter how sophisticated the CASE tool, its users must be well versed in conceptual design ideas. In the hands of
database novices, CASE tools simply produce impressive-looking but bad designs.

15.8 DEVELOPING A DATA ADMINISTRATION STRATEGY

For a company to succeed, its activities must be committed to its main objectives or mission. Therefore, regardless of
a company’s size, a critical step for any organization is to ensure that its information system supports its strategic plans
for each of its business areas.

The database administration strategy must not conflict with the information systems plans. After all, the information
systems plans are derived from a detailed analysis of the company’s goals, its condition or situation, and its business
needs. Several methodologies are available to ensure the compatibility of data administration and information systems
plans and to guide the strategic plan development. The most commonly used methodology is known as information
engineering.

Information engineering (IE) allows for the translation of the company’s strategic goals into the data and
applications that will help the company achieve those goals. IE focuses on the description of the corporate data instead
of the processes. The IE rationale is simple: business data types tend to remain fairly stable. In contrast, processes
change often and thus require the frequent modification of existing systems. By placing the emphasis on data, IE helps
decrease the impact on systems when processes change.

The output of the IE process is an information systems architecture (ISA) that serves as the basis for planning,
development, and control of future information systems. Figure 15.8 shows the forces that affect ISA development.

637D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

Implementing IE methodologies in an organization is a costly process that involves planning, a commitment of
resources, management liability, well-defined objectives, identification of critical factors, and control. An ISA provides
a framework that includes the use of computerized, automated, and integrated tools such as a DBMS and CASE tools.

The success of the overall information systems strategy, and therefore, of the data administration strategy depends on
several critical success factors. Understanding the critical success factors helps the DBA develop a successful corporate
data administration strategy. Critical success factors include managerial, technological, and corporate culture issues,
such as:

� Management commitment. Top-level management commitment is necessary to enforce the use of standards,
procedures, planning, and controls. The example must be set at the top.

� Thorough company situation analysis. The current situation of the corporate data administration must be
analyzed to understand the company’s position and to have a clear vision of what must be done. For example,
how are database analysis, design, documentation, implementation, standards, codification, and other issues
handled? Needs and problems should be identified first, then prioritized.

� End-user involvement. End-user involvement is another aspect critical to the success of the data administration
strategy. What is the degree of organizational change involved? Successful organizational change requires that
people be able to adapt to the change. Users should be given an open communication channel to upper-level
management to ensure success of the implementation. Good communication is key to the overall process.

� Defined standards. Analysts and programmers must be familiar with appropriate methodologies, procedures,
and standards. If analysts and programmers lack familiarity, they might need to be trained in the use of the
procedures and standards.

� Training. The vendor must train the DBA personnel in the use of the DBMS and other tools. End users must
be trained to use the tools, standards, and procedures to obtain and demonstrate the maximum benefit, thereby
increasing end-user confidence. Key personnel should be trained first so that they can train others.

� A small pilot project. A small project is recommended to ensure that the DBMS will work in the company,
that the output is what was expected, and that the personnel have been trained properly.

Strategic
plan

Information
systems

architecture

Information
engineering

Company
mission

Company
managers

Goals Critical success factors

FIGURE
15.8

Forces affecting the development of the ISA

638 C H A P T E R 1 5

This list of factors is not and cannot be comprehensive. Nevertheless, it does provide the initial framework for the
development of a successful strategy. Remember that no matter how comprehensive the list of success factors is, it
must be based on the notion that development and implementation of a successful data administration strategy are
tightly integrated with the overall information systems planning activity of the organization.

15.9 THE DBA AT WORK: USING ORACLE FOR DATABASE ADMINISTRATION

Thus far, you’ve learned about the DBA’s work environment and responsibilities in general terms. In this section, you
will get a more detailed look at how a DBA might handle the following technical tasks in a specific DBMS:

� Creating and expanding database storage structures.

� Managing database objects such as tables, indexes, triggers, and procedures.

� Managing the end-user database environment, including the type and extent of database access.

� Customizing database initialization parameters.

Many of those tasks require the DBA to use software tools and utilities that are commonly provided by the database
vendor. In fact, all DBMS vendors provide a set of programs to interface with the database and to perform a wide range
of database administrative tasks.

We chose Oracle 11g for Windows to illustrate the selected DBA tasks because it is typically found in organizations that
are sufficiently large and have a sufficiently complex database environment to require (and afford) the use of a DBA,
it has good market presence, and it is also often found in small colleges and universities.

Keep in mind that most of the tasks described in this section are encountered by DBAs regardless of their DBMS or
their operating system. However, the execution of those tasks tends to be specific to the DBMS and the operating
system. Therefore, if you use IBM DB2 Universal Database or Microsoft SQL Server, you must adapt the procedures
shown here to your DBMS. And because these examples run under the Windows operating system, if you use some
other OS, you must adapt the procedures shown in this section to your OS.

This section will not serve as a database administration manual. Instead, it will offer a brief introduction to the way
some typical DBA tasks would be performed in Oracle. Before learning how to use Oracle to accomplish specific
database administration tasks, you should become familiar with the tools Oracle offers for database administration and
with the procedures for logging on, which will be discussed in the next two sections.

Note

AlthoughMicrosoft Access is a superb DBMS, it is typically used in smaller organizations or in organizations and
departments with relatively simple data environments. Access yields a superior database prototyping environ-
ment, and given its easy-to-useGUI tools, rapid front-end application development is a snap. Also, Access is one
of the components in the MS Office suite, thus making end-user applications integration relatively simple and
seamless. Finally, Access does provide some important database administration tools. However, an Access-
based database environment does not typically require the services of a DBA. Therefore, MS Access does not
fit this section’s mission.

Note

Although the general database creation format tends to be generic, its execution tends to be DBMS-specific. For
a step-by-step walk-through of creating a database using the Oracle Database Configuration Assistant, see
Appendix N, Creating a New Database with Oracle 11g.

639D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

15.9.1 Oracle Database Administration Tools

All database vendors supply a set of database administration tools. In Oracle, you perform most DBA tasks via the
Oracle Enterprise Manager interface. (See Figure 15.9.)

In Figure 15.9, note that it shows the status of the current database. (This section uses the GRADORA database.) In
the following sections, you will examine the tasks most commonly encountered by a DBA.

15.9.2 The Default Login

To perform any administrative task, you must connect to the database, using a username with administrative (DBA)
privileges. By default, Oracle automatically creates SYSTEM and SYS user IDs that have administrative privileges with
every new database you create. You can define the preferred credentials for each database by clicking on the
Preferences link at the top of the page, then click on Preferred Credentials. Finally, choose your target
username under Set Credentials. Figure 15.10 shows the Edit Local Preferred Credentials page that defines the
user ID (SYS) used to log on to the GRADORA database.

Keep in mind that usernames and passwords are database-specific. Therefore, each database can have different
usernames and passwords. One of the first things you must do is change the password for the SYSTEM and SYS users.
Immediately after doing that, you can start defining your users and assigning them database privileges.

FIGURE
15.9

The Oracle Enterprise Manager interface

640 C H A P T E R 1 5

15.9.3 Ensuring an Automatic RDBMS Start

One of the basic DBA tasks is to ensure that your database access is automatically started when you turn on the
computer. Startup procedures will be different for each operating system. Because Oracle is used for this section’s
examples, you would need to identify the required services to ensure automatic database startup. (A service is the
Windows system name for a special program that runs automatically as part of the operating system. This program
ensures the availability of required services to the system and to end users on the local computer or over the network.)
Figure 15.11 shows the required Oracle services that are started automatically when Windows starts up.

As you examine Figure 15.11, note the following Oracle services:

� OracleOraDb11g_home1TNSListener is the process that “listens to” and processes the end-user connection
requests over the network. For example, when a SQL connection request, such as “connect userid/
password@GRADORA”, is sent over the network, the listener service will take the request, validate it, and
establish the connection.

FIGURE
15.10

The Oracle Edit Local Preferred Credentials page

FIGURE
15.11

Oracle RDBMS services

641D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

� OracleServiceGRADORA refers to the Oracle processes running in memory that are associated with the
GRADORA database instance. You can think of a database instance as a separate location in memory that
is reserved to run your database. Because you can have several databases (and, therefore, several instances)
running in memory at the same time, you need to identify each database instance uniquely, using a different
suffix for each one.

15.9.4 Creating Tablespaces and Datafiles

Each DBMS manages data storage differently. In this example, the Oracle RDBMS will be used to illustrate how the
database manages data storage at the logical and the physical levels. In Oracle:

A database is logically composed of one or more tablespaces. A tablespace is a logical storage space. Tablespaces
are used primarily to group related data logically.

The tablespace data are physically stored in one or more datafiles. A datafile physically stores the database’s data.
Each datafile is associated with one and only one tablespace, but each datafile can reside in a different directory on the
hard disk or even on one or more different hard disks.

Given the preceding description of tablespaces and datafiles, you can conclude that a database has a one-to-many
relationship with tablespaces and that a tablespace has a one-to-many relationship with datafiles. This set of 1:M
hierarchical relationships isolates the end user from any physical details of the data storage. However, the DBA must
be aware of these details in order to properly manage the database.

To perform database storage management tasks such as creating and managing tablespaces and datafiles, the DBA
uses the Enterprise Manager, Administration, Storage option. (See Figure 15.12.)

FIGURE
15.12

The Oracle Storage Manager

642 C H A P T E R 1 5

When the DBA creates a database, Oracle automatically creates the tablespaces and datafiles shown in Figure 15.12.
A few of them are described here.

� The SYSTEM tablespace is used to store the data dictionary data.

� The USERS tablespace is used to store the table data created by the end users.

� The TEMP tablespace is used to store the temporary tables and indexes created during the execution of SQL
statements. For example, temporary tables are created when your SQL statement contains an ORDER BY,
GROUP BY, or HAVING clause.

� The UNDOTBS1 tablespace is used to store database transaction recovery information. If for any reason a
transaction must be rolled back (usually to preserve database integrity), the UNDOTBS1 tablespace is used to
store the undo information.

Using the Storage Manager, the DBA can:

� Create additional tablespaces to organize the data in the database. Therefore, if you have a database with
several hundred users, you can create several user tablespaces to segment the data storage for different types
of users. For example, you might create a teacher tablespace and a student tablespace.

� Create additional tablespaces to organize the various subsystems that exist within the database. For example,
you might create different tablespaces for human resources data, payroll data, accounting data, and
manufacturing data. Figure 15.13 shows the page used to create a new tablespace called ROBCOR to hold the
tables used in this book. This tablespace will be stored in the datafile named C:\ORACLE\SMORRIS\
ORADATA\GRADORA\ROBCOR.DBF and its initial size is 100 megabytes. Note in Figure 15.13 that the
tablespace will be put online immediately so it is available to users for data storage purposes. Note also the
“Show SQL” button at the top of the page. You can use this button to see the SQL code generated by Oracle
to create the tablespace. (Actually, all DBA tasks can also be accomplished through the direct use of SQL
commands. In fact, some die-hard DBAs prefer writing their own SQL code rather than using the
“easy-way-out” GUI.)

� Expand the tablespace storage capacity by creating additional datafiles. Remember that the datafiles can be stored
in the same directory or on different hard disks to increase access performance. For example, you could increase
storage and access performance to the USERS tablespace by creating a new datafile in a different drive.

15.9.5 Managing the Database Objects: Tables, Views, Triggers, and Procedures

Another important aspect of managing a database is monitoring the database objects that were created in the database.
The Oracle Enterprise Manager gives the DBA a graphical user interface to create, edit, view, and delete database
objects in the database. A database object is basically any object created by end users; for example, tables, views,
indexes, stored procedures, and triggers. Figure 15.14 shows some of the different types of objects listed in the Oracle
Schema Manager.

An Oracle schema is a logical section of the database that belongs to a given user, and that schema is identified by
the username. For example, if the user named SYSTEM creates a VENDOR table, the table will belong to the SYSTEM
schema. Oracle prefixes the table name with the username. Therefore, the SYSTEM’s VENDOR table name will be
named SYSTEM.VENDOR by Oracle. Similarly, if the user PEROB creates a VENDOR table, that table will be created
in the PEROB schema and will be named PEROB.VENDOR.

Within the schema, users can create their own tables and other objects. The database can contain as many different
schemas as there are users. Because users see only their own object(s), each user might gain the impression that there
are no other users of the database.

Normally, users are authorized to access only the objects that belong to their own schemas. Users could, of course,
give other users access to their data by changing access rights. In fact, all users with DBA authorization have access
to all objects in all schemas in the database.

643D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

As you can see in Figure 15.14, the Schema Manager presents an organized view of all of the objects in the database
schema. With this program, the DBA can create, edit, view, and delete tables, indexes, views, functions, triggers,
procedures, and other specialized objects.

15.9.6 Managing Users and Establishing Security

One of the most common database administration activities is creating and managing database users. (Actually, the
creation of user IDs is just the first component of any well-planned database security function. As was indicated earlier
in this chapter, database security is one of the most important database administration tasks.)

The Security section of the Oracle Enterprise Manager’s Administration page enables the DBA to create users, roles,
and profiles.

� A user is a uniquely identifiable object that allows a given person to log on to the database. The DBA assigns
privileges for accessing the objects in the database. Within the privilege assignment, the DBA may specify a
set of limits that define how many of the database’s resources the user can use.

� A role is a named collection of database access privileges that authorize a user to connect to the database and
use the database system resources. Examples of roles are as follows:

- CONNECT allows a user to connect to the database and create and modify tables, views, and other
data-related objects.

- RESOURCE allows a user to create triggers, procedures, and other data management objects.

- DBA gives the user database administration privileges.

FIGURE
15.13

Creating a new tablespace

644 C H A P T E R 1 5

� A profile is a named collection of settings that control how much of the database resource a given user can
use. (If you consider the possibility that a runaway query could cause the database to lock up or to stop
responding to the user’s commands, you’ll understand why it is important to limit access to the database
resource.) By specifying profiles, the DBA can limit how much storage space a user can use, how long a user
can be connected, how much idle time may be used before the user is disconnected, and so on. In an ideal
world, all users would have unlimited access to all resources at all times, but in the real world, such access is
neither possible nor desirable.

Figure 15.15 shows the Oracle Enterprise Manager Server page. From here, the DBA can manage the database and
create security objects (users, roles, and profiles).

To create a new user, the DBA uses the Create User page, shown in Figure 15.16.

The Create User page contains many links; the most important ones are as follows:

� The General link allows the DBA to assign the name, profile, and password to the new user. Also in this
page, the DBA defines the default tablespace used to store table data and the temporary tablespace for
temporary data.

� The Roles link allows the DBA to assign the roles for a user.

� The Object Privileges link is used by the DBA to assign specific access rights to other database objects.

� The Quotas link allows the DBA to specify the maximum amount of storage that the user can have in each
assigned tablespace.

FIGURE
15.14

The Oracle Schema Manager

645D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

FIGURE
15.15

The Oracle Enterprise Manager Administration page

FIGURE
15.16

The Create User page

646 C H A P T E R 1 5

15.9.7 Customizing the Database Initialization Parameters

Fine-tuning a database is another important DBA task. This task usually requires the modification of database
configuration parameters, some of which can be changed in real time, using SQL commands. Others require the
database to be shut down and restarted. Also, some parameters may affect only the database instance, while others
affect the entire RDBMS and all instances running. So it is very important that the DBA become familiar with database
configuration parameters, especially those that affect performance.

Each database has an associated database initialization file that stores its run-time configuration parameters. The
initialization file is read at instance startup and is used to set the working environment for the database. Oracle’s
Enterprise Manager allows the DBA to start up, shut down, and view/edit the database configuration parameters
(stored in the initialization file) of a database instance. The Oracle Enterprise Manager interface provides a GUI to
modify that text file, shown in Figure 15.17.

One of the important functions provided by the initialization parameters is to reserve the resources that must be used
by the database at run time. One of those resources is the primary memory to be reserved for database caching. Such
caching is used to fine-tune database performance. For example, the “db_cache_size” parameter sets the amount of
memory reserved for database caching. This parameter should be set to a value that is large enough to support all
concurrent transactions.

Once you modify the initialization parameters, you may be required to restart the database. As you have seen in this
brief section, the DBA is responsible for a wide range of tasks. The quality and completeness of the administration tools
available to the DBA go a long way toward making the DBA job easier. Even so, the DBA must become familiar with
the tools and technical details of the RDBMS to perform the DBA tasks properly and efficiently.

FIGURE
15.17

The Oracle Enterprise Manager – Initialization Parameters page

647D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

S u m m a r y

◗ Data management is a critical activity for any organization. Data must be treated as a corporate asset. The value
of a data set is measured by the utility of the information derived from it. Good data management is likely to
produce good information, which is the basis for better decision making.

◗ Data quality is a comprehensive approach to ensuring the accuracy, validity, and timeliness of the data. Data quality
is concerned with cleaning dirty data, preventing future inaccuracies in the data, and building user confidence in
the data.

◗ The DBMS is the most commonly used electronic tool for corporate data management. The DBMS supports
strategic, tactical, and operational decision making at all levels of the organization. The company data that are
managed by the DBMS are stored in the corporate or enterprise database.

◗ The introduction of a DBMS into an organization is a very delicate job. In addition to managing the technical details
of DBMS introduction, the impact of the DBMS on the organization’s managerial and cultural framework must be
carefully examined.

◗ Development of the data administration function is based on the evolution from departmental data processing to
the more centralized electronic data processing (EDP) department to the more formal “data as a corporate asset”
information systems (IS) department. Typical file systems were characterized by applications that tended to behave
as distinct “islands of information.” As applications began to share a common data repository, the need for
centralized data management to control such data became clear.

◗ The database administrator (DBA) is responsible for managing the corporate database. The internal organization
of the database administration function varies from company to company. Although no standard exists, it is
common practice to divide DBA operations according to the Database Life Cycle phases. Some companies have
created a position with a broader data management mandate to manage computerized and other data within the
organization. This broader data management activity is handled by the data administrator (DA).

◗ The DA and the DBA functions tend to overlap. Generally speaking, the DA is more managerially oriented than
the more technically oriented DBA. Compared to the DBA function, the DA function is DBMS-independent, with
a broader and longer-term focus. However, when the organization chart does not include a DA position, the DBA
executes all of the DA’s functions. Because the DBA has both technical and managerial responsibilities, the DBA
must have a diverse mix of skills.

◗ The managerial services of the DBA function include at least: supporting the end-user community; defining and
enforcing policies, procedures, and standards for the database function; ensuring data security, privacy, and integrity;
providing data backup and recovery services; and monitoring the distribution and use of the data in the database.

◗ The technical role requires the DBA to be involved in at least these activities: evaluating, selecting, and installing
the DBMS; designing and implementing databases and applications; testing and evaluating databases and
applications; operating the DBMS, utilities, and applications; training and supporting users; and maintaining the
DBMS, utilities, and applications.

◗ Security refers to activities and measures to ensure the confidentiality, integrity, and availability of an information
system and its main asset, data. A security policy is a collection of standards, policies, and practices created to
guarantee the security of a system and ensure auditing and compliance.

◗ A security vulnerability is weakness in a system component that could be exploited to allow unauthorized access or
service disruption. A security threat is an imminent security violation caused by an unchecked security vulnerability.
Security vulnerabilities exist in all components of an information system: people, hardware, software, network,
procedures, and data. Therefore, it is critical to have robust database security. Database security refers to the use
of DBMS features and related measures to comply with the security requirements of the organization.

648 C H A P T E R 1 5

◗ The development of the data administration strategy is closely related to the company’s mission and objectives.
Therefore, the development of an organization’s strategic plan corresponds to that of data administration, requiring
a detailed analysis of company goals, situation, and business needs. To guide the development of this overall plan,
an integrating methodology is required. The most commonly used integrating methodology is known as
information engineering (IE).

◗ To help translate strategic plans into operational plans, the DBA has access to an arsenal of database administration
tools. These tools include the data dictionary and computer-aided software engineering (CASE) tools.

K e y T e r m s

access plan, 625

active data dictionary, 633

audit log, 632

authorization management, 632

availability, 629

back-end CASE tools, 635

CASE (computer-aided systems
engineering), 635

compliance, 629

confidentiality, 629

concurrent backup, 622

data administrator (DA), 615

data profiling software, 610

data quality, 615

database administrator (DBA), 613

database dump, 622

database instance (Oracle), 642

database object (Oracle), 643

database security, 631

database security officer (DSO), 621

datafile (Oracle), 642

dirty data, 610

disaster management, 622

enterprise database, 611

front-end CASE tools, 635

full backup (database dump), 622

incremental backup, 622

information engineering (IE), 637

information resource
dictionary, 634

information resource manager
(IRM), 616

information systems architecture
(ISA), 637

information systems (IS)
department, 613

integrity, 629

master data management (MDM)
software, 610

passive data dictionary, 633

policies, 620

privacy, 611

procedures, 620

profile (Oracle), 645

role (Oracle), 644

schema (Oracle), 643

security, 611

security breach, 630

security policy, 630

security threat, 630

security vulnerability, 630

standards, 620

systems administrator, 615

tablespace (Oracle), 642

user (Oracle), 644

R e v i e w Q u e s t i o n s

1. Explain the difference between data and information. Give some examples of raw data and information.

2. Define dirty data and identify some of its sources.

3. What is data quality, and why is it important?

4. Explain the interactions among end user, data, information, and decision making. Draw a diagram and explain
the interactions.

5. Suppose that you are a DBA staff member. What data dimensions would you describe to top-level managers to
obtain their support for the data administration function?

O n l i n e C o n t e n t

Answers to selected Review Questions for this chapter are contained in the Premium Website for this book.

649D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

6. How and why did database management systems become the organizational data management standard? Discuss
some advantages of the database approach over the file-system approach.

7. Using a single sentence, explain the role of databases in organizations. Then explain your answer.

8. Define security and privacy. How are those two concepts related?

9. Describe and contrast the information needs at the strategic, tactical, and operational levels in an organization.
Use examples to explain your answer.

10. What special considerations must you take into account when contemplating the introduction of a DBMS into an
organization?

11. Describe the DBA’s responsibilities.

12. How can the DBA function be placed within the organization chart? What effect(s) will that placement have on
the DBA function?

13. Why and how are new technological advances in computers and databases changing the DBA’s role?

14. Explain the DBA department’s internal organization, based on the DBLC approach.

15. Explain and contrast the differences and similarities between the DBA and DA.

16. Explain how the DBA plays an arbitration role between an organization’s two main assets. Draw a diagram to
facilitate your explanation.

17. Describe and characterize the skills desired for a DBA.

18. What are the DBA’s managerial roles? Describe the managerial activities and services provided by the DBA.

19. What DBA activities are used to support the end-user community?

20. Explain the DBA’s managerial role in the definition and enforcement of policies, procedures, and standards.

21. Protecting data security, privacy, and integrity are important database functions. What activities are required in
the DBA’s managerial role of enforcing those functions?

22. Discuss the importance and characteristics of database backup and recovery procedures. Then describe the
actions that must be detailed in backup and recovery plans.

23. Assume that your company has assigned you the responsibility of selecting the corporate DBMS. Develop a
checklist for the technical and other aspects involved in the selection process.

24. Describe the activities that are typically associated with the design and implementation services of the DBA
technical function. What technical skills are desirable in the DBA’s personnel?

25. Why are testing and evaluation of the database and applications not done by the same people who are
responsible for design and implementation? What minimum standards must be met during the testing and
evaluation process?

26. Identify some bottlenecks in DBMS performance. Then propose some solutions used in DBMS performance
tuning.

27. What are typical activities involved in the maintenance of the DBMS, utilities, and applications? Would you
consider application performance tuning to be part of the maintenance activities? Explain your answer.

28. How do you normally define security? How is your definition of security similar to or different from the definition
of database security in this chapter?

29. What are the levels of data confidentiality?

30. What are security vulnerabilities? What is a security threat? Give some examples of security vulnerabilities that
exist in different IS components.

31. Define the concept of a data dictionary. Discuss the different types of data dictionaries. If you were to manage
an organization’s entire data set, what characteristics would you look for in the data dictionary?

650 C H A P T E R 1 5

32. Using SQL statements, give some examples of how you would use the data dictionary to monitor the security of
the database.

33. What characteristics do a CASE tool and a DBMS have in common? How can those characteristics be used to
enhance the data administration function?

34. Briefly explain the concepts of information engineering (IE) and information systems architecture (ISA). How do
those concepts affect the data administration strategy?

35. Identify and explain some of the critical success factors in the development and implementation of a successful
data administration strategy.

36. What is the tool used by Oracle to create users?

37. In Oracle, what is a tablespace?

38. In Oracle, what is a database role?

39. In Oracle, what is a datafile? How does it differ from a file systems file?

40. In Oracle, what is a database profile?

41. In Oracle, what is a database schema?

42. In Oracle, what role is required to create triggers and procedures?

Note

If you use IBM DB2, the names of the main tables are SYSTABLES, SYSCOLUMNS, and SYSTABAUTH.

651D A T A B A S E A D M I N I S T R A T I O N A N D S E C U R I T Y

This page intentionally left blank

A

access plan—A set of instructions, generated at application
compilation time, that is created and managed by a DBMS.
The access plan predetermines the way an application’s
query will access the database at run time.

active data dictionary—A data dictionary that is
automatically updated by the database management system
every time the database is accessed, thereby keeping its
information current. See also data dictionary.

ActiveX—Microsoft’s alternative to Java. A specification for
writing programs that will run inside the Microsoft client
browser (Internet Explorer). Oriented mainly to Windows
applications, it is not portable. It adds “controls” such as
drop-down windows and calendars to Web pages.

ActiveX Data Objects (ADO)—A Microsoft object
framework that provides a high-level application-oriented
interface to interact with OLE-DB, DAO, and RDO. ADO
provides a unified interface to access data from any
programming language that uses the underlying OLE-DB
objects.

ad hoc query—A “spur-of-the-moment” question.

ADO.NET—The data access component of Microsoft’s .NET
application development framework. The Microsoft .NET
framework is a component-based platform for developing
distributed, heterogeneous, and interoperable applications
aimed at manipulating any type of data over any network
under any operating system and programming language.

alias—An alternative name given to a column or table in any
SQL statement.

ALTER TABLE—The SQL command used to make changes
to table structure. Followed by a keyword (ADD or
MODIFY), it adds a column or changes column
characteristics.

American National Standards Institute (ANSI)—The group
that accepted the DBTG recommendations and augmented
database standards in 1975 through its SPARC committee.

AND—The SQL logical operator used to link multiple
conditional expressions in a WHERE or HAVING clause. It
requires that all conditional expressions evaluate to true.

anonymous PL/SQL block—A PL/SQL block that has not
been given a specific name.

application processor—See transaction processor (TP).

application programming interface (API)—Software
through which programmers interact with middleware.
Allows the use of generic SQL code, thereby allowing client
processes to be database server-independent.

associative entity—See composite entity.

atomic attribute—An attribute that cannot be further
subdivided to produce meaningful components. For
example, a person’s last name attribute cannot be
meaningfully subdivided into other name components;
therefore, the last name attribute is atomic.

atomic transaction property—A property of transactions
that states that all parts of a transaction must be treated as a
single logical unit of work in which all operations must be
completed (committed) to produce a consistent database.

atomicity—See atomic transaction property.

attribute—A characteristic of an entity or object. An attribute
has a name and a data type.

attribute domain—See domain.

attribute hierarchy—Provides a top-down data organization
that is used for two main purposes: aggregation and drill-
down/roll-up data analysis.

audit log—A database management system security feature
that automatically records a brief description of the database
operations performed by all users.

authentication—The process through which a DBMS verifies
that only registered users are able to access the database.

authorization management—Defines procedures to protect
and guarantee database security and integrity. Such
procedures include: user access management, view
definition, DBMS access control, and DBMS usage
monitoring.

automatic query optimization—A method by which a
DBMS takes care of finding the most efficient access path
for the execution of a query.

AVG—A SQL aggregate function that outputs the mean
average for the specified column or expression.

B

b-tree index—An ordered data structure organized as an
upside down tree.

back-end CASE tools—A computer-aided software tool that
has been classified as “back end” because it provides
support for the coding and implementation phases of the
SDLC. In comparison, front-end case tools provide support
for the planning, analysis, and design phases.

base table—The table on which a view is based.

batch update routine—A routine that pools transactions into
a single “batch” to update a master table in a single
operation.

BETWEEN—In SQL, a special comparison operator used to
check whether a value is within a range of specified values.

binary lock—A lock that has only two states: locked (1) and
unlocked (0). If a data item is locked by a transaction, no
other transaction can use that data item. See also lock.

binary relationship—An ER term used to describe an
association (relationship) between two entities. Example:
PROFESSOR teaches COURSE.

bitmap index—An index that uses a bit array (0s and 1s) to
represent the existence of a value or condition.

Boolean algebra—A branch of mathematics that deals with
the use of the logical operators OR, AND, and NOT.

GLOSSARY

653

bottom-up design—A design philosophy that begins by
identifying individual design components and then
aggregates those components into larger units. In database
design, it is a process that begins by defining attributes and
then groups those attributes into entities. Compare to top-
down design.

boundaries—The external limits to which any proposed
system is subjected. These include budget, personnel, and
existing hardware and software.

Boyce-Codd normal form (BCNF)—A special form of third
normal form (3NF) in which every determinant is a
candidate key. A table that is in BCNF must be in 3NF. See
also determinant.

bridge entity—See composite entity.

buffer—See buffer cache.

buffer cache—A shared, reserved memory area that stores
the most recently accessed data blocks in RAM. Also called
data cache. Used to take advantage of a computer’s fast
primary memory compared to the slower secondary
memory, thereby minimizing the number of input/output
(I/O) operations between the primary and secondary
memories. Also called data cache.

business intelligence (BI)—A comprehensive, cohesive, and
integrated set of tools and processes used to capture, collect,
integrate, store, and analyze data with the purpose of
generating and presenting information used to support
business decision making.

business rule—Narrative descriptions of a policy, procedure,
or principle within an organization. Examples: A pilot
cannot be on duty for more than 10 hours during a 24-hour
period. A professor may teach up to four classes during any
one semester.

C

Call Level Interface (CLI)—A standard developed by the
SQL Access Group for database access.

candidate key—See key.

cardinality—Assigns a specific value to connectivity.
Expresses the range (minimum to maximum) of allowed
entity occurrences associated with a single occurrence of the
related entity.

cascading order sequence—Refers to a nested ordering
sequence for a set of rows. For example, a list in which all
last names are alphabetically ordered and, within the last
names, all first names are ordered represents a cascading
sequence.

CASE—See computer-assisted software engineering
(CASE).

centralized data allocation—A data allocation strategy by
which the entire database is stored at one site. Also known
as a centralized database.

centralized database—A database located at a single site.

centralized design—A process in which a single conceptual
design is modeled to match an organization’s database
requirements. Typically used when a data component
consists of a relatively small number of objects and
procedures. Compare to decentralized design.

checkpoint—In transaction management, an operation in
which the database management system writes all of its
updated buffers to disk.

Chen notation—See entity relationship (ER) model.

class—A collection of like objects with shared structure
(attributes) and behavior (methods). A class encapsulates an
object’s data representation and a method’s implementation.
Classes are organized in a class hierarchy.

class diagram—Used to represent data and their
relationships in UML object modeling system notation.

class hierarchy—The organization of classes in a hierarchical
tree where each “parent” class is a superclass and each
“child” class is a subclass. See also inheritance.

client/server architecture—Refers to the arrangement of
hardware and software components to form a system
composed of clients, servers, and middleware. The
client/server architecture features a user of resources, or a
client, and a provider of resources, or a server.

client-side extensions—These extensions add functionality to
a Web browser. Although available in various forms, the
most commonly encountered extensions are plug-ins, Java,
JavaScript, ActiveX, and VBScript.

closure—A property of relational operators that permits the
use of relational algebra operators on existing tables
(relations) to produce new relations.

cluster-indexed table—See index organized table.

cluster organized table—See index organized table.

clustered table—A storage technique that stores related rows
from two related tables in adjacent data blocks on disk.

cohesivity—The strength of the relationships between a
module’s components. Module cohesivity must be high.

COMMIT—The SQL command that permanently saves data
changes to a database.

Common Gateway Interface (CGI)—A Web server interface
standard that uses script files to perform specific functions
based on a client’s parameters.

completeness constraint—A constraint that specifies
whether each entity supertype occurrence must also be a
member of at least one subtype. The completeness
constraint can be partial or total. Partial completeness
means that not every supertype occurrence is a member of
a subtype; that is, there may be some supertype occurrences
that are not members of any subtype. Total completeness
means that every supertype occurrence must be a member
of at least one subtype.

GLOSSARY

654

composite attribute—An attribute that can be further
subdivided to yield additional attributes. For example, a
phone number (615-898-2368) may be divided into an area
code (615), an exchange number (898), and a four-digit
code (2368). Compare to simple attribute.

composite entity—An entity designed to transform an M:N
relationship into two 1:M relationships. The composite
entity’s primary key comprises at least the primary keys of
the entities that it connects. Also known as a bridge entity.
See also linking table.

composite identifier—In ER modeling, a key composed of
more than one attribute.

composite key—A multiple-attribute key.

computer-assisted software engineering (CASE)—Tools
used to automate part or all of the Systems Development
Life Cycle.

conceptual design—A process that uses data-modeling
techniques to create a model of a database structure that
represents the real-world objects in the most realistic way
possible. Both software- and hardware-independent.

conceptual model—The output of the conceptual design
process. The conceptual model provides a global view of an
entire database. Describes the main data objects, avoiding
details.

conceptual schema—A representation of the conceptual
model, usually expressed graphically. See also conceptual
model.

concurrency control—A DBMS feature that is used to
coordinate the simultaneous execution of transactions in a
multiprocessing database system while preserving data
integrity.

concurrent backup—A backup that takes place while one or
more users are working on a database.

Conference on Data Systems Languages (CODASYL)—A
group originally formed to help standardize COBOL; its
DBTG subgroup helped to develop database standards in
the early 1970s.

connectivity—Describes the classification of the relationship
between entities. Classifications include 1:1, 1:M, and M:N.

consistency—A database condition in which all data integrity
constraints are satisfied. To ensure consistency of a
database, every transaction must begin with the database in
a known consistent state. If the database is not in a
consistent state, the transaction will yield an inconsistent
database that violates its integrity and business rules.

consistent database state—A database state in which all
data integrity constraints are satisfied.

constraint—A restriction placed on data. Constraints are
normally expressed in the form of rules. Example: “A
student’s GPA must be between 0.00 and 4.00.” Con-
straints are important because they help to ensure data
integrity.

coordinator—The transaction processor (TP) node that
coordinates the execution of a two-phase COMMIT in a
DDBMS. See also data processor (DP), transaction
processor (TP), and two-phase commit protocol.

correlated subquery—A subquery that executes once for
each row in the outer query.

cost-based optimizer—A query optimizer technique that uses
an algorithm based on statistics about the objects being
accessed, that is, number of rows, indexes available, indexes
sparsity, and so on.

COUNT—A SQL aggregate function that outputs the number
of rows containing not null values for a given column or
expression, sometimes used in conjunction with the
DISTINCT clause.

CREATE INDEX—A SQL command that creates indexes on
the basis of any selected attribute or attributes.

CREATE TABLE—A SQL command used to create a table’s
structures, using the characteristics and attributes given.

CREATE VIEW—A SQL command that creates a logical,
“virtual” table based on stored end-user tables. The view can
be treated as a real table.

cross join—A join that performs a relational product (also
known as the Cartesian product) of two tables.

Crow’s Foot notation—A representation of the entity
relationship diagram using a three-pronged symbol to
represent the “many” sides of the relationship.

cube cache—In multidimensional OLAP, refers to the shared,
reserved memory area where data cubes are held. Using the
cube cache assists in speeding up data access.

cursor—A special construct used in procedural SQL to hold
the data rows returned by a SQL query. A cursor may be
thought of as a reserved area of memory in which the
output of the query is stored, like an array holding columns
and rows. Cursors are held in a reserved memory area in
the DBMS server, not in the client computer.

D

dashboard—In business intelligence, refers to a Web-based
system that presents key business performance indicators or
information in a single, integrated view. Generally uses
graphics in a clear, concise, and easily understood manner.

data—Raw facts, that is, facts that have not yet been
processed to reveal their meaning to the end user.

Data Access Objects (DAO)—An object-oriented API
(application programming interface) used to access MS
Access, MS FoxPro, and dBase databases (using the Jet data
engine) from Visual Basic programs. DAO provides an
optimized interface that exposes the functionality of the Jet
data engine (on which MS Access database is based) to
programmers. The DAO interface can also be used to
access other relational style data sources.

GLOSSARY

655

data administrator (DA)—The person responsible for
managing the entire data resource, whether computerized or
not. The DA has broader authority and responsibility than
the database administrator (DBA). Also known as an
information resource manager (IRM).

data allocation—In a distributed DBMS, describes the
process of deciding where to locate data fragments.

data anomaly—A data abnormality that exists when
inconsistent changes to a database have been made. For
example, an employee moves, but the address change is
corrected in only one file and not across all files in the
database.

data cache—A shared, reserved memory area that stores the
most recently accessed data blocks in RAM. Also called
buffer cache.

data cube—Refers to the multidimensional data structure
used to store and manipulate data in a multidimensional
DBMS. The location of each data value in the data cube is
based on the x-, y-, and z-axes of the cube. Data cubes are
static (must be created before they are used), so they cannot
be created by an ad hoc query.

data definition language (DDL)—The language that allows a
database administrator to define the database structure,
schema, and subschema.

data dependence—A data condition in which the data
representation and manipulation are dependent on the
physical data storage characteristics.

data dictionary—A DBMS component that stores
metadata—data about data. Thus, the data dictionary
contains the data definition as well as its characteristics and
relationships. A data dictionary may also include data that
are external to the DBMS. Also known as an information
resource dictionary. See also active data dictionary,
metadata, and passive data dictionary.

Data Encryption Standard (DES)—The most widely used
standard for private-key encryption. DES is used by the U.S.
government.

data extraction—A process used to extract and validate data
taken from an operational database and external data
sources prior to their placement in a data warehouse.

data files—A named physical storage space that stores a
database’s data. It can reside in a different directory on a
hard disk or on one or more different hard disks. All data in
a database are stored in data files. A typical enterprise
database is normally composed of several data files. A data
file can contain rows from one table, or it can contain rows
from many different tables.

data filtering—See data extraction.

data fragmentation—A characteristic of a DDBMS that
allows a single object to be broken into two or more
segments or fragments. The object might be a user’s
database, a system database, or a table. Each fragment can
be stored at any site over a computer network.

data inconsistency—A condition in which different versions
of the same data yield different (inconsistent) results.

data independence—A condition that exists when data
access is unaffected by changes in the physical data storage
characteristics.

data integrity—In a relational database, refers to a condition
in which the data in the database is in compliance with all
entity and referential integrity constraints.

data management—A process that focuses on data
collection, storage, and retrieval. Common data
management functions include addition, deletion,
modification, and listing.

data manager (DM)—See data processing (DP) manager.

data manipulation language (DML)—The language (set of
commands) that allows an end user to manipulate the data
in the database (SELECT, INSERT, UPDATE, DELETE,
COMMIT, and ROLLBACK).

data mart—A small, single-subject data warehouse subset that
provides decision support to a small group of people.

data mining—A process that employs automated tools to
analyze data in a data warehouse and other sources and to
proactively identify possible relationships and anomalies.

data model—A representation, usually graphic, of a complex
“real-world” data structure. Data models are used in the
database design phase of the database life cycle.

data processing (DP) manager—A DP specialist who
evolved into a department supervisor. Roles include
managing the technical and human resources, supervising
the senior programmers, and troubleshooting the program.
Also known as a data manager (DM).

data processor (DP)—The software component residing on a
computer that stores and retrieves data through a DDBMS.
The DP is responsible for managing the local data in the
computer and coordinating access to that data. See also
transaction processor (TP).

data profiling software—Programs that analyze data and
metadata to determine data patterns that can be used to
help assess data quality.

data quality—A comprehensive approach to ensuring the
accuracy, validity, and timeliness of data.

data redundancy—A condition that exists when a data
environment contains redundant (unnecessarily
duplicated) data.

data replication—The storage of duplicated database
fragments at multiple sites on a DDBMS. Duplication of the
fragments is transparent to the end user. Used to provide
fault tolerance and performance enhancements.

data source name (DSN)—Identifies and defines an ODBC
data source.

data sparsity—A column distribution of values or the number
of different values a column could have.

GLOSSARY

656

data store—The component of the decision support system
that acts as a database for storage of business data and
business model data. The data in the data store has already
been extracted and filtered from the external and
operational data and will be stored for access by the end-
user query tool for the business data model.

data warehouse—Bill Inmon, the acknowledged “father of
the data warehouse,” defines the term as “an integrated,
subject-oriented, time-variant, nonvolatile collection of data
that provides support for decision making.”

database—A shared, integrated computer structure that
houses a collection of related data. A database contains two
types of data: end-user data (raw facts) and metadata. The
metadata consist of data about data, that is, the data
characteristics and relationships.

database administrator (DBA)—The person responsible for
planning, organizing, controlling, and monitoring the
centralized and shared corporate database. The DBA is the
general manager of the database administration department.

database design—The process that yields the description of
the database structure. The database design process
determines the database components. Database design is
the second phase of the Database Life Cycle.

database development—A term used to describe the process
of database design and implementation.

database dump—See full backup.

database fragment—A subset of a distributed database.
Although the fragments may be stored at different sites
within a computer network, the set of all fragments is
treated as a single database. See also horizontal
fragmentation and vertical fragmentation.

database instance—In an Oracle DBMS, refers to the
collection of processes and data structures used to manage a
specific database.

database-level lock—A type of lock that restricts database
access to only the owner of the lock. It allows only one user
at a time to access the database. Successful for batch
processes but unsuitable for online multiuser DBMSs.

Database Life Cycle (DBLC)—Traces the history of a database
within an information system. Divided into six phases: initial
study, design, implementation and loading, testing and
evaluation, operation and maintenance, and evolution.

database management system (DBMS)—Refers to the
collection of programs that manages the database structure
and controls access to the data stored in the database.

database middleware—Database connectivity software
through which application programs connect and
communicate with data repositories.

database object—Any object in a database, such as a table, a
view, an index, a stored procedure, or a trigger.

database performance tuning—A set of activities and
procedures designed to reduce the response time of a

database system, that is, to ensure that an end-user query is
processed by the DBMS in the minimum amount of time.

database recovery—The process of restoring a database to a
previous consistent state.

database request—The equivalent of a single SQL statement
in an application program or a transaction.

database role—A set of database privileges that could be
assigned as a unit to a user or group.

database security—The use of DBMS features and other
related measures to comply with the security requirements
of an organization.

database security officer (DSO)—Person responsible for the
security, integrity, backup, and recovery of the database.

database statistics—In query optimization, refers to
measurements about database objects, such as the number
of rows in a table, number of disk blocks used, maximum
and average row length, number of columns in each row,
number of distinct values in each column, etc. Such statistics
give a snapshot of database characteristics.

database system—An organization of components that
defines and regulates the collection, storage, management,
and use of data in a database environment.

database task group (DBTG)—A CODASYL committee
that helped develop database standards in the early 1970s.
See also Conference on Data Systems Languages
(CODASYL).

datafile—See data files.

DataSet—In ADO.NET, refers to a disconnected memory-
resident representation of the database. That is, the DataSet
contains tables, columns, rows, relationships, and
constraints.

DBMS performance tuning—Refers to the activities required
to ensure that clients’ requests are responded to in the
fastest way possible, while making optimum use of existing
resources.

deadlock—A condition that exists when two or more
transactions wait indefinitely for each other to release the
lock on a previously locked data item. Also called deadly
embrace. See also lock.

deadly embrace—See deadlock.

decentralized design—A process in which conceptual design
is used to model subsets of an organization’s database
requirements. After verification of the views, processes, and
constraints, the subsets are then aggregated into a complete
design. Such modular designs are typical of complex
systems in which the data component consists of a relatively
large number of objects and procedures. Compare to
centralized design.

decision support system (DSS)—An arrangement of
computerized tools used to assist managerial decision
making within a business.

GLOSSARY

657

deferred update—In transaction management, refers to a
condition in which transaction operations do not
immediately update a physical database. Also called
deferred write technique.

deferred write technique—See deferred update.

DELETE—A SQL command that allows specific data rows to
be deleted from a table.

denormalization—A process by which a table is changed
from a higher level normal form to a lower level normal
form. Usually done to increase processing speed. Potentially
yields data anomalies.

dependency diagram—A representation of all data
dependencies (primary key, partial, or transitive) within a
table.

derived attribute—An attribute that does not physically exist
within the entity and is derived via an algorithm. Example:
Age = current date – birth date.

description of operations—A document that provides a
precise, detailed, up-to-date, and thoroughly reviewed
description of the activities that define an organization’s
operating environment.

design trap—Occurs when a relationship is improperly or
incompletely identified and, therefore, is represented in a
way that is not consistent with the real world. The most
common design trap is known as a fan trap.

desktop database—A single-user database that runs on a
personal computer.

determinant—Any attribute in a specific row whose value
directly determines other values in that row. See also Boyce-
Codd normal form (BCNF).

determination—The role of a key. In the context of a
database table, the statement “A determines B” indicates
that knowing the value of attribute A means that (determine)
the value of attribute B can be looked up (determined).

differential backup—A level of database backup in which
only the last modifications to the database (when compared
with a previous full backup copy) are copied.

dimension tables—In a data warehouse, used to search,
filter, or classify facts within a star schema. The fact table is
in a one-to-many relationship with dimension tables.

dimensions—In a star schema design, refers to qualifying
characteristics that provide additional perspectives to a
given fact.

dirty data—Data that contain inaccuracies and/or
inconsistencies.

disaster management—The set of DBA activities dedicated
to securing data availability following a physical disaster or a
database integrity failure.

disjoint subtype (nonoverlapping subtype)—In a
specialization hierarchy, refers to a unique and
nonoverlapping subtype entity set.

diskpage—In permanent storage, the equivalent of a disk
block, which can be describe as a directly addressable
section of a disk. A diskpage has a fixed size, such as 4K,
8K, or 16K.

DISTINCT—A SQL clause designed to produce a list of only
those values that are different from one another.

distributed data catalog (DDC)—A data dictionary that
contains the description (fragment names, locations) of a
distributed database. Also known as a distributed data
dictionary (DDD).

distributed data dictionary (DDD)—See distributed data
catalog.

distributed database—A logically related database that is
stored over two or more physically independent sites.

distributed database management system (DDBMS)—A
DBMS that supports a database distributed across several
different sites; governs the storage and processing of
logically related data over interconnected computer systems
in which both data and processing functions are distributed
among several sites.

distributed global schema—The database schema
description of a distributed database as seen by the database
administrator.

distributed processing—The activity of sharing (dividing) the
logical processing of a database over two or more sites
connected by a network.

distributed request—A database request that allows a single
SQL statement to access data in several remote data
processors (DPs) in a distributed database.

distributed transaction—A database transaction that
accesses data in several remote data processors (DPs) in a
distributed database.

distribution transparency—A DDBMS feature that allows a
distributed database to appear to the end user as though it
were a single logical database.

document type definition (DTD)—A file with a .dtd filename
extension that describes XML elements; in effect, a DTD file
provides the description of a document’s composition and
defines the syntax rules or valid tags for each type of XML
document.

domain—In data modeling, refers to the construct used to
organize and describe an attribute’s set of possible values.

DO-UNDO-REDO protocol—Used by a data processor (DP)
to roll back and/or roll forward transactions with the help of
a system’s transaction log entries.

drill down—To decompose data into more atomic
components, that is, data at lower levels of aggregation.
Used primarily in a decision support system to focus on
specific geographic areas, business types, and so on. See
also roll up.

DROP—A SQL command used to delete database objects
such as tables, views, indexes, and users.

GLOSSARY

658

durability—The transaction property indicating the
permanence of a database’s consistent state. Transactions
that have been completed will not be lost in the event of a
system failure if the database has proper durability.

dynamic query optimization—Refers to the process of
determining the SQL access strategy at run time, using the
most up-to-date information about the database. Contrast
with static query optimization.

dynamic SQL—A term used to describe an environment in
which the SQL statement is not known in advance, but
instead is generated at run time. In a dynamic SQL
environment, a program can generate the SQL statements
at run time that are required to respond to ad hoc queries.

dynamic statistical generation mode—In a DBMS, the
capability to automatically evaluate and update the database
access statistics after each data access.

dynamic-link libraries (DLLs)—Shared code modules that
are treated as part of the operating system or server process
so that they can be dynamically invoked at run time.

E

EER diagram (EERD)—Refers to the entity relationship
diagram resulting from the application of extended entity
relationship concepts that provide additional semantic
content in the ER model.

embedded SQL—A term used to refer to SQL statements
that are contained within an application programming
language such as COBOL, C++, ASP, Java, and
ColdFusion.

end-user presentation tool—Used by a data analyst to
organize and present selected data compiled by the end-user
query tool.

end-user query tool—Used by a data analyst to create the
queries that access the specific desired information from the
data store.

enterprise database—The overall company data
representation, which provides support for present and
expected future needs.

entity—Something about which someone wants to store data;
typically a person, a place, a thing, a concept, or an event.
See also attribute.

entity cluster—A “virtual” entity type used to represent
multiple entities and relationships in the ERD. An entity
cluster is formed by combining multiple interrelated entities
into a single abstract entity object. An entity cluster is
considered “virtual” or “abstract” in the sense that it is not
actually an entity in the final ERD.

entity instance—A term used in ER modeling to refer to a
specific table row. Also known as an entity occurrence.

entity integrity—The property of a relational table that
guarantees that each entity has a unique value in a primary
key and that there are no null values in the primary key.

entity occurrence—See entity instance.

entity relationship diagram (ERD)—A diagram that depicts
an entity relationship model’s entities, attributes, and
relations.

entity relationship (ER) model—A data model developed by
P. Chen in 1975. It describes relationships (1:1, 1:M, and
M:N) among entities at the conceptual level with the help of
ER diagrams.

entity set—In a relational model, refers to a grouping of
related entities.

entity subtype—In a generalization/specialization hierarchy,
refers to a subset of an entity supertype where the entity
supertype contains the common characteristics and the
entity subtypes contain the unique characteristics of each
entity subtype.

entity supertype—In a generalization/specialization
hierarchy, refers to a generic entity type that contains the
common characteristics of entity subtypes.

equijoin—A join operator that links tables based on an
equality condition that compares specified columns of the
tables.

exclusive lock—A lock that is reserved by a transaction. An
exclusive lock is issued when a transaction requests
permission to write (update) a data item and no locks are
previously held on that data item by any other transaction.
An exclusive lock does not allow any other transactions to
access the database. See also shared lock.

existence-dependent—A property of an entity whose
existence depends on one or more other entities. In an
existence-dependent environment, the existence-
independent table must be created and loaded first because
the existence-dependent key cannot reference a table that
does not yet exist.

existence-independent—An entity that can exist apart from
one or more related entities. It must be created first when
referencing an existence-dependent table to it.

EXISTS—In SQL, a comparison operator used to check
whether a subquery returns any rows.

explicit cursor—In procedural SQL, a cursor created to hold
the output of a SQL statement that may return two or more
rows (but could return zero rows or only one row).

extended entity relationship model (EERM)—Sometimes
referred to as the enhanced entity relationship model; the
result of adding more semantic constructs (entity supertypes,
entity subtypes, and entity clustering) to the original entity
relationship (ER) model.

extended relational data model (ERDM)—A model that
includes the object-oriented model’s best features in an
inherently simpler relational database structural
environment. See EERM.

extends—In a DBMS environment, refers to the data files’
ability to automatically expand in size, using predefined
increments.

GLOSSARY

659

Extensible Markup Language (XML)—A metalanguage used
to represent and manipulate data elements. Unlike other
markup languages, XML permits the manipulation of a
document’s data elements. XML is designed to facilitate the
exchange of structured documents such as orders and
invoices over the Internet.

external model—The application programmer’s view of the
data environment. Given its business-unit focus, an external
model works with a data subset of the global database
schema.

external schema—The specific representation of an external
view, that is, the end user’s view of the data environment.

extraction, transformation, and loading (ETL)—In a data
warehousing environment, the integrated processes of
getting data from original sources into the data warehouse.
ETL is composed of retrieving data from original data
sources (extraction), manipulating the data into an
appropriate form (transformation), and storing it in the data
warehouse (loading).

F

fact table—In a data warehouse, refers to the star schema
center table containing facts that are linked and classified
through their common dimensions. A fact table is in a one-
to-many relationship with each associated dimension table.

facts—In a data warehouse, refers to the measurements
(values) that represent a specific business aspect or activity.
For example, sales figures are numeric measurements that
represent product and/or service sales. Facts commonly
used in business data analysis are units, costs, prices, and
revenues.

failure transparency—A DDBMS feature that allows
continuous operation of a DDBMS, even in the event of a
failure in one of the nodes of the network.

fan trap—A design trap that occurs when one entity is in two
1:M relationships to other entities, thus producing an
association among the other entities that is not expressed in
the model.

field—A character or group of characters (alphabetic or
numeric) that defines a characteristic of a person, place, or
thing. For example, a person’s Social Security number,
address, phone number, and bank balance all constitute fields.

field-level lock—Allows concurrent transactions to access the
same row as long as they require the use of different fields
(attributes) within that row. Yields the most flexible multiuser
data access but requires a high level of computer overhead.

file—A named collection of related records.

file group—See table space.

first normal form (1NF)—The first stage in the normalization
process. It describes a relation depicted in tabular format,
with no repeating groups and with a primary key identified.
All nonkey attributes in the relation are dependent on the
primary key.

flags—Special codes implemented by designers to trigger a
required response, to alert end users to specified conditions,
or to encode values. Flags may be used to prevent nulls by
bringing attention to the absence of a value in a table.

foreign key—See key.

fourth normal form (4NF)—A table is in 4NF when it is in
3NF and contains no multiple independent sets of
multivalued dependencies.

fragmentation transparency—A DDBMS feature that allows
a system to treat a distributed database as a single database
even though the database is divided into two or more
fragments.

front-end CASE tools—A computer-aided software tool that
has been classified as “front end” because it provides
support for the planning, analysis, and design phases of the
SDLC. In comparison, back-end case tools provide support
for the coding and implementation phases.

full backup (database dump)—A complete copy of an entire
database saved and periodically updated in a separate
memory location. Ensures a full recovery of all data in the
event of a physical disaster or a database integrity failure.

full functional dependence—A condition in which an
attribute is functionally dependent on a composite key but
not on any subset of that composite key.

fully heterogeneous distributed database system (fully
heterogeneous DDBMS)—Integrates different types of
database management systems (hierarchical, network, and
relational) over a network. It supports different database
management systems that may even support different data
models running under different computer systems, such as
mainframes, minicomputers, and microcomputers. See also
heterogeneous DDBMS and homogeneous DDBMS.

fully replicated database—In a DDBMS, refers to the
distributed database that stores multiple copies of each
database fragment at multiple sites. See also partially
replicated database.

functional dependence—Within a relation R, an attribute B
is functionally dependent on an attribute A if and only if a
given value of the attribute A determines exactly one value
of the attribute B. The relationship “B is dependent on A” is
equivalent to “A determines B” and is written as AB.

function-based index—A type of index based on a specific
SQL function or expression.

G

generalization—In a specialization hierarchy, the grouping
together of common attributes into a supertype entity. See
specialization hierarchy.

governance—In business intelligence, the methods for
controlling and monitoring business health and promoting
consistent decision making.

GLOSSARY

660

granularity—Refers to the level of detail represented by the
values stored in a table’s row. Data stored at their lowest
level of granularity are said to be atomic data.

GROUP BY—A SQL clause used to create frequency
distributions when combined with any of the aggregate
functions in a SELECT statement.

H

hardware independence—Means that a model does not
depend on the hardware used in the implementation of the
model. Therefore, changes in the hardware will have no
effect on the database design at the conceptual level.

hash index—An index based on an ordered list of hash
values.

HAVING—A restriction placed on the GROUP BY clause
output. The HAVING clause is applied to the output of a
GROUP BY operation to restrict the selected rows.

heterogeneity transparency—A DDBMS feature that allows
a system to integrate several different centralized DBMSs
into one logical DDBMS.

heterogeneous DDBMS—Integrates different types of
centralized database management systems over a network.
See also fully heterogeneous distributed database system
(fully heterogeneous DDBMS) and homogeneous DDBMS.

hierarchical model—No longer a major player in the current
database market; it is important to know, however, because
the basic concepts and characteristics form the basis for
subsequent database development. This model is based on
an “upside-down” tree structure in which each record is
called a segment. The top record is the root segment. Each
segment has a 1:M relationship to the segment directly
below it.

homogeneous DDBMS—Integrates only one particular type
of centralized database management system over a network.
See also heterogeneous DDBMS and fully heterogeneous
distributed database system (fully heterogeneous
DDBMS).

homonym—Indicates the use of the same name to label
different attributes; generally should be avoided. Some
relational software automatically checks for homonyms and
either alerts the user to their existence or automatically
makes the appropriate adjustments. See also synonym.

horizontal fragmentation—The distributed database design
process that breaks up a table into subsets consisting of
unique rows. See also database fragments and vertical
fragmentation.

host language—A term used to describe any language that
contains embedded SQL statements.

I

identifiers—The ERM uses identifiers to uniquely identify
each entity instance. In the relational model, such identifiers
are mapped to primary keys in tables.

identifying relationship—A relationship that exists when the
related entities are existence-dependent. Also called a strong
relationship or strong identifying relationship because the
dependent entity’s primary key contains the primary key of
the parent entity.

immediate update—When a database is immediately updated
by transaction operations during the transaction’s execution,
even before the transaction reaches its commit point.

implicit cursor—A cursor that is automatically created in
procedural SQL when the SQL statement returns only one
value.

IN—In SQL, a comparison operator used to check whether a
value is among a list of specified values.

inconsistent retrievals—A concurrency control problem that
arises when a transaction calculating summary (aggregate)
functions over a set of data—while other transactions are
updating the data—yields erroneous results.

incremental backup—A process that makes a backup only of
data that has changed in the database since the last backup
(incremental or full).

index—An ordered array composed of index key values and
row ID values (pointers). Indexes are generally used to speed
up and facilitate data retrieval. Also known as an index key.

index key—See index.

index organized table—In a DBMS, a type of table storage
organization that stores the end user data and the index data
in consecutive locations on permanent storage. Also known
as clustered index table.

index selectivity—A measure of how likely an index will be
used in query processing.

information—The result of processing raw data to reveal its
meaning. Information consists of transformed data and
facilitates decision making.

information engineering (IE)—A methodology that
translates a company’s strategic goals into data and
applications that will help the company achieve its goals.

information resource dictionary—See data dictionary.

information resource manager (IRM)—See data
administrator (DA).

information system (IS)—A system that provides for data
collection, storage, and retrieval; facilitates the
transformation of data into information and the
management of both data and information. An information
system is composed of hardware, software (DMBS and
applications), the database(s), people, and procedures.

information systems architecture (ISA)—The output of the
information engineering (IE) process that serves as the basis
for planning, developing, and controlling future information
systems. (IE allows for the translation of a company’s
strategic goals into the data and applications that will help
the company achieve those goals. IE focuses on the
description of the corporate data instead of the processes.)

GLOSSARY

661

information systems (IS) department—An evolution of the
data-processing department when responsibilities were
broadened to include service and production functions.

inheritance—In the object-oriented data model, the ability of
an object to inherit the data structure and methods of the
classes above it in the class hierarchy. See also class
hierarchy.

inner join—A join operation in which only rows that meet a
given criteria are selected. The join criteria can be an
equality condition (natural join or equijoin) or an inequality
condition (theta join). Inner join is the most commonly used
type of join. Contrast with outer join.

inner query—A query that is embedded (or nested) inside
another query. Also known as a nested query or a subquery.

input/output (IO) request—A low-level (read or write) data
access operation to/from computer devices (such as
memory, hard disks, video, and printers).

INSERT—A SQL command that allows the insertion of data
rows into a table, one row at a time or multiple rows at a
time, using a subquery.

integrity—In a data security framework, refers to keeping
data consistent, and free of errors or anomalies. See also
data integrity.

internal model—In database modeling, refers to a level of
data abstraction that adapts the conceptual model to a
specific DBMS model for implementation.

internal schema—Depicts a specific representation of an
internal model, using the database constructs supported by
the chosen database. (The internal model is the
representation of a database as “seen” by the DBMS. In
other words, the internal model requires a designer to match
the conceptual model’s characteristics and constraints to
those of the selected implementation model.)

IS NULL—In SQL, a comparison operator used to check
whether an attribute has a value.

islands of information—A term used in the old-style file
system environment to refer to independent, often
duplicated, and inconsistent data pools created and
managed by different organizational departments.

isolation—A property of a database transaction that
guarantees that a data item used by one transaction is not
available to other transactions until the first transaction ends.

iterative process—A process based on repetition of steps
and procedures.

J

Java—An object-oriented programming language developed
by Sun Microsystems that runs on top of the Web browser
software. Java applications are compiled and stored in the
Web server. Java’s main advantage is its ability to let
application developers develop their applications once and
run them in many environments.

Java Database Connectivity (JDBC)—An application
programming interface that allows a Java program to
interact with a wide range of data sources (relational
databases, tabular data sources, spreadsheets, and text files).

JavaScript—A scripting language (one that enables the
running of a series of commands or macros) developed by
Netscape that allows Web authors to design interactive Web
sites. JavaScript code is embedded in Web pages. This
JavaScript is downloaded with the page and is activated
when a specific event takes place, such as a mouse click on
an object.

join columns—A term used to refer to the columns that join
two tables. The join columns generally share similar values.

K

key—An entity identifier based on the concept of functional
dependence; may be classified as follows: Superkey—an
attribute (or combination of attributes) that uniquely
identifies each entity in a table. Candidate key—a minimal
superkey, that is, one that does not contain a subset of
attributes that is itself a superkey. Primary key (PK)—a
candidate key selected as a unique entity identifier.
Secondary key—a key that is used strictly for data retrieval
purposes. For example, a customer is not likely to know his
or her customer number (primary key), but the combination
of last name, first name, middle initial, and telephone
number is likely to make a match to the appropriate table
row. Foreign key—an attribute (or combination of attributes)
in one table whose values must match the primary key in
another table or whose values must be null.

key attribute(s)—The attribute(s) that form(s) a primary key.
See also prime attribute.

key performance indicators (KPI)—In business intelligence,
refers to quantifiable measurements (numeric or scale-based)
that assess a company’s effectiveness or success in reaching
strategic and operational goals. Examples of KPI are product
turnovers, sales by promotion, sales by employee, earnings
per share, etc.

knowledge—The body of information and facts about a
specific subject. Knowledge implies familiarity, awareness,
and understanding of information as it applies to an
environment. A key characteristic of knowledge is that
“new” knowledge can be derived from “old” knowledge.

L

left outer join—In a pair of tables to be joined, a left outer
join yields all of the rows in the left table, including those
that have no matching values in the other table. For
example, a left outer join of CUSTOMER with AGENT will
yield all of the CUSTOMER rows, including the ones that do
not have a matching AGENT row. See also outer join and
right outer join.

GLOSSARY

662

LIKE—In SQL, a comparison operator used to check whether
a attribute’s text value matches a specified string pattern.

linking table—In the relational model, a table that
implements a M:M relationship. See also composite entity.

local mapping transparency—A property of a DDBMS in
which access to the data requires the end user to know both
the name and the location of the fragments in order to
access the database. See also location transparency.

location transparency—The property of a DDBMS in which
access to the data requires that only the name of the
database fragments be known. (Fragment locations need not
be known.) See also local mapping transparency.

lock—A device that is employed to guarantee unique use of a
data item to a particular transaction operation, thereby
preventing other transactions from using that data item. A
transaction requires a lock prior to data access, and that lock
is released (unlocked) after the operation’s execution to
enable other transactions to lock the data item for their use.

lock granularity—Indicates the level of lock use. Locking can
take place at the following levels: database, table, page, row,
and field (attribute).

lock manager—A DBMS component that is responsible for
assigning and releasing locks.

logical data format—The way in which a human being
views data.

logical design—A stage in the design phase that matches the
conceptual design to the requirements of the selected DBMS
and is, therefore, software-dependent. It is used to translate
the conceptual design into the internal model for a selected
database management system, such as DB2, SQL Server,
Oracle, IMS, Informix, Access, and Ingress.

logical independence—A condition that exists when the
internal model can be changed without affecting the
conceptual model. (The internal model is hardware-
independent because it is unaffected by the choice of
computer on which the software is installed. Therefore, a
change in storage devices or even a change in operating
systems will not affect the internal model.)

lost updates—A concurrency control problem in which data
updates are lost during the concurrent execution of
transactions.

M

mandatory participation—A term used to describe a
relationship in which one entity occurrence must have a
corresponding occurrence in another entity. Example:
EMPLOYEE works in DIVISION. (A person cannot be an
employee if he or she is not assigned to a company’s
division.)

manual query optimization—An operation mode that
requires the end user or programmer to define the access
path for the execution of a query.

manual statistical generation mode—One mode of
generating statistical data access information used for query
optimization. In this mode, the DBA must periodically run a
routine to generate the data access statistics; for example,
running the RUNSTAT command in an IBM DB2 database.

many-to-many (M:N or M:M) relationships—One of three
types of relationships (associations among two or more
entities) in which one occurrence of an entity is associated
with many occurrences of a related entity and one
occurrence of the related entity is associated with many
occurrences of the first entity.

master data management (MDM)— In business intelligence,
a collection of concepts, techniques, and processes for the
proper identification, definition, and management of data
elements within an organization.

materialized view—A dynamic table that not only contains
the SQL query command to generate the rows but also
stores the actual rows. The materialized view is created the
first time the query is run and the summary rows are stored
in the table. The materialized view rows are automatically
updated when the base tables are updated.

MAX—A SQL aggregate function that yields the maximum
attribute value encountered in a given column.

metadata—Data about data, that is, data concerning data
characteristics and relationships. See also data dictionary.

method—In the object-oriented data model, a named set of
instructions to perform an action. Methods represent real-
world actions. Methods are invoked through messages.

metrics—In a data warehouse, numeric facts that measure a
business characteristic of interest to the end user.

Microsoft .NET framework—A component-based platform
for the development of distributed, heterogeneous,
interoperable applications aimed at manipulating any type of
data over any network under any operating system and any
programming language.

MIN—A SQL aggregate function that yields the minimum
attribute value encountered in a given column.

minimal data rule—Defined as “All that is needed is there,
and all that is there is needed.” In other words, all data
elements required by database transactions must be defined
in the model, and all data elements defined in the model
must be used by at least one database transaction.

mixed fragmentation—Regarding data fragmentation, refers
to a combination of horizontal and vertical strategies,
meaning a table may be divided into several rows, each row
having a subset of the attributes (columns).

module—(1) A design segment that can be implemented as
an autonomous unit, sometimes linked to produce a system.
(2) An information system component that handles a
specific function, such as inventory, orders, or payroll.

module coupling—A description of the extent to which
modules are independent of one another.

GLOSSARY

663

monotonicity—Ensures that time stamp values always increase.
(The time stamping approach to scheduling concurrent
transactions assigns a global, unique time stamp to each
transaction. The time stamp value produces an explicit order
in which transactions are submitted to the DBMS.)

multidimensional database management system
(MDBMS)—A database management system that uses
proprietary techniques to store data in matrixlike arrays of
n-dimensions, known as cubes.

multidimensional online analytical processing (MOLAP)—
Extends online analytical processing functionality to
multidimensional database management systems.

multiple-site processing, multiple-site data (MPMD)—A
scenario describing a fully distributed database management
system with support for multiple data processors and
transaction processors at multiple sites.

multiple-site processing, single-site data (MPSD)—A
scenario in which multiple processes run on different
computers sharing a single data repository.

multiuser database—A database that supports multiple
concurrent users.

multivalued attribute—An attribute that can have many
values for a single entity occurrence. For example, an
EMP_DEGREE attribute might store the string “BBA, MBA,
PHD” to indicate three different degrees held.

mutual consistency rule—A data replication rule requiring
that all copies of data fragments be identical.

mutual exclusive rule—A condition in which only one
transaction at a time can own an exclusive lock on the same
object.

N

natural join—A relational operation that links tables by
selecting only the rows with common values in their
common attribute(s).

natural key (natural identifier)—A real-world, generally
accepted identifier used to identify real-world objects. As its
name implies, a natural key is familiar to end users and
forms part of their day-to-day business vocabulary.

nested query—In SQL, refers to a query that is embedded in
another query. See subquery.

network model—A data model standard created by the
CODASYL Data Base Task Group in the late 1960s. It
represented data as a collection of record types and
relationships as predefined sets with an owner record type
and a member record type in a 1:M relationship.

non-identifying relationship—A relationship that occurs
when the primary key of the dependent (many side) entity
does not contain the primary key of the related parent
entity. Also known as a weak relationship.

nonkey attribute—See nonprime attribute.

nonprime attribute—An attribute that is not part of a key.

normalization—A process that assigns attributes to entities in
such a way that data redundancies are reduced or
eliminated.

NOT—A SQL logical operator that negates a given predicate.

null—In SQL, refers to the absence of an attribute value.
Note: A null is not a blank.

O

object—An abstract representation of a real-world entity that
has a unique identity, embedded properties, and the ability
to interact with other objects and with itself.

Object Linking and Embedding for Database (OLE-DB)—
Based on Microsoft’s Component Object Model (COM),
OLE-DB is database middleware that adds object-oriented
functionality for accessing relational and nonrelational data.
OLE-DB was the first part of Microsoft’s strategy to provide
a unified object-oriented framework for the development of
next- generation applications.

object-oriented data model (OODM)—A data model whose
basic modeling structure is an object.

object-oriented database management system
(OODBMS)—Data management software used to manage
data found within an object-oriented database model.

object-oriented programming (OOP)—An alternative to
conventional programming methods based on object-
oriented concepts. It reduces programming time and lines of
code and increases programmers’ productivity.

object/relational database management system
(O/RDBMS)—A DBMS based on the extended relational
model (ERDM). The ERDM, championed by many relational
database researchers, constitutes the relational model’s
response to the OODM. This model includes many of the
object-oriented model’s best features within an inherently
simpler relational database structural environment.

one-to-many (1:M or 1..*) relationship—One of three types
of relationships (associations among two or more entities)
that are used by data models. In a 1:M relationship, one
entity instance is associated with many instances of the
related entity.

one-to-one (1:1) relationship—One of three types of
relationships (associations among two or more entities) that
are used by data models. In a 1:1 relationship, one entity
instance is associated with only one instance of the
related entity.

online analytical processing (OLAP)—Decision support
system (DSS) tools that use multidimensional data analysis
techniques. OLAP creates an advanced data analysis
environment that supports decision making, business
modeling, and operations research activities.

Open Database Connectivity (ODBC)—Database
middleware developed by Microsoft to provide a database
access API to Windows applications.

GLOSSARY

664

operational database—A database that is designed primarily
to support a company’s day-to-day operations. Also known
as a transactional database or production database.

optimistic approach—In transaction management, refers to
a concurrency control technique based on the assumption
that the majority of database operations do not conflict.

optimizer hints—Special instructions for the query optimizer
that are embedded inside the SQL command text.

optional attribute—In ER modeling, refers to an attribute
that does not require a value; therefore, it can be left empty.

optional participation—In ER modeling, refers to a
condition where one entity occurrence does not require a
corresponding entity occurrence in a particular relationship.

OR—The SQL logical operator used to link multiple
conditional expressions in a WHERE or HAVING clause. It
requires that only one of the conditional expressions be true.

ORDER BY—A SQL clause useful for ordering the output of
a SELECT query (for example, in ascending or descending
order).

outer join—A relational-algebra JOIN operation that produces
a table in which all unmatched pairs are retained; unmatched
values in the related table are left null. Contrast with inner
join. See also left outer join and right outer join.

overlapping—In a specialization hierarchy, describes a
condition where each entity instance (row) of the supertype
can appear in more than one subtype.

P

page—See diskpage.

page-level lock—In this type of lock, the database
management system will lock an entire diskpage, or section
of a disk. A diskpage can contain data for one or more rows
and from one or more tables.

partial completeness—In a generalization hierarchy, means
that not every supertype occurrence is a member of a
subtype; that is, there may be some supertype occurrences
that are not members of any subtype.

partial dependency—In normalization, a condition in which
an attribute is dependent on only a portion (subset) of the
primary key.

partially replicated database—A distributed database in
which copies of only some database fragments are stored at
multiple sites. See also fully replicated database.

participants—An ER term used to label the entities that
participate in a relationship. Example: PROFESSOR teaches
CLASS. (The teaches relationship is based on the
participants PROFESSOR and CLASS.)

partitioned data allocation—A data allocation strategy of
dividing a database into two or more fragments that are
stored at two or more sites.

partitioning—The process of splitting a table into subsets of
rows or columns.

passive data dictionary—A DBMS data dictionary that
requires an end-user-initiated command to update its data
access statistics. See also data dictionary.

performance transparency—A DDBMS feature that allows a
system to perform as though it were a centralized DBMS
(no degradation of response times).

performance tuning—Activities that make a database perform
more efficiently in terms of storage and access speed.

periodicity—Usually expressed as current year only, previous
years, or all years; provides information about the time span
of data stored in a table.

persistent stored module (PSM)—A block of code
(containing standard SQL statements and procedural
extensions) that is stored and executed at the DBMS server.

personalization—Customization of a Web page for
individual users.

pessimistic locking—The use of locks based on the assumption
that conflict between transactions is likely to occur.

physical data format—The way in which a computer “sees”
(stores) data.

physical design—A stage of database design that maps the
data storage and access characteristics of a database. Since
these characteristics are a function of the types of devices
supported by the hardware, the data access methods
supported by the system (and the selected DBMS) physical
design is both hardware- and software-dependent. See also
physical model.

physical independence—A condition that exists when the
physical model can be changed without affecting the internal
model.

physical model—A model in which the physical
characteristics (location, path, and format) are described for
the data. Both hardware- and software-dependent. See also
physical design.

plug-in—In the World Wide Web (WWW), a client-side,
external application that is automatically invoked by the
browser when it is needed to manage specific types of data.

policies—General statements of direction that are used to
manage company operations through the communication
and support of the organization’s objectives.

portal—In terms of business intelligence, a unified, single
point of entry for information distribution.

predicate logic—Used extensively in mathematics, provides a
framework in which an assertion (statement of fact) can be
verified as either true or false. For example, suppose that a
student with a student ID of 12345678 is named Melissa
Sanduski. That assertion can easily be demonstrated to be
true or false.

GLOSSARY

665

primary key (PK)—In the relational model, an identifier
composed of one or more attributes that uniquely identifies
a row. See also key.

prime attribute—A key attribute, that is, an attribute that is
part of a key or is the whole key. See also key attribute.

privacy—Control of data usage dealing with the rights of
individuals and organizations to determine the “who, what,
when, where, and how” of data access.

procedural SQL (PL/SQL)—A type of SQL that allows the
use of procedural code and SQL statements that are stored
in a database as a single callable object that can be invoked
by name.

procedure cache—A shared, reserved memory area that
stores the most recently executed SQL statements or
PL/SQL procedures (including triggers and functions). Also
called SQL cache.

procedures—Series of steps to be followed during the
performance of a given activity or process.

production database—The main database designed to keep
track of the day-to-day operations of a company. See also
transactional database.

profile—In Oracle, a named collection of settings that
controls how much of the database resource a given user
can use.

Q

query—A question or task asked by an end user of a database
in the form of SQL code. A specific request for data
manipulation issued by the end user or the application to the
DBMS.

query language—A nonprocedural language that is used by a
DBMS to manipulate its data. An example of a query
language is SQL.

query optimizer—A DBMS process that analyzes SQL
queries and finds the most efficient way to access the data.
The query optimizer generates the access or execution plan
for the query.

query processing bottleneck—In query optimization, a delay
introduced in the processing of an I/O operation that causes
the overall system to slow down.

query result set—The collection of data rows that are
returned by a query.

R

RAID—An acronym that means Redundant Array of
Independent Disks. RAID is used to provide balance
between performance and fault tolerance. RAID systems use
multiple disks to create virtual disks (storage volumes)
formed by several individual disks. RAID systems provide
performance improvement and fault tolerance.

record—A collection of related (logically connected) fields.

recursive query—A nested query that joins a table to itself.
For example, a recursive query joins the EMPLOYEE table
to itself.

recursive relationship—A relationship that is found within a
single entity type. For example, an EMPLOYEE is married to
an EMPLOYEE or a PART is a component of another PART.

redundant transaction logs—Most database management
systems keep several copies of the transaction log to ensure
that the physical failure of a disk will not impair the DBMS’s
ability to recover data.

referential integrity—A condition by which a dependent
table’s foreign key must have either a null entry or a
matching entry in the related table. Even though an attribute
may not have a corresponding attribute, it is impossible to
have an invalid entry.

relation—In a relational database model, an entity set.
Relations are implemented as tables. Relations (tables) are
related to each other through the sharing of a common
entity characteristic (value in a column).

relational algebra—A set of mathematical principles that
form the basis of the manipulation of relational table
contents; composed of eight main functions: SELECT,
PROJECT, JOIN, INTERSECT, UNION, DIFFERENCE,
PRODUCT, and DIVIDE.

relational database management system (RDBMS)—A
collection of programs that manages a relational database.
The RDBMS software translates a user’s logical requests
(queries) into commands that physically locate and retrieve
the requested data. A good RDBMS also creates and
maintains a data dictionary (system catalog) to help provide
data security, data integrity, concurrent access, easy access,
and system administration to the data in the database
through a query language (SQL) and application programs.

relational diagram—A graphical representation of a
relational database’s entities, the attributes within those
entities, and the relationships among those entities.

relational model—Developed by E. F. Codd (of IBM) in
1970, it represents a major breakthrough for users and
designers because of its conceptual simplicity. The relational
model, based on mathematical set theory, represents data as
independent relations. Each relation (table) is conceptually
represented as a matrix of intersecting rows and columns.
The relations are related to each other through the sharing
of common entity characteristics (values in columns).

relational online analytical processing (ROLAP)—Provides
online analytical processing functionality by using relational
databases and familiar relational query tools to store and
analyze multidimensional data.

relational schema—The description of the organization of a
relational database as seen by the database administrator.

relationship—An association between entities.

GLOSSARY

666

relationship degree—Indicates the number of entities or
participants associated with a relationship. A relationship
degree can be unary, binary, ternary, or higher level.

Remote Data Objects (RDO)—A higher-level object-oriented
application interface used to access remote database servers.
RDO uses the lower-level DAO and ODBC for direct access
to databases. RDO was optimized to deal with server-based
databases such as MS SQL Server, Oracle, and DB2.

remote request—A DDBMS feature that allows a single SQL
statement to access data in a single remote DP. See also
remote transaction.

remote transaction—A DDBMS feature that allows a
transaction (formed by several requests) to access data in a
single remote DP. See also remote request.

repeating group—In a relation, a characteristic describing a
group of multiple entries of the same type that exist for a
single key attribute occurrence. For example, a car can have
multiple colors (top, interior, bottom, trim, and so on).

replica transparency—Refers to the DDBMS’s ability to hide
the existence of multiple copies of data from the user.

replicated data allocation—A data allocation strategy by
which copies of one or more database fragments are stored
at several sites.

replication—The process of creating and managing duplicate
versions of a database. Used to place copies in different
locations and to improve access time and fault tolerance.

required attribute—In ER modeling, refers to an attribute that
must have a value. In other words, it cannot be left empty.

reserved words—Words that are used by a system and that
cannot be used for any other purpose. For example, in
Oracle SQL, the word INITIAL cannot be used to name
tables or columns.

right outer join—In a pair of tables to be joined, a right outer
join yields all of the rows in the right table, including the
ones with no matching values in the other table. For
example, a right outer join of CUSTOMER with AGENT will
yield all of the agent rows, including the ones that do not
have a matching CUSTOMER row. See also left outer join
and outer join.

role—In Oracle, a named collection of database access
privileges that authorize a user to connect to a database and
use the database system resources.

roll up—In SQL, an OLAP extension used with the GROUP
BY clause to aggregate data by different dimensions.
(Rolling up the data is the exact opposite of drilling down
the data.) See also drill down.

ROLLBACK—A SQL command that restores the database
table contents to their original condition (the condition that
existed after the last COMMIT statement).

row-level lock—A comparatively less restrictive database lock
where the DBMS allows concurrent transactions to access
different rows of the same table, even when the rows are
located on the same page.

row-level trigger—A trigger that is executed once for each
row affected by the triggering SQL statement. A row-level
trigger requires the use of the FOR EACH ROW keywords
in the trigger declaration.

rule-based optimizer—A query optimization mode based on
the rule-based query optimization algorithm.

rule-based query optimization algorithm—A query
optimization technique that uses a set of preset rules and
points to determine the best approach to executing a query.

rules of precedence—Basic algebraic rules that specify the
order in which operations are performed, such as conditions
within parentheses being executed first. For example, in the
equation 2 � (3 � 5), the multiplication portion is calculated
first, making the correct answer 17.

S

scheduler—The DBMS component that is responsible for
establishing the order in which concurrent transaction
operations are executed. The scheduler interleaves the
execution of database operations in a specific order
(sequence) to ensure serializability.

schema—A logical grouping of database objects (tables,
indexes, views, queries, etc.) that are related to each other.
Usually, a schema belongs to a single user or application.

scope—That part of a system that defines the extent of the
design, according to operational requirements.

script—A programming language that is not compiled, but
rather is interpreted and executed at run time.

search services—Business-enabling Web services that allow
Web sites to perform searches on their contents.

second normal form (2NF)—The second stage in the
normalization process in which a relation is in 1NF and
there are no partial dependencies (dependencies in only part
of the primary key).

secondary key—A key that is used strictly for data retrieval
purposes. For example, a customer is not likely to know his
or her customer number (primary key), but the combination
of last name, first name, middle initial, and telephone
number is likely to make a match to the appropriate table
row. See also key.

security—Refers to activities and measures to ensure the
confidentiality, integrity, and availability of an information
system and its main asset, data.

security breach—An event that occurs when a security threat
is exploited to negatively affect the integrity, confidentiality,
or availability of the system.

security policy—A collection of standards, policies, and
procedures created to guarantee the security of a system
and ensure auditing and compliance.

security threat—An imminent security violation that could
occur at any time due to unchecked security vulnerabilities.

GLOSSARY

667

security vulnerability—A weakness in a system’s component
that could be exploited to allow unauthorized access or
cause service disruptions.

segment—In the hierarchical data model, the equivalent of a
file system’s record type.

SELECT—A SQL command that yields the values of all rows
or a subset of rows in a table. The SELECT statement is
used to retrieve data from tables.

semantic data model—The first of a series of data models
that more closely represented the real world, modeling both
data and their relationships in a single structure known as an
object. The SDM, published in 1981, was developed by
M. Hammer and D. McLeod.

semistructured data—Data that have already been processed
to some extent.

serializability—A transaction property that ensures that the
selected order of transaction operations creates a final
database state that would have been produced if the
transactions had been executed in a serial fashion.

serializable schedule—In transaction management, a
schedule of transaction operations in which the interleaved
execution of the transactions yields the same result as if the
transactions were executed in serial order.

server-side extension—A program that interacts directly with
the server process to handle specific types of requests. They
add significant functionality to Web servers and to intranets.

set theory—A mathematical science component that deals
with sets, or groups of things, and is used as the basis for
data manipulation in the relational model.

set-oriented—Dealing with or related to sets, or groups of
things. In the relational model, SQL operators are set-
oriented because they operate over entire sets of rows nd
columns at once.

shared lock—A lock that is issued when a transaction
requests permission to read data from a database and no
exclusive locks are held on that data by another transaction.
A shared lock allows other read-only transactions to access
the database. See also exclusive lock.

simple attribute—An attribute that cannot be subdivided into
meaningful components. Compare to composite attribute.

single-site processing, single-site data (SPSD)—A scenario in
which all processing is done on a single CPU or host computer
and all data are stored on the host computer’s local disk.

single-user database—A database that supports only one
user at a time.

single-valued attribute—An attribute that can have only
one value.

slice and dice—Multidimensional jargon meaning the ability
to cut slices off of the data cube (drill down or drill up) to
perform a more detailed analysis.

snowflake schema—A type of star schema in which the
dimension tables can have their own dimension tables. The
snowflake schema is usually the result of normalizing
dimension tables.

software independence—A property of any model or
application that does not depend on the software used to
implement it.

sparsity—In multidimensional data analysis, a measurement
of the density of the data held in the data cube.

specialization—In a specialization hierarchy, the grouping of
unique attributes into a subtype entity. See specialization
hierarchy.

specialization hierarchy—A hierarchy that is based on the
top-down process of identifying lower-level, more specific
entity subtypes from a higher-level entity supertype.
Specialization is based on grouping unique characteristics
and relationships of the subtypes.

SQL cache—A shared, reserved memory area that stores the
most recently executed SQL statements or PL/SQL
procedures (including triggers and functions). Also called
procedure cache.

SQL data services (SDS) —Data management services that
provide relational data storage, access, and management
over the Internet.

SQL performance tuning—Activities oriented toward
generating a SQL query that returns the correct answer in
the least amount of time, using the minimum amount of
resources at the server end.

standards—A detailed and specific set of instructions that
describes the minimum requirements for a given activity.
Standards are used to evaluate the quality of the output.

star schema—A data modeling technique used to map
multidimensional decision support data into a relational
database. The star schema represents data, using a central
table known as a fact table, in a 1:M relationship with one
or more dimension tables.

stateless system—Describes the fact that at any given time, a
Web server does not know the status of any of the clients
communicating with it. The Web does not reserve memory
to maintain an open communications “state” between the
client and the server.

statement-level trigger—A SQL trigger that is assumed if the
FOR EACH ROW keywords are omitted. This type of
trigger is executed once, before or after the triggering
statement completes, and is the default case.

static query optimization—A query optimization mode in
which the access path to a database is predetermined at
compilation time. Contrast with dynamic query
optimization.

static SQL—A style of embedded SQL in which the SQL
statements do not change while the application is running.

GLOSSARY

668

statistically based query optimization algorithm—A query
optimization technique that uses statistical information about
a database. These statistics are then used by the DBMS to
determine the best access strategy.

stored function—A named group of procedural and SQL
statements that returns a value, indicated by a RETURN
statement in its program code.

stored procedure—(1) A named collection of procedural and
SQL statements. (2) Business logic stored on a server in the
form of SQL code or some other DBMS-specific procedural
language.

strong (identifying) relationship—When two entities are
existence-dependent; from a database design perspective,
this exists whenever the primary key of the related entity
contains the primary key of the parent entity.

structural dependence—A data characteristic that exists
when a change in the database schema affects data access,
thus requiring changes in all access programs.

structural independence—A data characteristic that exists
when changes in the database schema do not affect data
access.

structured data—Unstructured data that have been formatted
(structured) to facilitate storage, use, and information
generation.

Structured Query Language (SQL)—A powerful and flexible
relational database language composed of commands that
enable users to create database and table structures,
perform various types of data manipulation and data
administration, and query the database to extract useful
information.

subordinate—In a DDBMS, a data processor (DP) node that
participates in a distributed transaction, using the two-phase
COMMIT protocol.

subquery—A query that is embedded (or nested) inside another
query. Also known as a nested query or an inner query.

subschema—In the network model, the portion of the database
“seen” by the application programs that produce the desired
information from the data contained within the database.

subtype (entity set)—An entity (set) that contains the unique
characteristics (attributes) of an entity whose general
characteristics are found in another, more broadly defined
entity known as a supertype. In a generalization hierarchy, it
is any entity that is found below a parent entity. Example:
The subtype PILOT of the supertype EMPLOYEE.

subtype discriminator—The attribute in the supertype entity
that determines to which entity subtype each supertype
occurrence is related.

SUM—A SQL aggregate function that yields the sum of all
values for a given column or expression.

superkey—See key.

supertype (entity set)—An entity (set) that contains the
general (commonly shared) characteristics of an entity (see

subtype). If the entity set can include characteristics that are
not common to all entities within the set, the supertype
becomes the parent to one or more subtypes in a
generalization hierarchy.

surrogate key—A system-assigned primary key, generally
numeric and auto-incremented.

synonym—The use of different names to identify the same
object, such as an entity, an attribute, or a relationship;
should generally be avoided. See also homonym.

system catalog—A detailed system data dictionary that
describes all objects in a database.

systems administrator—The person responsible for
coordinating the activities of the data processing function.

systems analysis—The process that establishes the need for
and the extent of an information system.

systems development—The process of creating an
information system.

Systems Development Life Cycle (SDLC)—The cycle that
traces the history (life cycle) of an information system. The
SDLC provides the big picture within which the database
design and application development can be mapped out and
evaluated.

T

table—A (conceptual) matrix composed of intersecting rows
(entities) and columns (attributes) that represents an entity
set in the relational model. Also called a relation.

table space—In a DBMS, a logical storage space used to
group related data. Also known as file group.

table-level lock—A locking scheme that allows only one
transaction at a time to access a table. A table-level lock
locks an entire table, preventing access to any row by
transaction T2 while transaction T1 is using the table.

tag—In markup languages such as HTML and XML, a
command inserted in a document to specify how the
document should be formatted. Tags are used in server-side
markup languages and interpreted by a Web browser for
presenting data.

ternary relationship—An ER term used to describe an
association (relationship) between three entities. Example: A
CONTRIBUTOR contributes money to a FUND from which
a RECIPIENT receives money.

theta join—A join operator that links tables, using an
inequality comparison operator (<, >, <=, >=) in the join
condition.

third normal form (3NF)—A table is in 3NF when it is in
2NF and no nonkey attribute is functionally dependent on
another nonkey attribute; that is, it cannot include transitive
dependencies.

time stamping—In transaction management, a technique
used in scheduling concurrent transactions that assigns a
global unique time stamp to each transaction.

GLOSSARY

669

time-variant data—Data whose values are a function of time.
For example, time variant data can be seen at work when
the history of all administrative appointments (date of
appointment and date of termination) are tracked.

top-down design—A design philosophy that begins by
defining the main (macro) structures of a system and then
moves to define the smaller units within those structures. In
database design, it is a process that first identifies entities
and then defines the attributes within the entities. Compare
to bottom-up design.

total completeness—In a generalization/specialization
hierarchy, a condition in which every supertype occurrence
must be a member of at least one subtype.

transaction—A sequence of database operations (one or
more database requests) that accesses the database. A
transaction is a logical unit of work; that is, it must be
entirely completed or aborted—no intermediate ending
states are accepted. All transactions must have the following
properties: (1) Atomicity requires that, unless all operations
(parts) of a transaction are completed, the transaction be
aborted. A transaction is treated as a single, indivisible
logical unit of work. (2) Consistency indicates the
permanence of the database consistent state. Once a
transaction is completed, the database reaches a consistent
state. (3) Isolation ensures that the data used during the
execution of a transaction cannot be used by a second
transaction until the first one is completed. (4) Durability
ensures that once transaction changes are done, they
cannot be undone or lost, even in the event of a system
failure.

transaction log—A feature used by the DBMS to keep track
of all transaction operations that update the database. The
information stored in this log is used by the DBMS for
recovery purposes.

transaction log backup—Backs up only the transaction log
operations that are not reflected in a previous backup copy
of the database.

transaction manager (TM)—See transaction processor (TP).

transaction processor (TP)—In a DDBMS, the software
component on each computer that requests data. The TP is
responsible for the execution and coordination of all
databases issued by a local application that access data on
any DP. Also called transaction manager (TM). See also
data processor (DP).

transaction transparency—A DDBMS property that ensures
that database transactions will maintain the distributed
database’s integrity and consistency. They ensure that a
transaction will be completed only when all database sites
involved in the transaction complete their part of the
transaction.

transactional database—A database designed to keep track
of the day-to-day transactions of an organization. See also
production database.

transitive dependency—A condition in which an attribute is
dependent on another attribute that is not part of the
primary key.

trigger—A procedural SQL code that is automatically invoked
by the relational database management system upon the
occurrence of a data manipulation event.

tuple—In the relational model, a table row.

two-phase commit protocol—In a DDBMS, an algorithm
used to ensure atomicity of transactions and database
consistency as well as integrity in distributed transactions.

two-phase locking—A set of rules that governs the way
transactions acquire and relinquish locks. Two-phase locking
guarantees serializability, but it does not prevent deadlocks.
The two-phase locking protocol is divided into two phases:
(1) A growing phase occurs when the transaction acquires all
of the locks that it needs without unlocking any existing data
locks. Once all locks have been acquired, the transaction is in
its locked point. (2) A shrinking phase occurs when the
transaction releases all locks and cannot obtain a new lock.

U

unary relationship—An ER term used to describe an
association within an entity. Example: A COURSE is a
prerequisite to another COURSE.

uncommitted data—When trying to achieve concurrency
control, uncommitted data causes data integrity and consistency
problems. It occurs when two transactions are executed
concurrently and the first transaction is rolled back after the
second transaction has already accessed the uncommitted data,
thus violating the isolation property of transactions.

Unified Modeling Language (UML)—A language based on
object-oriented concepts that provides tools such as
diagrams and symbols used to graphically model a system.

union-compatible—Two or more tables are union-
compatible when they share the same column names and
the columns have compatible data types or domains.

unique fragment—In a DDBMS, a condition indicating that
each row is unique, regardless of which fragment it is
located in.

unique index—An index in which the index key can have
only one pointer value (row) associated with it.

uniqueness—In concurrency control, a property of time
stamping that ensures that no equal time stamp values
can exist.

Universal Data Access (UDA)—Within the Microsoft
application framework, a collection of technologies used to
access any type of data source and to manage the data
through a common interface.

unreplicated database—A distributed database in which
each database fragment is stored at a single site.

unstructured data—Data that exist in their original (raw)
state; that is in the format in which they were collected.

GLOSSARY

670

updatable view—A view that can be used to update attributes
in base tables that are used in the view.

UPDATE—A SQL command that allows attribute values to be
changed in one or more rows of a table.

user—In a system, a uniquely identifiable object that allows a
given person or process to log on to the database.

V

VBScript—A client-side extension in the form of a Microsoft
language product used to extend a browser’s functionality;
derived from Visual Basic.

vertical fragmentation—In distributed database design, the
process that breaks up a table into fragments consisting of a
subset of columns from the original table. Fragments must
share a common primary key. See also database fragments
and horizontal fragmentation.

very large databases (VLDBs)—As the name implies,
databases that contain huge amounts of data—gigabyte,
terabyte, and petabyte ranges are not unusual.

view—A virtual table based on a SELECT query.

virtualization—A technique that creates logical
representations of computing resources that are independent
of the underlying physical computing resources.

W

wait/die—A concurrency control scheme that says that if the
transaction requesting the lock is the older, it waits for the
younger transaction to complete and release the locks.
Otherwise, the newer transaction dies and it is rescheduled.

weak entity—An entity that displays existence dependence
and inherits the primary key of its parent entity. Example: A
DEPENDENT requires the existence of an EMPLOYEE.

weak relationship—A relationship that exists when the PK of
the related entity does not contain a PK component of the
parent entity. Also known as a non-identifying relationship.

Web application server—A middleware application that
expands the functionality of Web servers by linking them to
a wide range of services, such as databases, directory
systems, and search engines.

Web-to-database middleware—A database server-side
extension program that retrieves data from databases and
passes it on to the Web server, which sends it to the client’s
browser for display purposes.

wildcard character—A symbol that can be used as a general
substitute for one or more characters in an SQL LIKE clause
condition. The wildcard characters used in SQL are the _
and % symbols.

workgroup database—A multiuser database that supports a
relatively small number of users (usually fewer than 50) or
that is used for a specific department in an organization.

wound/wait—A concurrency control scheme that says that if
the transaction requesting the lock is the older, it preempts
the younger transaction and reschedules it. Otherwise, the
newer transaction waits until the older transaction finishes.

write-ahead protocol—See write-ahead-log protocol.

write-ahead-log protocol—In concurrency control, a process
that ensures that transaction logs are always written to
permanent storage before any database data are actually
updated. Also called write-ahead protocol.

write-through technique—In concurrency control, a process
that ensures that a database is immediately updated by
transaction operations during the transaction’s execution,
even before the transaction reaches its commit point.

X

XML—See Extensible Markup Language (XML).

XML database—A database system that stores and manages
semistructured XML data.

XML schema—An advanced data definition language that is
used to describe the structure (elements, data types,
relationship types, ranges, and default values) of XML data
documents. One of the main advantages of an XML schema
is that it more closely maps to database terminology and
features. For example, an XML schema will be able to
define common database types such as date, integer or
decimal, minimum and maximum values, list of valid values,
and required elements. Using the XML schema, a company
could validate the data for values that may be out of range,
incorrect dates, valid values, and so on.

XML schema definition (XSD)—A file containing the
description of an XML document.

XSL (Extensible Style Language)—A specification used to
define the rules by which XML data are formatted and
displayed. The XSL specification is divided into two parts:
Extensible Style Language Transformations (XSLT) and
XSL style sheets.

XSL style sheets—Similar to presentation templates, define
the presentation rules applied to XML elements. The XSL
style sheet describes the formatting options to apply to XML
elements when they are displayed on a browser, cellular
phone display, PDA screen, and so on.

XSLT (Extensible Style Language Transformations)—A
term that describes the general mechanism used to extract
and process data from one XML document and to enable its
transformation within another document.

GLOSSARY

671

INDEX

672

NOTE:

Page numbers in boldface indicate
key terms.

SYMBOLS

& (ampersand), 205
‘ (apostrophe), 237, 304
* (asterisk), 239, 247, 250, 263
@ (at sign), 205
, (comma), 231, 237, 239
: (colon), 358
“ (double quotes), 304
! (exclamation point), 205
/ (forward slash), 231, 338
- (hyphen), 231
() (parentheses), 247, 231, 237, 313
% (percent sign), 250
+ (plus sign), 231
(pound sign), 237
? (question mark), 250
; (semicolon), 341
_ (underscore), 250

NUMBERS

1:1 (one-to-one relationships)
described, 32
ER model and, 39, 106, 117–119,

124, 128, 132–133
implementing, 160–161
overview, 78

1:M (one-to-many relationships)
business rules and, 34
converting M:N relationships to, 82–83
described, 32
ER models and, 39, 104–106, 110,

120–122, 128, 131
fan traps and, 162–163
implementing, 76–77
network model and, 35
overview, 76–77
time-variant data and, 161–162

1NF (first normal form)
conversion to, 181–183
described, 183

2NF (second normal form)
conversion to, 184–187
denormalization and, 203–204
described, 185

3NF (third normal form)
conversion to, 185–187
denormalization and, 200
described, 187
granularity and, 188
logical design and, 402
star schema and, 548

4NF (fourth normal form), 179, 180
described, 197
overview, 196–197

5NF (fifth normal form), 179–180

A

ABORT message, 499
ABS function, 327
Access (Microsoft), 225, 251

AutoNumber data type and, 81,
192, 330

COMMIT command and, 238
computed columns and, 246
constraints and, 233
CREATE VIEW command, 270
database administration and, 639
datasets and, 60
date/time formats and, 237, 246,

324–325
embedded SQL and, 358
ER models and, 105, 110
INSERSECT queries and, 302
joins and, 275
primary keys and, 231
QBE (query by example), 243–244
ROLLBACK command and, 241
surrogate keys and, 192
transaction management and, 418
Web services and, 578

access plans. See also access rights
database administration and, 652
described, 452, 625
I/O costs and, comparison of, 457
query optimization and, 467, 468

access rights. See also access plans
database administration and, 632
database design and, 386, 389, 404
locks and, 430–431
performance tuning and, 452

accounts, creating, 620. See also
passwords

ACCT_TRANSACTION table, 416, 417
Acrobat Reader (Adobe), 590
ActiveX (Microsoft), 591
ActiveX Data Objects (Microsoft)

described, 580
Web server interfaces and, 589

Actuate, 520
ad hoc queries, 8. See also queries
ADD constraint, 255
ADD_MONTHS function, 326
ADMINISTRATOR table, 152
ADO (Microsoft ActiveX Data Objects)

described, 580
Web server interfaces and, 589

ADO.NET (Microsoft), 575, 591, 601
described, 581
JDBC and, 584
overview, 581–583
Web server interfaces and, 589

Adobe Acrobat Reader, 590

Adobe PDF (Portable Document
Format), 590

AGENT table, 13, 36–37, 39
data anomalies and, 16–17
data dictionaries and, 75
data redundancy and, 16
integrity rules and, 67–68
joins and, 73
relational operators and, 70–72

aggregate functions, 261–262, 327
aggregation

business intelligence and, 532
database design and, 407–408
levels, fact tables that represent,

549–550
star schema and, 549–550

Agile Software Development, 374
aliases

column, 245–246
described, 246
joins and, 273

ALL operator, 317
ALL_ROWS hint, 458
Allegro Group, 413
ALTER command, 254, 258
ALTER TABLE command, 221, 254, 255
ampersand (&), 205
analytical processing logic, 533
ANALYZE command, 449
AND operator, 222, 247, 248, 249
anomalie(s)

deletion, 178, 179
denormalization and, 204
normalization and, 183, 184, 178

ANSI (American National Standards
Institute), 46

ANSI SQL standard, 222, 233. See also
standards

data types and, 228
date/time functions and, 324
joins and, 275, 306, 309
ON UPDATE CASCADE clause

and, 230
relational set operators and, 298
schema and, 225
special operators and, 249–251
transactions and, 419–420
Web site, 298

ANSI/SPARC architecture, 46
ANY operator, 317
AP (application processor), 487
APIs (application programming interfaces)

call level interfaces and, 358
described, 575
ISAPI (Internet Server API), 588
Web servers and, 588–589

INDEX

673

Web services and, 577–578, 588–589
WSAPI (WebSite API), 588

apostrophes (‘), 237, 304
Apple Safari, 589. See also browsers
application(s)

cost of, 23
database administration and, 626–268
failures, 388, 435
independence, 48–49
maintaining, 628–269
operating system, overview of, 19
performance tuning and, 446–447
query processing bottlenecks and, 453
recovery management and, 435
selection, 399, 620
“as a service” services, 482
testing, 626
upgrades, 24

arithmetic operator(s)
precedence rules and, 247
SQL and, 247, 255
updates and, 255

Arthur Andersen (company), 518
ASCII (American Standard Code for

Information Interchange), 244–245, 251
ASP (Microsoft Active Server Pages), 358
ASP.NET (Microsoft), 574
ASSIGNMENT table, 184–185, 188–192,

196–199, 201
associative (composite) entities,

81, 121–123
asterisk (*), 239, 247, 250, 263
Asynchronous JavaScript, 574
at sign (@), 205
AT&T (American Telephone and

Telegraph), 5
atomic

attributes, 188
transaction property, 435

atomicity, 188, 419
attributes

atomic, 188
business rules and, 32
character, 244–245
characteristics of, 254
column, 239
comparison operators used on,

244–245
composite, 103
conditional expressions and, 460
cursor, 356
data redundancy and, 84
data-modeling checklist and, 205
deleting, 255
dependent, 184–187
derived, 105, 106
described, 31

domains, 60
EER model and, 154–155
fragmentation and, 502–503
functional dependence and, 62–63
hierarchies, 544, 545
identifying new, 188
implementing, 104–105
list subqueries and, 319–321
multivalued, 103, 104–105
names, 34, 205
new, identifying, 188
nonprime (nonkey), 175
normalization and, 175–176, 178, 183,

184–185, 205
nulls and, 148, 238
OLAP and, 537
optional, 101
overview, 100–105
performance tuning and, 459, 464
prime (key), 175
reassigning, 184–187
required, 101
row, 238
simple, 103
single-valued, 103
star schema and, 542–545
transaction management and, 415
unique, 148

audit(s), 389, 628
logs, 632
normalization and, 178
trails, 386

authentication, 225
authorization management, 632
Auto-Create Statistics option, 449
AutoNumber data type, 81, 192, 228, 330
Auto-Update option, 449
availability, 629
AVERAGE function, 64
AVG function, 222, 262, 265, 266
Azure Services Platform (Microsoft), 43

B

B2B (business-to-business) commerce, 592,
594, 597, 599

B2C (business-to-consumer) commerce, 592
backup(s)

concurrent, 622
database administration and, 621–622,

624, 627, 628
database design and, 387, 389
DDBMSs and, 486
differential, 387
full, 387, 622
identification, proper, 622
incremental, 622
management, 22

transaction log, 387
Web services and, 601

batch
mode, 549
update routines, 334, 335–336

BCNF (Boyce-Codd normal form)
conversion, 193
decomposition to, 194–195
described, 192
overview, 179, 192–195

BEGIN keyword, 343, 355
BEGIN statement, 420
BETWEEN special operator, 222, 249–250
BI (business intelligence). See also

specific tools
Allegro Group and, 413
architecture, 517–520
benefits of, 219
decision support data and, 521–525
described, 515
framework, 517
overview, 514–570
steps, 516

binary locks, 430
bit arrays, 455
bitmap indexes, 455, 456. See also

indexes
BlackBerry, 482. See also handheld devices
“blind people and the elephant”

analogy, 31
Boolean algebra, 248
bottlenecks, query processing, 453
boundaries

defining, 382
described, 382

Brazil, 607
bridge entities. See composite entities
British Petroleum, 57
browsers, 23, 607

ActiveX and, 591
middleware and, 586–588
overview, 589–590
XML and, 597

B-tree indexes, 455, 456
buffer(s)

described, 436
pool size, 627
recovery management and, 436, 437
updated, 437

buffer (data) cache, 448, 463. See also
SQL cache

described, 448
performance tuning and, 449
query processing bottlenecks and, 453

BUILD clause, 560
Business Analyzer, 219

INDEX

674

business intelligence (BI). See also
specific tools

Allegro Group and, 413
architecture, 517–520
benefits of, 219
decision support data and, 521–525
described, 515
framework, 517
overview, 514–570
steps, 516

business processes, 516
business rules, 223, 392

data-modeling checklist and, 205
described, 32
description of operations and, 392
discovering, 33
overview, 32–34
translating, into data model

components, 33–34
BusinessObjects (company), 520

C

C++ (high-level language)
embedded SQL and, 359
Web services and, 590, 591

C# (high-level language), 7, 500
embedded SQL and, 358
procedural SQL and, 337

CAD/CAM (computer-aided
design/computer-aided manufacturing),
43, 539

candidate keys
1:M relationships and, 78
BCNF and, 193
described, 64, 66
normalization and, 179, 187

cardinality, 107, 108, 123, 128
Cartesian product, 70, 306, 457
cascading order sequence, 260
CASE (computer-aided systems

engineering) tools
back-end, 635
described, 378, 624, 635, 636–637
front-end, 635
ISA and, 638

CASE function, 330
case-sensitive searches, 251
CAST function, 328
CEIL function, 327
CEILING function, 327
cell phones, 481–482. See also handheld

devices
Celsius scale, 6
central processing units (CPUs)

cycles of, 426
database administration and, 625
DDBMSs and, 483, 500

performance tuning and, 446, 449
query processing bottlenecks and, 453
schedulers and, 426
Web services and, 588, 591

centralized databases, 9–10
CGI (Common Gateway Interface),

588, 589
CHAR data type, 228, 230, 298, 340
character data type, 228
CHECK command, 221, 233–235
checkpoints, 436
Chen, Peter, 39
Chen notation

attributes and, 101, 104–106, 121
described, 39
example of, 40
weak entities and, 111

China, 607
CLAIM (clinical accounting

information), 600
class(es)

described, 41
hierarchy, 41

class diagrams. See also UML (Unified
Modeling Language)

described, 41
ER models and, 131

CLASS table, 76–78, 154, 157, 158
ER models and, 102–103, 107–110,

113–116, 121–122, 124–126
M:N relationships and, 80–83

CLI (Call Level Interface), 358, 575
client/server computing. See also servers

architecture, 490, 507, 533, 534
business intelligence and, 520
DDBMSs and, 488, 490, 507
MOLAP and, 539–541
OLAP and, 533, 534, 535, 538,

539–541
performance tuning and, 447
query processing and, 451–453
ROLAP and, 538

client-side extensions, 590, 591
CLOSE command, 355
closure, property of, 68
COBOL

embedded SQL and, 358, 359–361
procedural SQL and, 337

Codd, Edgar (“Ted”), 4, 36, 58, 88
Cognos, 520
cohesivity, use of the term, 398
ColdFusion, 358, 591
colon (:), 358
columns

adding, 254
aliases, 245–246, 268
computed, 245–246

conditional expressions and, 460
copying the contents of, 257–258
data characteristics of, 254
data types and, 255–256
dropping, 255
names, 231, 452
performance tuning and, 450
sequences and, 330–333
width, 239

COM objects, 579–581
comma (,), 231, 237, 239
commands. See also commands (listed by

name)
data definition, 221, 223–226,

255–259
data manipulation, 237–242, 298
set-oriented, 240, 241, 298

commands (listed by name). See also
commands

ALTER command, 254, 258
ALTER TABLE command, 221,

254, 255
ANALYZE command, 449
CHECK command, 221, 233–235
CLOSE command, 355
COMMIT command, 221, 238,

240, 241
CREATE INDEX command, 221,

235, 236
CREATE SCHEMA AUTHORIZATION

command, 221, 225–226
CREATE TABLE AS command, 221
CREATE TABLE command, 221,

229–232, 234, 235, 238, 451
CREATE VIEW command, 221,

269–270, 632
DEFAULT command, 221
DELETE command, 221
DROP INDEX command, 221, 236
DROP SEQUENCE command, 333
DROP TABLE command, 221, 259
DROP VIEW command, 221
EXIT command, 356
EXPLAIN PLAN command, 465
FETCH command, 355, 356, 361
FOREIGN KEY command, 221
GETDATE command, 226
INSERT command, 221, 237,

238, 257
LOCK TABLE command, 430
NOT NULL command, 221,

230–231, 263
OPEN command, 355
PRIMARY KEY command, 221
ROLLBACK command, 221, 238,

240, 256–257

SELECT command, 221, 238–239,
240, 264–265, 271, 340

SHOW ERRORS command, 339
SQL command, 73, 87
UNIQUE command, 221, 235–236
UPDATE command, 221, 240,

255–257
COMMIT command, 221, 238, 240, 241
COMMIT statement, 255, 333, 419–421,

437, 438, 498–499
company situations, analysis of, 380
comparison operators

dates and, 245
SQL and, 244–247

COMPLETE clause, 560
completeness

constraint, 153
partial, 153
total, 153

compliance, 629
composite (associative) entities, 81,

121–123
composite keys. See also keys

described, 63
normalization and, 187

Comprehensive Data Sublanguage rule, 88
Computer Associates, 637
computer-aided systems engineering

(CASE) tools
back-end, 635
described, 378, 624, 635, 636–637
front-end, 635
ISA and, 638

concatenation, 328, 341
conceptual design. See also design

data analysis/requirements step,
391–393

data model verification and, 396–399
described, 390
ER model and, 393–396
overview, 390–399

conceptual models
described, 48
mapping, 400–401
overview, 48–49

conceptual schema, 48. See also schema
concurrency control, 627, 624

DDBMSs and, 486, 498–499
described, 421
distributed, 498–499
inconsistent retrievals and, 424–425
locking methods and, 426–433
lost updates and, 422, 423
optimistic methods and, 435
overview, 421–426
schedulers and, 425–426
time stamping methods and, 433–435
uncommitted data and, 423–424

wait/die schemes and, 434, 435
wound/wait schemes and, 434, 435

conditional
criteria, 242–247
expressions, 460–461

confidentiality, 629
CONNECT role, 644
Connection object, 583
connectivity

described, 39, 107, 108
ER models and, 128

consistency. See also consistent
database state

DDBMSs and, 486
described, 419
normalization and, 183

consistent database state. See also
consistency

described, 416
rolling back databases to previous, 417,

420, 421
constraint(s)

business rules and, 32
database design and, 380–381
defining, 380–381
described, 32
integrity rules and, 68
naming conventions and, 34
SQL and, 232–235
validating, 402–403
Web services and, 583

CONSTRAINT clause, 232
CONSTRAINT keyword, 234
CONSULTANT table, 74
conversion functions, 328–330
CONVERT function, 328
coordinator nodes, 499
Corporate Modeler Suite (Casewise), 637
correlated subqueries, 321, 322–324. See

also subqueries
COUNT function, 64, 222, 262, 263, 266
COURSE table, 76–78, 154

1:M relationships and, 82–83
ER models and, 109–110, 113,

115–117, 124–125
normalization and, 202

CPUs (central processing units)
cycles of, 426
database administration and, 625
DDBMSs and, 483, 500
performance tuning and, 446, 449
query processing bottlenecks and, 453
schedulers and, 426
Web services and, 588, 591

CREATE INDEX command, 221,
235, 236

CREATE SCHEMA AUTHORIZATION
command, 221, 225–226

CREATE TABLE AS command, 221
CREATE TABLE command, 221,

229–232, 234, 235, 238, 451
CREATE VIEW command, 221,

269–270, 632
criteria

conditional, 460
performance tuning and, 460

Crow’s Foot notation
attributes and, 101, 103–106
cardinality and, 107
composite entities and, 121
described, 39
example of, 40
mandatory participation and, 114
normalization and, 175
relationships and, 109–110
symbols, 114
weak entities and, 111

cube(s)
cache, 539
described, 539
slice and dice analysis and, 543–544
star schema and, 543

CUBE extension, 556, 558–559
cursor(s)

attributes, 356
described, 354
explicit, 354
implicit, 354
procedural SQL processing with,

354–357
CUSTOMER table, 12, 15–17, 31, 34,

36–37, 41, 106, 201–202
data anomalies and, 16–17
data entry errors and, 16, 20, 74–75
data redundancy and, 16, 86
DDBMSs and, 490, 496, 497,

502–504
integrity rules and, 67–68
joins and, 73
query optimization and, 454–455
relational operators and, 70–71
secondary keys and, 66
SQL and, 223, 234, 299–302, 307,

312–313, 348, 353
transaction management and, 415–417

CUSTOMER_2 table, 299–302

D

DAO (Data Access Objects), 575, 576,
578–579

DAs (data administrators), 615, 616
dashboards, 520
data

administrators (DAs), 615, 616
binding, 597, 599
converting, 386

INDEX

675

as a corporate asset, 609–610
decision support, 521–525
dependence, 15
described, 5
dirty, 610
entry errors, 16, 425
explosion, combating, 413
extraction, 525, 554
filtering, 525
inconsistency, 8
information versus, 5–7
integration, improvement of, with

DBMSs, 8
loading, 386
logical view of, 59–66
management, 7
-modeling skills, lack of, 17
operational, 521–525
preparation phase, 555
presentation, 21, 519
processing, problems with, 14–17
-processing logic, 533, 534
quality, 9
semistructured, 10
sources, configuring, 578
sparsity, 454–455
store, 519
structured, 9–10
transformation, 21
uncommitted, 423, 424
unstructured, 9
visualization tools, 519

data abstraction
degrees of, 46–50
levels of, 50

Data Access Objects (DAO), 575, 576,
578–579

data allocation
centralized, 506
described, 506
overview, 506–507
partitioned, 506
replicated, 506

data analysis
need for, 515
tools, 519, 520

data anomalies
data redundancy and, 16–17
deletion, 17
described, 17
insertion, 17
update, 17

data cache (buffer cache), 448, 463. See
also SQL cache

described, 448
performance tuning and, 449
query processing bottlenecks and, 453

data dictionaries, 226–228, 544
active, 633
database design and, 407
described, 20–21, 74, 624, 633
overview, 74–75, 633–635
passive, 633
performance tuning and, 448, 452
usage example, 634–635

data fragmentation
attributes and, 502–503
concurrency control and, 486
data replication and, 504–506
described, 399, 484, 485, 501,

502–504
distributed requests and, 496
horizontal, 501, 502
mixed, 501, 504
vertical, 501–503

data granularity, 462, 521, 523
business intelligence and, 521
described, 188
refining primary keys and, 188

data marts
described, 527
OLAP and, 536

data mining
DDBMSs and, 482
described, 553
overview, 553–556
tools, 520

data model(s). See also specific models
basic building blocks, 31–32
checklist for, 204–205
components, translating business rules

into, 33–34
described, 30
evolution of, 34–46
importance of, 30–31
modeling functions and, 532
overview, 29–55
terminology, 46

data redundancy
controlled, 64–65
denormalization and, 200, 202
described, 16
normalization and, 178–179

data replication
described, 504, 506, 551
overview, 504–506

data sets
merging, 452
sorting, 452

data type(s). See also data types (listed
by name)

changing, 255–256
columns and, 255–256
mismatches, 358

SQL and, 226–229, 340
union-compatible relations and, 298

data types (listed by name). See also data
types

AutoNumber data type, 81, 192,
228, 330

CHAR data type, 228, 230, 298, 340
character data type, 228
DATE data type, 228, 340
DECIMAL data type, 228
DOUBLE data type, 228
FLOAT data type, 228
INTEGER data type, 228, 230
NUMBER data type, 228, 230,

298, 340
numeric data type, 228
REAL data type, 228
SMALLINT data type, 228, 230, 298
TIME data type, 228
TIMESTAMP data type, 228
VARCHAR data type, 226, 228, 230,

298, 340
data warehouse(s)

as active decision support
framework, 551

aggregation and, 549–550
bitmap indexes and, 455
components of, 526–529
DDBMSs and, 482
deadlocks and, 433
described, 9, 526
design of, 10–11, 552–553
development life cycle, 528
implementing, 551–554
materialized views and, 560
overview, 514–570
tools, 520
twelve rules that define, 528–529
user involvement with, 552
VLDBs and, 525
XML and, 599

DataAdapter, 583
database(s). See also specific management

systems
centralized, 9–10
communication interfaces, 23
connectivity, overview, 575–585
described, 7
designers, job description for, 19
development, 374
dumps, 622
enterprise, 9–10, 611
failures, common sources of, 387–388
fully replicated, 506
instances, 642
introduction to, 7–11
need for, 5, 610–612

INDEX

676

partially replicated, 506
requests, 416
role of, in organizations, 610–612
roles, 404
size of, 506, 525, 541
spreadsheets and, comparison of, 23
systems, overview, 17–24
types of, 9–11
unreplicated, 506

database administration. See also DBAs
(database administrators)

function, evolution of, 613–616
human component of, 616–629
initialization parameters and, 647
managing users, 644–646
startup procedures and, 641–642
strategies, developing, 637–639
tools, 633–638

database design
bottom-down, 405–406
cases, 160–164
centralized, 406, 407
challenges, 128–133
conceptual, 390, 391–399
conflicting goals and, 128–133
data warehouses and, 552–553
data-modeling skills and, 17
DDBMSs and, 501–507
decentralized, 406, 407
described, 10
distributed, 399
flexible, 159–164
importance of, 10–11
lack of, 17
logical, 400, 401–403
normalization and, 187–191, 197–200
overview, 372–411
performance tuning and, 447
physical, 403, 404–405
software selection and, 399
standards, 128
strategies, 405–406
top-down, 405–406
traps, 162

Database Life Cycle (DBLC), 374, 375
conceptual design and, 390
database design phase, 382–384
database initial study phase, 378–382
described, 378
implementation/loading phase,

384–386
maintenance phase, 389–390
operation phase, 389
overview, 378–390
SDLC and, comparison of, 389–390
testing/evaluation phase, 386–388

database management systems (DBMSs).
See also database systems

advantages of, 7–9, 17–18
architecture of, 447–449
attributes and, 254, 544
concurrency control and, 425
database administration and, 623–268
described, 7
evaluating, 623–625
functions of, 20–23
hybrid, 43
installing, 385, 623–625
internal model and, 49
introduction of, 612–613
joins and, 270, 306
locks and, 427, 429, 430
maintaining, 628–269
normalization and, 192, 200
performance tuning and, 446, 447,

448–450, 459–461
query optimization and, 454–455
relational operators and, 68–74, 298
role of, 7–9
schedulers and, 426
selecting, 623–625
surrogate keys and, 158, 192
transaction management and, 417–419,

421, 425, 427, 429–430, 433–438
Web services and, 575

database model(s). See also specific models
advantages/ disadvantages of, 45
data models and, distinction

between, 30
use of the term, 30

database objects
described, 643
managing, 643–644

database performance tuning, 447–449,
463–464

client/server systems and, 447
concepts, 446–450
conditional expressions and, 460–461
database statistics and, 449–450
described, 21, 446
monitoring tools, 627
overview, 459–461, 445–479
query processing and, 451–453

database recovery management, 22, 486.
See also backups

database administration and, 621–622,
624, 627, 628

described, 435
overview, 435–439, 601
performance tuning and, 464
process, 388

database schema. See also star schema
business intelligence and, 524–525

conceptual, 48
database administration and, 643–645
described, 35, 225, 643
locks and, 431
multidimensional data and, 537
network model and, 35
OLAP and, 541
overview, 524–525
SQL and, 225–226

database statistics
described, 449–450
performance tuning and, 463
query optimization and, 457

database system(s). See also specific
systems

described, 18
environment, 18–20
management, 23–24

datafiles
creating, 642–643
described, 448, 642

DataSets, 60, 581, 582, 583
Date, C. J., 508
DATE data type, 228, 340
DATE field, 226
DATE function, 105, 246, 462
DATEDIFF function, 105
dates, 228, 237, 340

computed columns and, 246–247
functions for, 324–327
system, 191, 226
using comparison operators on, 245

DB2 (IBM), 19, 385
database administration and, 634, 639
database statistics and, 450
embedded SQL and, 358
performance tuning and, 449, 450
SQL and, 225, 333–336
updatable views and, 333–336

DBAs (database administrators). See also
database administration

activities of, typical, 616–619
CASE tools and, 635–637
data distribution and, 622–623
database design and, 385, 386, 392
database statistics and, 450
described, 613
job description for, 19
performance tuning and, 472
query optimization and, 472
role of, 613–614, 618–623

DBLC (Database Life Cycle), 374, 375
conceptual design and, 390
database design phase, 382–384
database initial study phase, 378–382
described, 378

INDEX

677

implementation/loading phase,
384–386

maintenance phase, 389–390
operation phase, 389
overview, 378–390
SDLC and, comparison of, 389–390
testing/evaluation phase, 386–388

DBMSs (database management systems).
See also database systems

advantages of, 7–9, 17–18
architecture of, 447–449
attributes and, 254, 544
concurrency control and, 425
database administration and, 623–268
described, 7
evaluating, 623–625
functions of, 20–23
hybrid, 43
installing, 385, 623–625
internal model and, 49
introduction of, 612–613
joins and, 270, 306
locks and, 427, 429, 430
maintaining, 628–269
normalization and, 192, 200
performance tuning and, 446, 447,

448–450, 459–461
query optimization and, 454–455
relational operators and, 68–74, 298
role of, 7–9
schedulers and, 426
selecting, 623–625
surrogate keys and, 158, 192
transaction management and, 417–419,

421, 425, 427, 429–430, 433–438
Web services and, 575

DDBMSs (distributed database management
systems). See also database systems;
DBMSs (database management systems);
distributed databases

advantages/disadvantages of, 483–484
characteristics of, 485–486
components, 486–488
data/process distribution levels and,

488–481
described, 481
design of, 501–507
fully heterogeneous, 490
heterogeneous, 490, 491
homogeneous, 490
MPMD scenarios and, 490–491
MPSD scenarios and, 489–490
overview, 480–513
SDSP scenarios and, 488–489
transparency features, 491–492

DDC (distributed data catalog)
data fragmentation and, 501

data replication and, 506
described, 494

DDD (distributed data dictionary), 494
DDL (data definition language), 36, 451
deadlock(s)

avoidance, 433
described, 431
detection, 433
overview, 432–433
prevention, 433

“deadly embrace,” described, 432–433
DECIMAL data type, 228
decision support database(s)

architectural styles, 529, 530
requirements, 523–525

Deep Zoom (Microsoft), 574
DEFAULT command, 221
DEFAULT constraint, 233, 234–235
default login, 640–641
DEFERRED clause, 560
deferred-write technique (deferred

update), 436
DELETE command, 221
DELETE statement, 241
deletion anomalies, 178, 179. See also

anomalies
denormalization. See also normalization

described, 175
examples, 202
overview, 200–204

Department of Homeland Security (United
States), 607

DEPARTMENT table, 78–79, 160–162
dependencies

diagrams for, 182, 183
eliminating, 184, 185–186
identifying, 182
multivalued, 196
partial, 180, 182, 184
transitive, 180, 182, 184–186, 193

DEPENDENT table, 110, 112, 157
derived attributes, 189–191. See also

attributes
DESC qualifier, 260
description of operations, 392
design

bottom-down, 405–406
cases, 160–164
centralized, 406, 407
challenges, 128–133
conceptual, 390, 391–399
conflicting goals and, 128–133
data warehouses and, 552–553
data-modeling skills and, 17
DDBMSs and, 501–507
decentralized, 406, 407
described, 10

distributed, 399
flexible, 159–164
importance of, 10–11
lack of, 17
logical, 400, 401–403
normalization and, 187–191, 197–200
overview, 372–411
performance tuning and, 447
physical, 403, 404–405
software selection and, 399
standards, 128
strategies, 405–406
top-down, 405–406
traps, 162

Designer (Oracle), 637
desktop databases, 9–10
determinants

described, 185
eliminating transitive dependencies and,

185–186
determination, concept of, 62
device drivers, 453
DFDs (data flow diagrams), 376–377
DIFFERENCE operator, 68, 70
differential backups, 387. See also backups
dimension tables

described, 542
normalizing, 548–549
SQL extensions and, 556

dimensionality, 521
dimensions

attributes for, 542–544
described, 542

disaster management, 622
disgruntled employees, 436
diskless workstations, 386
diskpages, 428
DISTINCT clause, 261, 263
DISTINCT operator, 222
distributed data catalog (DDC)

data fragmentation and, 501
data replication and, 506
described, 494

distributed database(s)
described, 9–10, 484, 485
twelve commandments for, 508

distributed database management systems
(DDBMSs). See also database systems;
DBMSs (database management systems);
distributed databases

advantages/disadvantages of, 483–484
characteristics of, 485–486
components, 486–488
data/process distribution levels and,

488–481
described, 481
design of, 501–507

INDEX

678

fully heterogeneous, 490
heterogeneous, 490, 491
homogeneous, 490
MPMD scenarios and, 490–491
MPSD scenarios and, 489–490
overview, 480–513
SDSP scenarios and, 488–489
transparency features, 491–492

distributed global schema, 494
distributed processing

described, 484
overview, 484–485

Distribution Independence rule, 88
DIVIDE operator, 68, 73
DKNF (domain-key normal form), 180
DLLs (dynamic-link libraries)

described, 576
Web services and, 576, 588

DMs (data managers), 487
DML (data manipulation language). See also

SQL (Structured Query Language)
described, 36
performance tuning and, 451
predicates, trigger actions based

on, 350
procedural SQL and, 341
recovery management and, 438
subqueries and, 313

DO-UNDO-REDO protocol, 499
domains

described, 61
overview, 101

DOUBLE data type, 228
double quotes (“), 304
DP (database processor)

client/server architecture and, 507
concurrency control and, 498, 499
data replication and, 506
described, 487
query optimization and, 500
scenarios and, 489
transparency and, 495–496

DPs (data processing) specialists
data processing problems and, 14–17
described, 11
requests to, 12–14

drill down
attribute hierarchies and, 544
described, 521

DROP constraint, 255
DROP INDEX command, 221, 236
DROP SEQUENCE command, 333
DROP TABLE command, 221, 259
DROP VIEW command, 221
DSNs (data source names), 577
DSO (database security officer), 621
DSS (decision support systems)

data mining and, 544
described, 520
first-generation departmental, 530

DTDs (Document Type Definitions), 594,
595–496

dumb terminals, 481
durability, 419, 421
DWCUSTOMER table, 556
DWDAYSALESFACT table, 561–562
DWPRODUCT table, 556
DWREGION table, 556
DWSALESFACT table, 556
DWTIME table, 556
DWVENDOR table, 556
Dynamic Online Catalog Based on the

Relational Model rule, 88
dynamic statistical generation mode, 501

E

Eclipse BIRT, 520
e-commerce

B2B (business-to-business), 592, 594,
597, 599

B2C (business-to-consumer), 592
EDP (electronic data processing)

department, 613
education, 518. See also training
EER (extended entity relationship model)

completeness constraint and, 153
overview, 124–173

EERD (EER diagram), 148
EERM (extended entity relationship model)

described, 148
overview, 148–154

Ellison, Larry, 4
EMPLOYEE table, 41, 64, 401, 583

DDBMSs and, 492
EER model and, 148–153, 156–157,

160–162
ER model and, 106, 108, 111–112,

114, 116–123, 126, 131–132
normalization and, 184–185
query optimization and, 458
SQL and, 260, 320

employees, disgruntled, 436
EMPLOYEE_V1 table, 131–132
encryption, 386, 632
END keyword, 343, 355
end user(s)

analytical interface, 425
DBAs and, 619, 621
described, 644
IDs, 225, 591, 630, 632
managing, 644–646
-names, 640
OLAP and, 533, 534
training, 619

use relational model and, 38
ENROLL table, 81, 82, 202
Enron, 518
Enterprise Architecture, 57
enterprise databases, 9–10, 611
entities. See also entity; entity integrity

associative (composite), 81, 121–123
business rules and, 32
described, 31
ER model and, 39
integrity of, 155–156
names of, 34, 205
objects and, 41
overview, 100
strong/regular, 108

entity. See also entities; entity integrity
clusters, 154, 155
instances, 39
sets, 39
subtypes, 148–149
supertypes, 148–149

entity integrity. See also integrity
described, 64
rules, 67–68
SQL and, 232
transaction management and, 419

entity relationship diagrams (ERDs)
attributes and, 103–104
cardinality and, 107
completeness constraints and, 153
conceptual design and, 394
described, 38–39
design challenges and, 131
EER model and, 149–151
entity clusters and, 154–155
fan traps and, 162–164
normalization and, 175, 197–200
overlapping subtypes and, 152
SQL and, 224
time-variant data and, 161–162
weak entities and, 111–112

entity relationship model (ERM)
described, 38
expanded, 83
overview, 38–40, 100–123

EPA (Environment Protection Agency), 607
equality comparison operator, 72
ER diagrams

conceptual design and, 393–396
database administration and, 636
developing, 123–128
SDLC and, 376

ER model(s)
classification of, as a conceptual

model, 48
comparison of, with other data

models, 42

INDEX

679

conflicting goals and, 128–133
database design and, 393–396
data model verification and, 396–399
data-modeling checklist and, 205
M:N relationships and, 80
normalization and, 175
nulls and, 68
OO data model and, 41
overview, 99–146
relationships and, 105–106
SQL and, 224
subtype discriminators and, 151
terminology, 46

ERDM (extended relational data model)
advantages/ disadvantages of, 45
described, 24
strong market share of, 44

ERDs (entity relationship diagrams)
attributes and, 103–104
cardinality and, 107
completeness constraints and, 153
conceptual design and, 394
described, 38–39
design challenges and, 131
EER model and, 149–151
entity clusters and, 154–155
fan traps and, 162–164
normalization and, 175, 197–200
overlapping subtypes and, 152
SQL and, 224
time-variant data and, 161–162
weak entities and, 111–112

ERM (entity relationship model)
described, 38
expanded, 83
overview, 38–40, 100–123

ER/Studio data modeling tool, 57
error(s)

data entry, 16, 425
human caused, 436
indexes and, 236
procedural SQL and, 339
recovery management and, 435
referential integrity, 110
reporting variables, 360
subqueries and, 314
transaction management and, 435, 436
updatable views and, 334–335

ERwin Data Modeler (Computer Associates),
57, 637

ETL (extraction, transformation, and
loading) tools, 518, 527–528

EVALDATA table, 203
EVENT table, 158–159
Excel (Microsoft), 14, 573, 578. See also

spreadsheets
exclamation point (!), 205

exclusive locks, 430, 431. See also locks
execution phase, 451, 453
exemptions, programming, 388
existence-dependence, 108
existence-independence, 108
EXISTS special operator, 222,

252–253, 323
EXIT command, 356
EXPLAIN PLAN command, 465
explicit cursors, 354. See also cursors
extends

described, 448
performance tuning and, 448

Extensible Markup Language (XML)
applications, 597–600
databases, 10, 600
DataSets and, 582
deadlocks and, 433
described, 10, 592
DTDs and, 594–596
evolution of data models and, 44
format, native, 42
pervasive use of, 42–43
presentation, 596–597
schema, 595
relational set operators and, 298
Web services and, 574, 575, 592–600

external
schema, 47
model, 46, 47–48

F

FACHIST table, 203
fact tables, 549–540, 556

denormalizing, 550–551
described, 541
SQL extensions and, 556
views and, 559

facts, 541. See also fact tables
faculty evaluation report, 202–203
Fahrenheit scale, 6
failure

independence, 508
single-point, 483

fan traps
described, 162
handing, 162–164

FAST clause, 560
FETCH command, 355, 356, 361
fetching phase, 451, 453
field(s)

described, 12
-level locks, 430

fifth normal form (5NF), 179–180
file systems

data processing, problems with, 14–17
evolution of, 11–14

manual, 11
productivity tools and, 14
simple, 13
terminology, 12

files, use of the term, 12. See also datafiles
Firefox (Mozilla), 23. See also browsers
first normal form (1NF)

conversion to, 181–183
described, 183

FIRST_ROWS hint, 458
FKs (foreign keys). keys

1:1 relationships and, 160–161
data dictionaries and, 75
data redundancy and, 84
described, 65, 66
designations, adding, 258–259
ER models and, 104, 111, 120, 132
flexible design and, 159
integrity rules and, 67–68
M:N relationships and, 81
normalization and, 184, 199
performance tuning and, 459–460
placing, 160–161
sequences and, 333
SQL and, 232–233, 258–259
star schema and, 545–546

flags, 68
FLOAT data type, 228
FLOOR function, 327
FOREIGN KEY command, 221
foreign keys (FKs). See also keys

1:1 relationships and, 160–161
data dictionaries and, 75
data redundancy and, 84
described, 65, 66
designations, adding, 258–259
ER models and, 104, 111, 120, 132
flexible design and, 159
integrity rules and, 67–68
M:N relationships and, 81
normalization and, 184, 199
performance tuning and, 459–460
placing, 160–161
sequences and, 333
SQL and, 232–233, 258–259
star schema and, 545–546

forward slash (/), 231, 338
fourth normal form (4NF), 179, 180

described, 197
overview, 196–197

fragmentation
attributes and, 502–503
concurrency control and, 486
data replication and, 504–506
described, 399, 484, 485, 501,

502–504
distributed requests and, 496

INDEX

680

horizontal, 501, 502
mixed, 501, 504
vertical, 501–503

FROM clause, 270, 305, 318–319, 321
FROM subqueries, 318–319
FRONT clause, 246
FTP (File Transfer Protocol), 591
full backups, 387. See also backups
full functional dependence, 63. See also

functional dependence
function(s). See also functions (listed

by name)
aggregate, 261–262, 327
-based indexes, 460
conversion, 328–330
stored, 357

functional dependence
described, 62, 180–181
full, 63

functions (listed by name). See also
functions

ABS function, 327
ADD_MONTHS function, 326
AVERAGE function, 64
AVG function, 222, 262, 265, 266
CASE function, 330
CAST function, 328
CEIL function, 327
CEILING function, 327
CONVERT function, 328
COUNT function, 64, 222, 262,

263, 266
DATE function, 105, 246, 462
DATEDIFF function, 105
FLOOR function, 327
LAST_DAY function, 327
LENGTH function, 328
LOWER function, 328
MAX function, 262, 263, 264, 265,

266, 337, 470
MIN function, 222, 262, 263, 264,

265, 266
MIX function, 337
ROUND function, 327, 462
SUM function, 64, 222, 262,

265, 266
SYSDATE function, 105, 235, 246,

326, 462
TO_CHAR function, 325, 326, 328
TO_DATE function, 235, 325,

326, 328
TO_NUMBER function, 329
UPPER function, 251, 328, 469

Fusion (NetObjects), 591

G

generalization
described, 154

EER model and, 154
GETDATE command, 226
GIF (geographic information system), 539
GLBA (Gramm-Leach-Bliley Act), 629
global schema, distributed, 494
GO/NO GO decision points, 377
goals, conflicting, 128–133
Google, 5
governance, 518
Gramm-Leach-Bliley Act (GLBA), 629
granularity, 462, 521, 523

business intelligence and, 521
described, 188
refining primary keys and, 188

GROUP BY clause, 221, 266, 267–269,
316, 643, 459, 462, 556, 557–559

grouping data, 266–269
growing phase, 431–432
Guaranteed Access rule, 88
GUIs (graphical user interfaces), 19, 533,

534, 535
client/server architecture and, 507
database administration and, 639
DDBMSs and, 483

H

hackers, 436
handheld devices. See also networks; Web

services
data allocation and, 507
DDBMSs and, 481–482

hard drives. See also hardware
query processing bottlenecks and, 453
RAID and, 463

hardware. See also specific hardware
costs of, 23
database administration and, 624
failures, 388, 435
independence, 48–49, 508, 585
overview, 18–19
performance tuning and, 446–447
query processing bottlenecks and, 453
recovery management and, 435
requirements, 399
upgrades, 24

hash
algorithms, 455
indexes, 455

HAVING clause, 268, 260, 221, 316,
460, 643

HAVING subqueries, 316
Health Insurance Portability and

Accountability Act (HIPAA), 629
hierarchical model

advantages/ disadvantages of, 45
described, 35
overview, 45–46

High-Level Insert, Update, and
Delete rule, 88

hints, optimizer, 458
HIPAA (Health Insurance Portability and

Accountability Act), 629
HIPO (hierarchical input process output)

diagrams, 376
historical accuracy, maintaining, 189
homonyms, 74
host languages, 358
hosted data management, 600
HTML (HyperText Markup Language). See

also Web services
client-side extensions and, 590
middleware and, 587
pages, automatic generation of, 591
tags, 592
Web servers and, 590
XML and, comparison of

HTTP (HyperText Transfer Protocol), 589
hyphen (-), 231

I

IBM (International Business Machines)
business intelligence and, 520
Codd at, 4
Cognos, 520
relational model and, 36
Web services and, 575

IBM DB2, 19, 385
database administration and, 634, 639
database statistics and, 450
embedded SQL and, 358
performance tuning and, 449, 450
SQL and, 225, 333–336
updatable views and, 333–336

identifiers. See also PKs (primary keys)
composite, 102–103
described, 101
overview, 101–105

IE (information engineering), 637
IMMEDIATE clause, 560
implicit cursors, 354. See also cursors
IN operator, 222, 252, 315–316
IN subqueries, 303–305, 315–316, 317
inconsistent retrievals, 424, 425
independence

central site, 508
data, 15
existence-, 108
failure, 508
hardware, 48–49, 508, 585
local site, 508
location, 585
network, 508
operating system, 508
software, 585

INDEX

681

index(es)
B-tree, 455, 456
bitmap, 455, 456
components of, 87
database design and, 404
denormalization and, 204
described, 86
function-based, 460
hash, 455
keys, 86–87
OLAP and, 537–539
organized table (IOT), 464
overview, 86–87
performance tuning and, 448, 450,

452, 459–460
query optimization and, 454–456, 458,

467–471
selectivity, 459, 460
SQL and, 235–236
table space, 464
unique, 87, 236

INDEX hint, 458
information

data versus, 5–7
described, 5–6
islands of, 16, 534
requirements, 128–130, 202
resource dictionary, 634
rule, 88
systems, 373, 374

Information Builders, 520
inheritance

described, 41, 150
EER model and, 150–151
overview, 150–151

initialization parameters, 647
inner joins, 72, 306. See also joins
inner queries (subqueries)

attribute list, 319–321
described, 242, 313
examples, 313
operators and, 317
overview, 312–324

input/output (I/O)
access plans and, 452, 457
database requests and, 416
DDBMSs and, 484, 486, 489, 500
MPSD scenarios and, 489
normalization and, 200
performance tuning and, 446, 449,

453, 464
query optimization and, 457
requests, 449
transaction management and, 416

INSERT command, 221, 237, 238, 257
INSERT statement, 242, 246, 416, 437

insertion anomalies, 179. See also
anomalies

installing DBMSs, 385, 623–625
instances

described, 642
entity, 39

insurance coverage, 622
INTEGER data type, 228, 230
integrity. See also entity integrity; integrity

rules; referential integrity
constraints, 402–403
database administration and, 621, 624
described, 16, 22, 621, 629
logical design and, 402–403
measures, defining, 404
transaction management and, 419

integrity rules. See also rules
entity, 67–68
Integrity Independence rule, 88
key designations and, 258–259
overview, 66–68

internal model
described, 49
overview, 49–50

internal schema, 49. See also schema
Internet. See also networks; Web services;

World Wide Web
DDBMSs and, 482
growth of, 482
technologies, characteristics and benefits

of, 585
Internet Explorer browser (Microsoft), 23,

589. See also browsers
INTERSECT operator, 68, 69–70
INTERSECT statement, 298, 300–304
INTO clause, 349
INVOICE table, 106, 130

business intelligence and, 526, 531
DDBMSs and, 495, 496
EER model and, 157
performance tuning and, 464
SQL and, 223, 234–235, 307–308,

312–313, 332–333, 348
transaction management and, 417

I/O (input/output)
access plans and, 452, 457
database requests and, 416
DDBMSs and, 484, 486, 489, 500
MPSD scenarios and, 489
normalization and, 200
performance tuning and, 446, 449,

453, 464
query optimization and, 457
requests, 449
transaction management and, 416

iPhone (Apple), 482, 574. See also
handheld devices

IRM (information resource manager), 616
IS NULL operator, 222
ISA (information systems architecture),

637, 638
ISAPI (Internet Server API), 588
ISO (International Organization for

Standardization), 222
isolation, 419
iterative process

described, 123
ER models and, 123
normalization and, 197–198

J

Java, 7, 590, 591
client/server architecture and, 507
DDBMSs and, 507
described, 583
embedded SQL and, 358

JavaScript, 574, 590, 591
JDBC (Java Database Connectivity), 575,

588, 589
described, 584
overview, 583–585

job histories, maintaining, 162–163
JOB table, 189, 190, 192, 201
join(s)

aliases and, 273
columns, 71
conditions, 270–271, 273,

305–306, 310
cross, 306, 307
crucial features of, 71–72
equi-, 72, 73
inner, 72, 306
left outer, 73
natural, 71, 307
normalization and, 180
operators, 305–312
outer, 72, 274–275, 306, 309–312
overview, 270–275
query optimization and, 462
recursive, 273–274
results, 271
right outer, 73
syntax, 305–306
theta, 72
USING keyword and, 307–309

JOIN ON operand, 308–309, 310
JOIN operator, 68, 70–71

K

Kelley Blue Book, 573
key(s). See also FKs (foreign keys); PKs

(primary keys)
attributes, 63

INDEX

682

described, 62
overview, 62–66

knowledge
acquisition phase, 555
described, 7

KPIs (key performance indicators), 518

L

LANs (local area networks), 507
LAST_DAY function, 327
legislation, 629
LENGTH function, 328
Library of Congress, 600
LIKE special operator, 222, 250
LINE table, 130, 157, 223, 231, 235,

307–308, 320, 322, 333, 347–348
business intelligence and, 531
data redundancy and, 86
transaction management and, 417

listener process, 449
listing(s)

ordering, 259–261
subqueries and, 319–321
unique values, 261

literals, 460, 461
lock(s). See also locking

binary, 430
conflicting, 431
database-level, 427, 428
dead-, 431, 432–433
deadly embraces and, 432–433
described, 426
exclusive, 430, 431
field-level, 430
granularity, 427, 428–430
managers, 427
overview, 426–433
page-level, 428, 429
problems related to, 431
row-level, 429
shared, 430, 431
table-level, 428
types, 430–431
wait/die schemes and, 434, 435
wound/wait schemes and, 434, 435

lock manager, 449
LOCK TABLE command, 430
locking. See also locks

concurrency control with, 426–433
MPSD scenarios and, 489
pessimistic, 427
two-phase, 431, 432

logical data format, 15
Logical Data Independence rule, 88
logical design. See also design

described, 49, 400
overview, 400–403

logical independence, 49

logical operators, 247–249, 222
login, default, 640–641
loops

nested, 452
performance tuning and, 452
procedural SQL and, 337
subqueries and, 321–324

lost updates, 422, 423
LOWER function, 328

M

M:1 (many-to-one) relationships, 545
Maar, Christian, 413
maintenance, 24

adaptive, 377, 389
corrective, 377, 389
database administration and, 621
perfective, 377
preventive, 389

mainframes, 481
manager history, maintaining, 161–162
mandatory participation, 113, 114–116
manual statistical generation mode, 501
many-to-many relationships (M:N)

business rules and, 34
composite primary keys and, 157
described, 32
EER model and, 158
ER models and, 39, 104, 118,

121–122, 124–125, 128
normalization and, 198–199
overview, 78–83

many-to-one (M:1) relationships, 545
MARPART table, 132–133
MARRIED_V1 table, 131–132
Martin, James, 631
materialized views, 559, 560, 561–563
MAX function, 262, 263, 264, 265, 266,

337, 470
MDBMSs (multidimensional database

management systems), 530, 539,
540, 543

MDM (master data management), 518
memory. See also RAM (random-access

memory)
bank, failing, 435
blocks, swapping, 453
database administration and, 627
DataSets and, 581
performance tuning and, 463
query processing bottlenecks and, 453
recovery operations and, 435, 436
requirements, 399
Web services and, 590

metadata
database administration and, 633
described, 7
Microsoft SQL Server Express and, 21

system catalogs and, 74
meta-dictionaries, 599–600
methods, 41
metrics, 541
METS (metadata encoding and transmission

standard), 600
Microsoft Access, 225, 251

AutoNumber data type and, 81,
192, 330

COMMIT command and, 238
computed columns and, 246
constraints and, 233
CREATE VIEW command, 270
database administration and, 639
datasets and, 60
date/time formats and, 237, 246,

324–325
embedded SQL and, 358
ER models and, 105, 110
INSERSECT queries and, 302
joins and, 275
primary keys and, 231
QBE (query by example), 243–244
ROLLBACK command and, 241
surrogate keys and, 192
transaction management and, 418
Web services and, 578

Microsoft ActiveX, 591
Microsoft ADO (ActiveX Data Objects)

described, 580
Web server interfaces and, 589

Microsoft ADO.NET, 575, 591, 601
described, 581
JDBC and, 584
overview, 581–583
Web server interfaces and, 589

Microsoft ASP (Active Server Pages), 358
Microsoft ASP.NET, 574
Microsoft Azure Services Platform, 43
Microsoft Corporation. See also specific

applications
business intelligence and, 520
market share of, 4

Microsoft Deep Zoom, 574
Microsoft Excel, 14, 573, 578. See also

spreadsheets
Microsoft Internet Explorer browser, 23,

589. See also browsers
Microsoft .NET framework, 581, 591
Microsoft Office, 639. See also specific

applications
Microsoft Silverlight, 574
Microsoft SQL Server, 19, 219

ADO.NET and, 582
clustered index tables and, 464
constraints and, 233
database administration and, 639
database statistics and, 450

INDEX

683

data types and, 226, 228
date/time functions and, 324–325
embedded SQL and, 358
ER models and ,105
Express, 20
illustrating metadata with, 20
performance tuning and, 449,

450, 464
security and, 607
surrogate keys and, 192
transaction management and, 418
views and, 560
Web services and, 575–576, 601
XML and, 600

Microsoft VBScript, 591
Microsoft Visio, 57, 637

EER model and, 153
ER model and, 107, 111, 114
foreign keys and, 159
Professional, 111, 378
subtype discriminators and, 151

Microsoft Visual Basic, 591
Microsoft Visual Basic .NET, 7, 500

embedded SQL and, 358
procedural SQL and, 337
query optimization and, 500

Microsoft Visual Studio, 574
Microsoft Visual Studio .NET, 358,

591, 601
MicroStrategy, 520
middleware

described, 575
Web-to-database, 586, 587–588

MIN function, 222, 262, 263, 264,
265, 266

minimal data rule, 390
MINUS statement, 298, 301–305
MIS (managerial information systems), 530
mismatches

data type, 358
processing, 358
run-time, 358

MIX function, 337
M:N (many-to-many relationships)

business rules and, 34
composite primary keys and, 157
described, 32
EER model and, 158
ER models and, 39, 104, 118,

121–122, 124–125, 128
normalization and, 198–199
overview, 78–83

MODIFY constraint, 255
modules

coupling, 398
data model verification and, 396–399
described, 396

MOLAP (multidimensional online analytical
processing), 539, 540–541

monotonicity, use of the term, 433
Mozilla Firefox, 589. See also browsers
MPMD (multiple-site processing, multiple-

site data), 490, 491
MPSD (multiple-site processing, single-site

data), 489, 490
multidimensional data

data access language for, 537–539
query performance and, 537–539
schema support, 537

multirow subquery operators, 317
multiuser databases

described, 9–10
locks and, 428
transactions, 419

multivalued dependencies, 196. See also
dependencies

mutual consistency rule, 504, 506
mutual exclusive rule, 431
MySQL (Sun Microsystems), 19, 607

N

naming conventions
for columns, 231
database administration and, 620
data-modeling checklist and, 205
evaluating, 188
normalization and, 188, 205
overview, 34

NAS (Network Attached Storage), 622
NASDAQ, 515
natural disasters, 388, 436, 622, 630
natural keys, 156. See also keys
.NET framework (Microsoft), 581, 591
nested queries (subqueries)

attribute list, 319–321
described, 242, 313
examples, 313
operators and, 317
overview, 312–324

network(s). See also Internet; network
model; Web services; World Wide Web

DDBMSs and, 486–487
hardware, 486–487
independence, 508
query processing bottlenecks and, 453
software, 486–487
terminology, 46

network model
advantages/ disadvantages of, 45
described, 35–36

Nonsubversion rule, 88
nonvolatile nature, of data warehouses,

526, 527
normal forms, overview, 192–197

normalization
business intelligence and, 424
database design and, 197–200
described, 175
dimensional tables and, 548–549
functional dependence and, 180–181
improving designs and, 187–190
logical models and, 402
need for, 175–179
OLAP and, 537
overview, 174–217
performance tuning and, 464
process, 179–187
purity, 203
star schema and, 548–549

NOT IN subquery, 303–305
NOT NULL clause, 254
NOT NULL command, 221,

230–231, 263
NOT NULL constraint, 68, 233
NOT operator, 222, 247, 248, 249, 461
null(s)

attributes and, 148, 238
described, 64
entity integrity and, 64
flags and, 68
performance tuning and, 460–461

NULL operator, 250
NUMBER data type, 228, 230, 340, 298
numeric data type, 228
numeric functions, 327

O

Oasis, 600
objectives, defining, 381–382
ODBC (Open Database Connectivity), 358,

575–579
ADO.NET and, 582
described, 575
drivers, 577, 578
JDBC and, 584
OLE-DB and, 580
Web server interfaces and, 589

Office (Microsoft), 639
OLAP (online analytical processing), 519,

533. See also ROLAP (relational online
analytical processing)

advantages/disadvantages of, 540–541
architecture, 533–536
attribute hierarchies and, 544
described, 529
end-user interfaces and, 533
engine, 535–536
materialized views and, 560, 563
multidimensional data analysis and,

529–532
overview, 529–541

INDEX

684

SQL extensions for, 556–563
tools, 520

OLE-DB (Object Linking and Embedding for
Databases), 575, 589

ADO.NET and, 581
architecture, 580
classes, 580
described, 579, 580–581
interfaces, 580

OLTP (online transaction processing),
530, 544

ON COMMIT clause, 560
ON UPDATE CASCADE clause,

230–231, 233
one-to-one (1:1) relationships

described, 32
ER model and, 39, 106, 117–119,

124, 128, 132–133
implementing, 160–161
overview, 78

one-to-many (1:M) relationships
business rules and, 34
converting M:N relationships to, 82–83
described, 32
ER models and, 39, 104–106, 110,

120–122, 128, 131
fan traps and, 162–163
implementing, 76–77
network model and, 35
overview, 76–77
time-variant data and, 161–162

online analytical processing (OLAP), 519,
533. See also ROLAP (relational online
analytical processing)

advantages/disadvantages of, 540–541
architecture, 533–536
attribute hierarchies and, 544
described, 529
end-user interfaces and, 533
engine, 535–536
materialized views and, 560, 563
multidimensional data analysis and,

529–532
overview, 529–541
SQL extensions for, 556–563
tools, 520

OO (object-oriented) model
advantages/disadvantages of, 45
complex data and, 44
terminology, 46

OODBMS (object-oriented database
management system), 40–41

OODM (object-oriented data model)
comparison of, with other data

models, 42
described, 40–41

OPEN command, 355
operational databases, 9–10
operators (listed by name)

ALL operator, 317
AND operator, 222, 247, 248, 249
ANY operator, 317
BETWEEN special operator, 222,

249–250
DIFFERENCE operator, 68, 70
DISTINCT operator, 222
DIVIDE operator, 68, 73
equality comparison operator, 72
EXISTS operator, 222, 252–253, 323
IN operator, 222, 252, 315–316
INTERSECT operator, 68, 69–70
IS NULL operator, 222
JOIN operator, 68, 70–71
LIKE special operator, 222, 250
NOT operator, 222, 247, 248,

249, 461
NULL operator, 250
OR operator, 222, 247, 248–249, 252
PRODUCT operator, 68, 70–71
PROJECT operator, 68, 71–72
SELECT operator, 68
UNION operator, 68, 69, 70

optimistic approaches, 435
optimizer(s), 449, 466

cost-based, 456
described, 452
hints, 458
index selectivity and, 459, 460
mode, 463
rule-based, 456

optional participation, 113
O/R DMBS (object/relational database

management system), 42–43
OR operator, 222, 247, 248–249, 252
Oracle DMBSs, 4, 19, 249, 413

business intelligence and, 413, 520
CASE tools, 637
case-sensitive searches and, 251
column width and, 239
COMMIT command and, 241
constraints and, 233
CREATE TABLE command, 232
data types and, 228, 255
database administration and, 639–647
database statistics and, 450
date formats, 246, 237, 324
derived attributes and, 105
embedded SQL and, 358
Enterprise Manager and, 640, 645–647
illustrating data storage management

with, 22
joins and, 275

materialized views and, 560, 563
performance tuning and, 450
procedural SQL and, 338
query optimization and, 457, 465,

472–473
relational set operators and, 298
ROLLBACK command and, 255
sequences, 330–333
SQL extensions and, 557
transaction management and, 418, 420
updatable views and, 334–335
Warehouse Builder and, 413
Web services and, 575, 577
XML and, 600

ORDER BY clause, 221, 259, 260–261,
271, 459, 466, 463, 643

ORDERS table, 546
ORDER_TIME table, 546
ORGNIZATION table, 197
O’Reilly Web servers, 588
outer joins, 72, 274–275, 306, 309–312.

See also joins

P

page(s)
described, 428
-level locks, 248

PAINTER table, 76–78
PAINTING table, 76–77, 87
parsing phase, 451, 452
PART table, 257–259
partial dependencies, 180, 182, 184. See

also dependencies
participant(s)

described, 105
ER models and, 105–106
tables, 551

passwords, 225, 386
blank, 630
changing, 631
database administration and, 620, 632,

640–641, 645
Web services and, 591

PDAs (personal digital assistants), 482. See
also handheld devices

PDF (Portable Document Format), 590
percent sign (%), 250
Perfect Car Finder, 574
performance measures, determining,

404–405
performance tuning, 447–449, 463–464

client/server systems and, 447
concepts, 446–450
conditional expressions and, 460–461
database statistics and, 449–450
described, 21, 446

INDEX

685

monitoring tools, 627
overview, 459–461, 445–479
query processing and, 451–453

periodicity, 551
PERSON table, 152
pessimistic locking, 427. See also locking
Pfizer, 515
physical data format, 15
Physical Data Independence rule, 88
physical design. See also design

described, 403
overview, 403–405

physical independence, 50
physical model, 49–50
physical security, 632. See also security
PILOT table, 148–151
PKs (primary keys). See also keys

assigning, 187–188
composite, when to use, 157–158
data dictionaries and, 75
data granularity and, 188–189
described, 61–62, 66
designations, adding, 258–259
desirable characteristics of, 156–157
EER model and, 150–151, 155–159
ER model and, 103, 108, 111, 121
flexible design and, 159
guidelines, 156–157
identifying, 181–182
M:N relationships and, 81
natural keys and, 156
normalization and, 178, 179, 181–182,

184, 188–189, 192, 199
performance tuning and, 459–460
refining, 188–189
selecting, 155–159
SQL and, 230, 235, 258–259
star schema and, 545–546
surrogate, 158, 159

PL/SQL procedures, 448
PLAN_TABLE table, 465
plug-ins, 590
plus sign (+), 231
policies, 620
portability, 399
portals, 520
PostgreSQL, 607
pound sign (#), 237
Power Designer (Sybase), 637
PowerPoint, 57
precedence rules, 247
predicate logic, 59
Preferences link, 640
Preferred Credentials link, 640
PREPARE TO COMMIT message, 499
PRIMARY KEY command, 221

primary keys (PKs). See also keys
assigning, 187–188
composite, when to use, 157–158
data dictionaries and, 75
data granularity and, 188–189
described, 61–62, 66
designations, adding, 258–259
desirable characteristics of, 156–157
EER model and, 150–151, 155–159
ER model and, 103, 108, 111, 121
flexible design and, 159
guidelines, 156–157
identifying, 181–182
M:N relationships and, 81
natural keys and, 156
normalization and, 178, 179, 181–182,

184, 188–189, 192, 199
performance tuning and, 459–460
refining, 188–189
selecting, 155–159
SQL and, 230, 235, 258–259
star schema and, 545–546
surrogate, 158, 159

privacy. See also security
database administration and, 616, 621
DDBMSs and, 486
described, 611

problem(s)
defining, 380–381
domains, use of the term, 30

procedural SQL (P/SQL). See also
procedures; SQL (Structured Query
Language)

blocks, anonymous, 338, 339–341
described, 337
overview, 336–357
processing with cursors, 354–357
stored functions, 357
stored procedures and, 350–354
triggers and, 341–350

procedure(s). See also procedural SQL
described, 620
stored, 350, 351–354

Proclarity, 520
PRODMASTER table, 334–335, 336
PRODSALES table, 334–335
PRODUCT operator, 68, 70–71
PRODUCT table, 64–66, 85, 86,

223–225, 227
DDBMSs and, 495, 496
indexes and, 87
query optimization and, 457, 458
SQL and, 229–232, 235–241, 252,

254–256, 259–262, 271–275, 305,
345–346, 351

transaction management and, 417,
422, 424–425

production databases. See operational
databases

productivity
improvement of, with DBMSs, 9
tools, file systems and, 14

PROFESSOR table, 78–79, 114, 123–126,
152, 401

profile(s)
database administration and, 645
described, 645

programmers, job description for, 20
PROJECT operator, 68, 71–72
PROJECT statement, 501
PROJECT table, 184–185, 188, 190,

197–198, 200–201
prototyping, 396
pseudo-SQL, 493
PSM (persistent stored module), 337
P/SQL (procedural SQL). See also

procedures; SQL (Structured Query
Language)

blocks, anonymous, 338, 339–341
described, 337
overview, 336–357
processing with cursors, 354–357
stored functions, 357
stored procedures and, 350–354
triggers and, 341–350

Q

QOPRODUCT table, 465–473
QOVENDOR table, 465–473
queries. See also SQL (Structured Query

Language); query optimization; subqueries
(nested/inner queries)

ad hoc, 8
case-sensitive searches and, 251
correlated, 312–324
data types and, 226–229
described, 8–9
formulation of, 462
key roll of, 222
parsing, 463
performance tuning and, 446–479
processing, 451–453
recursive, 273–274

query
languages, 22–23
result set, 8–9

query by example (QBE), 243–244
query optimization

algorithms, 501
automatic, 500
DDBMSs and, 486, 499–501

INDEX

686

dynamic, 501
examples, 465–473
indexes and, 454–456
manual, 500
OLAP and, 537–539
optimizer choices for, 456–458
overview, 445–479
query formulation and, 462
static, 500

question mark (?), 250

R

RAD (Rapid Application Development), 374
RAID (redundant array of independent disks)

described, 463
levels, common, 463
performance tuning and, 463

RAM (random-access memory). See also
memory

performance tuning and, 446,
448, 449

query processing bottlenecks and, 453
Raymond James (company), 219
RDBMSs (relational database management

systems). See also DMBMs (database
management systems)

attribute deletion and, 255
business intelligence and, 524
data dictionaries and, 74
data types and, 228
described, 36
ensuring the start of, 641–642
internal model and, 49
multivalued attributes and, 104
normalization and, 175
OLAP and, 537, 539
performance tuning and, 464
relational model and, 36–38
SQL and, 222, 225, 226, 228, 231,

250, 255, 337–338, 341
star schema and, 543
transaction management and, 420
triggers and, 341
wildcard characters and, 250

RDO (Remote Data Objects), 575–579
described, 576
OLE-DB and, 580

read
phase, 435
/write conflicts, 426

READ operations, 426, 506
READ_LOCK operation, 431
REAL data type, 228
record, use of the term, 12
recovery management, 22, 486. See also

backups
database administration and, 621–622,

624, 627, 628

described, 435
overview, 435–439, 601
performance tuning and, 464
process, 388

recovery phase, 389
redundancy

controlled, 64–65
denormalization and, 200, 202
described, 16
normalization and, 178–179

referential integrity. See also integrity
described, 66
ER models and, 119–120
errors, 73
rules, 67–68
SQL and, 225, 232
transaction management and, 419
unary relationships and, 119

REFRESH clause, 560
relation(s). See also tables

characteristics of, 59–62
described, 36

relational
algebra, 68
diagrams, 37
schema, 65
set operators, 68–74, 298–305
revolution, 3

relational database management systems
(RDBMSs). See also DMBMs (database
management systems)

attribute deletion and, 255
business intelligence and, 524
data dictionaries and, 74
data types and, 228
described, 36
ensuring the start of, 641–642
internal model and, 49
multivalued attributes and, 104
normalization and, 175
OLAP and, 537, 539
performance tuning and, 464
relational model and, 36–38
SQL and, 222, 225, 226, 228, 231,

250, 255, 337–338, 341
star schema and, 543
transaction management and, 420
triggers and, 341
wildcard characters and, 250

relational model
advantages/disadvantages of, 45
DDBMSs and, 481
described, 36
overview, 36–38, 58–98
terminology, 61

relationship(s). See also specific types
binary, 116
business rules and, 32–34

degrees, 116, 117
described, 31
ER model and, 39, 105–106
higher-degree, 116–117
naming conventions and, 34
overview, 31–32, 76–83
participation, 113–116
recursive, 116, 117–121, 132
redundant, 164
strong, 108–109, 110, 112
supertype-subtype, 148–151
ternary, 116, 118
types of, 31–32
unary, 116, 119–120
weak (non-identifying), 109–110

RENTAL table, 450
repeating groups

described, 181
eliminating, 181

replication
described, 504, 506, 551
overview, 504–506

report(s)
denormalization and, 202–203
normalization and, 176–178
sample layout, 177
views and, 270

Reports Center, 219
requests

distributed, 494–495, 496, 497–498
remote, 494

reserved words
attribute names and, 205
described, 231

RESOURCE role, 644
retrievals, inconsistent, 424, 425
rigidity, organizational, 483
rogue processes, 453
ROLAP (relational online analytical

processing)
described, 537–539
star schema and, 543

roles
described, 644
managing, 644–646

ROLLBACK command, 221, 238, 240,
256–257

ROLLBACK statement, 333, 419–421,
423, 437, 438

rollup, of data, 521
ROLLUP extension, 556, 557–558
ROUND function, 327, 462
row(s)

adding, 237–238
deleting, 241
IDs, 452, 454
inserting, 242
-level locks, 429

INDEX

687

listing, 238–240
null attributes and, 238
optional attributes and, 238
performance tuning and, 449, 450
query optimization and, 454, 456
selecting, 242–247
subqueries and, 317
updating, 240
XML and, 600

rule(s). See also business rules;
integrity rules

-based query optimization, 501
overview, 88
of precedence, 247

RUNSTATS procedure, 449
Russia, 607

S

SALES table, 545–546, 583
Salesforce, 520
SAN (Storage Area Networks), 622
SAP (company), 520
SAS WebReportStudio, 520
scalability

DDBMSs and, 483
OLAP and, 541
Web services and, 591, 601

scheduler(s), 425, 449
described, 426
serializable, 426

schema. See also star schema
business intelligence and, 524–525
conceptual, 48
database administration and, 643–645
described, 35, 225, 643
distributed global, 494
locks and, 431
multidimensional data and, 537
network model and, 35
OLAP and, 541
overview, 524–525
SQL and, 225–226

SCHOOL table, 123–124
scope, use of the term, 382
SDLC (Systems Development Life Cycle),

374, 635
analysis phase, 376–377
conceptual design and, 391
DBAs and, 618
DBLC and, comparison of, 389–390
described, 375
detailed systems design phase, 377
implementation phase, 377
maintenance phase, 377–378
overview, 375–378
planning phase, 376

SDS (SQL data services), 43, 600, 601
second normal form (2NF)

conversion to, 184–187
denormalization and, 203–204
described, 185

secondary keys, 66. See also keys
Secret Service (United States), 607
security. See also access plans; access

rights; passwords; privacy
attacks and, 607
auditing, 628
authentication, 225
breaches, 630
client/server architecture and, 507
data processing problems and, 15
data redundancy and, 16
database administration and, 608–651
database creation and, 225
database design and, 386, 388,

389, 404
DDBMSs and, 8, 483, 486, 507
described, 611
encryption, 386, 632
establishing, 644–646
groups, 404
management, 21–22
measures, defining, 404
overview, 629–633
policies, 629, 630
rules, overview, 21–22
SQL and, 225, 269, 607
spreadsheets and, 15
threats, 630
transaction management and, 436
views and, 269
viruses and, 436, 631
vulnerabilities, 630, 631
Web services and, 591

segment, use of the term, 35
SELECT command, 221, 238–239, 240,

264–265, 271, 340
SELECT operator, 68
SELECT statement, 71–72, 241, 246,

268, 305, 313–314, 317, 319, 416,
459, 462, 465, 470, 501, 583

semantic data model, 41
semicolon (;), 341
sequences, 330–333
serializability

described, 419
time stamping and, 434
two-phase locking to ensure, 431–432

serializable schedules, 426
server(s), 451–453, 630. See also

client/server computing
interfaces, 588–589

OLAP and, 534–536
performance tuning and, 463
-side extensions, 586–588
Web services and, 587–588

session logging, 632
Set Credentials link, 640
SET NULL constraints, 233
set theory, 59
set-oriented commands, 240, 241, 298
SGML (Standardized Generalized Markup

Language), 593
shared locks, 430, 431. See also locks
SHOW ERRORS command, 339
shrinking phase, 431–432
Silverlight (Microsoft), 574
single-user databases, 9–10
slice and dice, use of the term, 543–544
SMALLINT data type, 228, 230, 298
snowflake schema. See also schema

described, 548, 549
SQL extensions and, 556–557

software
cost of, 23
database administration and, 626–268
failures, 388, 435
independence, 48–49
maintaining, 628–269
operating system, overview of, 19
performance tuning and, 446–447
query processing bottlenecks and, 453
recovery management and, 435
selection, 399, 620
testing, 626
upgrades, 24

sorting data sets, 452
SOX (Sarbanes-Oxley Act), 629
sparsity, use of the term, 539
special characters, 205. See also symbols
special operators, 249–251
specialization. See also specialization

hierarchy
described, 154
EER model and, 154

specialization hierarchy
described, 149
overlapping subtypes and, 152
overview, 149–151

spreadsheets. See also Excel (Microsoft)
databases and, comparison of, 23
integration of OLAP with, 532
security and, 15

Sprint, 5
SPSD (single-site processing, single-site

data), 488, 489

INDEX

688

SQL (Structured Query Language). See also
ANSI SQL standards; queries; procedural
SQL (P/SQL)

advanced, 297–371
connectivity, native, 575
constraints, 232–235
data definition commands, 221,

223–226, 255–259
data manipulation commands,

237–242, 298
data services, 43
data types and, 226–229
described, 22–23
dynamic, 361–362
embedded, 358, 359–362
engine, 38
functions, 324–330
indexes, 235–236
injection attack, 607
internal model and, 49
introduction to, 220–296
invention of, 4
relational model and, 38
sequences and, 330–333
static, 361
syntax, 229–230
table structure and, 229–232
transaction management and, 415–417,

419–420, 437
views, 559–563

SQL cache
access plans, 452
performance tuning and, 448, 463
query processing bottlenecks and, 453

SQL command, 73, 87
SQL Server (Microsoft), 19, 219

ADO.NET and, 582
clustered index tables and, 464
constraints and, 233
database administration and, 639
database statistics and, 450
data types and, 226, 228
date/time functions and, 324–325
embedded SQL and, 358
ER models and ,105
Express, 20
illustrating metadata with, 20
performance tuning and, 449,

450, 464
security and, 607
surrogate keys and, 192
transaction management and, 418
views and, 560
Web services and, 575–576, 601
XML and, 600

SQL-2003 standard, 298, 300
SQL-2006 standard, 298

SQLCA area, 360
SQL*Net, 575, 589
SQL*Plus (Oracle), 338–339, 359

query optimization and, 465
stored procedures and, 353
triggers and, 343–344

standards. See also ANSI SQL standard
database administration and, 638
DBAs and, 620
described, 620
SQL-2003 standard, 298, 300
SQL-2006 standard, 298

star schema. See also schema
attributes and, 542–544
described, 541
dimensions and, 542
facts and, 541
overview, 541–551
performance-improving techniques for,

548–551
representation, 545–548

startup procedures, 641–642
stateless systems, 590
statements (listed by name)

BEGIN statement, 420
COMMIT statement, 255, 333,

419–421, 437, 438, 498–499
DELETE statement, 241
INSERT statement, 242, 246,

416, 437
INTERSECT statement, 298, 300–304
MINUS statement, 298, 301–305
PROJECT statement, 501
ROLLBACK statement, 333, 419–421,

423, 437, 438
SELECT statement, 71–72, 241, 246,

268, 305, 313–314, 317, 319, 416,
459, 462, 465, 470, 501, 583

UNION statement, 298, 299–300
UPDATE statement, 246, 335, 336,

344–346, 349, 416, 418, 420–421,
424, 437

WRITE statement, 425
statistically based query optimization, 501.

See also query optimization
storage

Area Networks (SANs), 622
DDBMSs and, 483
management, 20–21, 643
organization, defining, 403–404
performance tuning and, 463, 464
schedulers and, 426

Storage Manager, 643
string functions, 327–328
structural

dependence, 15
independence, 15

Structured Query Language (SQL). See also
ANSI SQL standards; queries; procedural
SQL (P/SQL)

advanced, 297–371
connectivity, native, 575
constraints, 232–235
data definition commands, 221,

223–226, 255–259
data manipulation commands,

237–242, 298
data services, 43
data types and, 226–229
described, 22–23
dynamic, 361–362
embedded, 358, 359–362
engine, 38
functions, 324–330
indexes, 235–236
injection attack, 607
internal model and, 49
introduction to, 220–296
invention of, 4
relational model and, 38
sequences and, 330–333
static, 361
syntax, 229–230
table structure and, 229–232
transaction management and, 415–417,

419–420, 437
views, 559–563

STUDENT table, 59–62, 202
EER model and, 152, 157, 158
ER model and, 121–122, 125–127
M:N relationships and, 80–82
query optimization and, 454–455

subordinate nodes, 499
subqueries (nested/inner queries)

attribute list, 319–321
described, 242, 313
examples, 313
operators and, 317
overview, 312–324

subschema, 36. See also schema
subtype(s)

discriminators, 151
disjoint (nonoverlapping), 151,

152–153
overlapping, 151, 152, 153

SUM function, 64, 222, 262, 265, 266
superkeys, 63, 66. See also keys
surrogate key(s). See also keys

considerations, 191–192
described, 158, 159
normalization and, 191–192

Swisscom, 515
symbols

& (ampersand), 205
‘ (apostrophe), 237, 304

INDEX

689

* (asterisk), 239, 247, 250, 263
@ (at sign), 205
, (comma), 231, 237, 239
: (colon), 358
“ (double quotes), 304
! (exclamation point), 205
/ (forward slash), 231, 338
- (hyphen), 231
() (parentheses), 247, 231, 237, 313
% (percent sign), 250
+ (plus sign), 231
(pound sign), 237
? (question mark), 250
; (semicolon), 341
_ (underscore), 250

synonyms, 74
SYSDATE function, 105, 235, 246,

326, 462
System Architect (IBM), 378, 637
system catalog, 74, 450. See also data

dictionary
System R project, 4
system support activities, 626–628
Systematic Treatment of Nulls rule, 88
systems administrators

data processing problems and, 15
described, 615
job description, 19

systems analysts, 20
systems analysis, 20, 373
systems development, 373

T

table(s). See also columns; rows;
tablespaces

base, 269
characteristics of, 59–62
clustered, 404
copying parts of, 257–258
denormalized, 464
described, 36
fragmented, 492
joining, 270–275
linking, 82
locks and, 427–428
partitions, 464, 551
relational model and, 36–37
relational set operators and, 68–74
replicating, 551
restoring the contents of, 240–241
saving changes to, 238
source, identifying, 462
structures, creating, 229–232
virtual, 269–270

tablespaces
creating, 642–643
described, 448
performance tuning and, 448

temporary, 464
TCP/IP (Transmission Control

Protocol/Internet Protocol)
DDBMSs and, 483
Web services and, 589, 601

TDS (Tabular Data Services), 601
temporary tablespace, 464. See also

tablespaces
Teradata, 520
termination, abnormal, 420
testing phase, 386–388, 626
third normal form (3NF)

conversion to, 185–187
denormalization and, 200
described, 187
granularity and, 188
logical design and, 402
star schema and, 548

time. See also dates; time stamps; time-
variant data

functions, 324–327
-variant nature, of data warehouses,

526, 527
TIME data type, 228
time stamp(s)

concurrency control with, 433–435
described, 433
monotonicity and, 433
uniqueness and, 433
wait/die schemes and, 434, 435
wound/wait schemes and, 434, 435

time-variant data
described, 161
maintaining the history of, 161–162

TIMESTAMP data type, 228
TM (transaction manager), 487
TO_CHAR function, 325, 326, 328
TO_DATE function, 235, 325, 326, 328
TO_NUMBER function, 329
TP (transaction processor)

client/server architecture and, 507
data fragmentation and, 501
data replication and, 506
described, 487
MPSD scenarios and, 489
query optimization and, 500
SDSP scenarios and, 489

training. See also education
costs, 483
database administration and, 624,

628, 638
of users, 619

transaction(s). See also transaction logs
concurrency control and, 421–426
database recovery management and,

435–439
DDBMSs and, 486, 487

described, 416
distributed, 494, 495, 496–498
inconsistent retrievals and, 424–425
locking methods and, 426–433
lost updates and, 422–423
management, 414–421
properties, 419
remote, 494, 495
results, evaluating, 416–417
time stamping methods and, 433–435
transparency, 491, 494–499
uncommitted data and, 423–424
wait/die schemes and, 434, 435
wound/wait schemes and, 434, 435

transaction log(s)
backups, 387
described, 420, 421
recovery management and, 436,

437, 439
redundant, 436

transactional databases. See operational
databases

transitive dependencies, 182, 184,
185–186. See also dependencies

Transmission Control Protocol/Internet
Protocol (TCP/IP)

DDBMSs and, 483
Web services and, 589, 601

transparency
distribution, 491
failure, 491
features, summary of, 492
fragmentation, 492, 493, 508
heterogeneity, 592
local mapping, 492, 493–494
location, 492, 493, 508
overview, 491–492, 494–499
performance, 491, 499–501
replica, 500
transaction, 491, 494–499

trigger(s)
actions, based on conditional DML

predicates, 350
described, 341
overview, 341–350
row-level, 343
statement-level, 343

tuple, 36, 60
two-phase commit protocol, 498–499

U

UDA (Universal Data Access), 575
UML (Unified Modeling Language)

comparison of, with other data
models, 42

described, 41, 374
unary relationships, 116, 119–120

INDEX

690

uncommitted data, 423, 424
underscore (_), 250
undo operation, 437
UNION ALL query, 300
UNION operator, 68, 69, 70
UNION statement, 298, 299–300
union-compatible

relations, 298
tables, 69

unique fragments, 492
UNIQUE command, 221, 235–236
UNIQUE constraint, 68, 233, 235
UNIQUE specification, 230–231
uniqueness, use of the term, 433
United Nations, 600, 607
University of California, 4
UNLOCK_LOCK operation, 431
update(s)

anomalies, 179
data warehouses and, 528
denormalization and, 204
immediate (write-through

technique), 437
inconsistent retrievals and, 424–425
transaction management and, 430
views and, 88, 333–334, 336

UPDATE command, 221, 240, 255–257
UPDATE statement, 246, 335, 336,

344–346, 349, 416, 418, 420–421,
424, 437

UPDATE STATISTICS procedure,
449, 450

UPPER function, 251, 328, 469
URLs (Uniform Resource Locators),

584, 585
U.S. Department of Homeland

Security, 607
U.S. Environment Protection Agency, 607
U.S. Library of Congress, 600
usage monitoring, 632
user(s)

analytical interface, 425
DBAs and, 619, 621
described, 644
IDs, 225, 591, 630, 632
managing, 644–646
-names, 640
OLAP and, 533, 534
training, 619
use relational model and, 38

USING clause, 307–309
USING keyword, 307–309
utilities

maintaining, 628–269
operating, 626–268

overview, 19
selecting/installing, 623–625

V

validation
of constraints, 402–403
DDBMSs and, 484–486
of logical models, 403
phase, 435

VARCHAR data type, 226, 228, 230,
298, 340

variable(s)
error reporting, 360
status, 360

VBScript (Microsoft), 591
VENDOR table, 64–66, 223–225, 227,

229–235, 244, 250, 252–253,
255–256, 262, 270, 272–275, 305,
313, 338–339, 643

performance tuning and, 450
query optimization and, 457
star schema and, 547

vendors, dependence upon, 24
vertical fragmentation, 501–503. See also

fragmentation
view(s)

described, 269
relational, 269–270
updatable, 88, 333, 334, 336
virtual tables and, 269–270

View Updating rule, 88
virtualization, 384
viruses, 436, 631
Visible Analyst (Visible), 637
Visio (Microsoft), 57, 637

EER model and, 153
ER model and, 107, 111, 114
foreign keys and, 159
Professional, 111, 378
subtype discriminators and, 151

Visual Basic (Microsoft), 591
Visual Basic .NET (Microsoft), 7, 500

embedded SQL and, 358
procedural SQL and, 337
query optimization and, 500

Visual Studio (Microsoft), 574
Visual Studio .NET (Microsoft), 358,

591, 601
VisualCalc, 520
VLDBs (very large databases)

described, 525
ROLAP and, 537
support for, 538–539

VOLUNTEER_V1 table, 196
VOLUNTEER_V2 table, 196

VOLUNTEER_V3 table, 196
VPD (Virtual Private Database), 632

W

W3C (World Wide Web Consortium), 592
wait/die schemes, 434, 435
warehouse(s)

as active decision support
framework, 551

aggregation and, 549–550
bitmap indexes and, 455
components of, 526–529
DDBMSs and, 482
deadlocks and, 433
described, 9, 526
design of, 10–11, 552–553
development life cycle, 528
implementing, 551–554
materialized views and, 560
overview, 514–570
tools, 520
twelve rules that define, 528–529
user involvement with, 552
VLDBs and, 525
XML and, 599

weak entities
described, 110
overview, 110–111

Web application servers, 591, 592
Web browsers, 23, 607

ActiveX and, 591
middleware and, 586–588
overview, 589–590
XML and, 597

Web services. See also Internet; World
Wide Web; servers

APIs and, 577–578, 588–589
client-side extensions and, 590–591
database connectivity technologies and,

574–605
scalability and, 591, 601
XML and, 574, 575, 592–600

WebLogic Server (Oracle), 591
WebObjects (Apple), 591
WebSphere Application Server (IBM), 591
WHERE clause, 221, 241–243, 249, 268,

270, 272, 302, 305, 316, 459, 460
WHERE subqueries, 314–315
WHILE loops, 340
wildcard characters

described, 239
SQL and, 239, 250, 251

wireless networks, 481–482. See also
handheld devices; networks

workgroup databases, 9–10

INDEX

691

workstations
DDBMSs and, 483, 486
MPSD scenarios and, 489

World Wide Web. See also Internet;
networks; Web services

growth of, 482
as a stateless system, 590

WorldCom, 518
wound/wait schemes, 434, 435
WRITE operations, 426, 506
write phase, 435
WRITE statement, 425
write-ahead protocol, 499
write-ahead-log protocol, 436
WRITE_LOCK operation, 431

write-through technique, 437
WSAPI (WebSite API), 588

X

XBRL (extensible business reporting
language), 600

XHTML (Extensible Hypertext Markup
Language), 593

XML (Extensible Markup Language)
applications, 597–600
databases, 10, 600
DataSets and, 582
deadlocks and, 433
described, 10, 592
DTDs and, 594–596

evolution of data models and, 44
format, native, 42
pervasive use of, 42–43
presentation, 596–597
schema, 595
relational set operators and, 298
Web services and, 574, 575, 592–600

XSD (XML Schema Definition), 595, 596
XSL (Extensible Stylesheet Language), 596
XSLT (Extensible Style Language

Transformation), 596–597

Y

YEAR_TOTALS table, 550

INDEX

692

DATABASE DESIGN PROCESS GUIDE

• Data analysis and requirements

• Entity Relationship modeling and normalization

• Data model verifi cation

• Distributed database design*

• Determine end-user views, outputs, and transaction requirements.

• Defi ne entities, attributes, domains, and relationships.
• Draw ER diagrams. Normalize entity attributes.

• Identify ER modules and validate insert, update, and delete rules.
• Validate reports, queries, views, integrity, access, and security.

• Defi ne the fragmentation and allocation strategy.

• Determine DBMS and data model to use.

• Defi ne tables, columns, relationships, and constraints.
• Normalized set of tables.
• Ensure entity and referential integrity. Defi ne column constraints.
• Ensure the model supports user requirements.

• Defi ne tables, indexes, views, and physical organization.
• Defi ne users, security groups, roles, and access controls.
• Defi ne database and query execution parameters.

* See Chapter 12, Distributed Database Management Systems ** See Chapter 11, Database Performance Tuning and Query Optimization

DBMS and Hardware Independent

DBMS Dependent

Hardware Dependent

• Map conceptual model to logical model components
• Validate logical model using normalization
• Validate logical model integrity constraints
• Validate logical model against user requirements

• Defi ne data storage organization
• Defi ne integrity and security measures
• Determine performance measures**

• Select the DBMS data model

Conceptual
Design

DBMS
Selection

Logical
Design

Physical
Design

Sect ion Stage Steps Act iv i t ies
9.4

9.5

9.6

9.7

BUSINESS RULES

 Properly document and verify all business rules with the end users.
 Ensure that all business rules are written precisely, clearly, and simply. The business rules

must help identify entities, attributes, relationships, and constraints.
 Identify the source of all business rules, and ensure that each business rule is justifi ed,

dated, and signed off by an approving authority.

DATA MODELING
Naming Conventions: All names should be limited in length (database-dependent size).

ENTITY NAMES:

 Should be nouns that are familiar to business and should be short and meaningful
 Should document abbreviations, synonyms, and aliases for each entity
 Should be unique within the model
 For composite entities, may include a combination of abbreviated names of the entities

linked through the composite entity

ATTRIBUTE NAMES:

 Should be unique within the entity
 Should use the entity abbreviation as a prefi x
 Should be descriptive of the characteristic
 Should use suffi xes such as _ID, _NUM, or _CODE for the PK attribute
 Should not be a reserved word
 Should not contain spaces or special characters such as @, !, or &

RELATIONSHIP NAMES:

 Should be active or passive verbs that clearly indicate the nature of the relationship

Entities:
 Each entity should represent a single subject.
 Each entity should represent a set of distinguishable entity instances.
 All entities should be in 3NF or higher. Any entities below 3NF should be justifi ed.
 The granularity of the entity instance should be clearly defi ned.
 The PK is clearly defi ned and supports the selected data granularity.

Attributes:
 Should be simple and single-valued (atomic data)
 Should document default values, constraints, synonyms, and aliases
 Derived attributes should be clearly identifi ed and include source(s)
 Should not be redundant unless they are justifi ed for transaction accuracy,

performance, or maintaining a history
 Nonkey attributes must be fully dependent on the PK attribute

Relationships:
 Should clearly identify relationship participants
 Should clearly defi ne participation, connectivity, and document cardinality

ER Model:
 Should be validated against expected processes: inserts, updates, and deletes
 Should evaluate where, when, and how to maintain a history
 Should not contain redundant relationships except as required (see Attributes)
 Should minimize data redundancy to ensure single-place updates
 Should conform to the minimal data rule: “All that is needed is there and

all that is there is needed.”

	Front Cover
	Title Page
	Copyright
	Table of Contents
	PART I: DATABASE CONCEPTS
	Business Vignette: The Relational Revolution
	CHAPTER 1: DATABASE SYSTEMS
	1.1 Why Databases?
	1.2 Data vs. Information
	1.3 Introducing the Database
	1.3.1 Role and Advantages of the DBMS
	1.3.2 Types of Databases

	1.4 Why Database Design is Important
	1.5 Evolution of File System Data Processing
	1.5.1 Manual File Systems
	1.5.2 Computerized File Systems
	1.5.3 File System Redux: Modern End-User Productivity Tools

	1.6 Problems with File System Data Processing
	1.6.1 Structural and Data Dependence
	1.6.2 Data Redundancy
	1.6.3 Lack of Design and Data-Modeling Skills

	1.7 Database Systems
	1.7.1 The Database System Environment
	1.7.2 DBMS Functions
	1.7.3 Managing the Database System: A Shift in Focus

	Summary
	Key Terms
	Review Questions
	Problems

	CHAPTER 2: DATA MODELS
	2.1 Data Modeling and Data Models
	2.2 The Importance of Data Models
	2.3 Data Model Basic Building Blocks
	2.4 Business Rules
	2.4.1 Discovering Business Rules
	2.4.2 Translating Business Rules into Data Model Components
	2.4.3 Naming Conventions

	2.5 The Evolution of Data Models
	2.5.1 Hierarchical and Network Models
	2.5.2 The Relational Model
	2.5.3 The Entity Relationship Model
	2.5.4 The Object-Oriented (OO) Model
	2.5.5 Newer Data Models: Object/Relational and XML
	2.5.6 The Future of Data Models
	2.5.7 Data Models: A Summary

	2.6 Degrees of Data Abstraction
	2.6.1 The External Model
	2.6.2 The Conceptual Model
	2.6.3 The Internal Model
	2.6.4 The Physical Model

	Summary
	Key Terms
	Review Questions
	Problems

	PART II: DESIGN CONCEPTS
	Business Vignette: BP’s Data Modeling Initiative
	CHAPTER 3: THE RELATIONAL DATABASE MODEL
	3.1 A Logical View of Data
	3.1.1 Tables and Their Characteristics

	3.2 Keys
	3.3 Integrity Rules
	3.4 Relational Set Operators
	3.5 The Data Dictionary and the System Catalog
	3.6 Relationships within the Relational Database
	3.6.1 The 1:M Relationship
	3.6.2 The 1:1 Relationship
	3.6.3 The M:N Relationship

	3.7 Data Redundancy Revisited
	3.8 Indexes
	3.9 Codd’s Relational Database Rules
	Summary
	Key Terms
	Review Questions
	Problems

	CHAPTER 4: ENTITY RELATIONSHIP (ER) MODELING
	4.1 The Entity Relationship Model (ERM)
	4.1.1 Entities
	4.1.2 Attributes
	4.1.3 Relationships
	4.1.4 Connectivity and Cardinality
	4.1.5 Existence Dependence
	4.1.6 Relationship Strength
	4.1.7 Weak Entities
	4.1.8 Relationship Participation
	4.1.9 Relationship Degree
	4.1.10 Recursive Relationships
	4.1.11 Associative (Composite) Entities

	4.2 Developing an ER Diagram
	4.3 Database Design Challenges: Conflicting Goals
	Summary
	Key Terms
	Review Questions
	Problems
	Cases

	CHAPTER 5: ADVNCED DATA MODELING
	5.1 The Extended Entity Relationship Model
	5.1.1 Entity Supertypes and Subtypes
	5.1.2 Specialization Hierarchy
	5.1.3 Inheritance 150
	5.1.4 Subtype Discriminator
	5.1.5 Disjoint and Overlapping Constraints
	5.1.6 Completeness Constraint
	5.1.7 Specialization and Generalization

	5.2 Entity Clustering
	5.3 Entity Integrity: Selecting Primary Keys
	5.3.1 Natural Keys and Primary Keys
	5.3.2 Primary Key Guidelines
	5.3.3 When to Use Composite Primary Keys
	5.3.4 When to Use Surrogate Primary Keys

	5.4 Design Cases: Learning Flexible Database Design
	5.4.1 Design Case #1: Implementing 1:1 Relationships
	5.4.2 Design Case #2: Maintaining History of Time-Variant Data
	5.4.3 Design Case #3: Fan Traps
	5.4.4 Design Case #4: Redundant Relationships

	Summary
	Key Terms
	Review Questions
	Problems
	Cases

	CHAPTER 6: NORMALIZATION OF DATABASE TABLES
	6.1 Database Tables and Normalization
	6.2 The Need for Normalization
	6.3 The Normalization Process
	6.3.1 Conversion to First Normal Form
	6.3.2 Conversion to Second Normal Form
	6.3.3 Conversion to Third Normal Form

	6.4 Improving the Design
	6.5 Surrogate Key Considerations
	6.6 Higher-Level Normal Forms
	6.6.1 The Boyce-Codd Normal Form (BCNF)
	6.6.2 Fourth Normal Form (4NF)

	6.7 Normalization and Database Design
	6.8 Denormalization
	6.9 Data-Modeling Checklist
	Summary
	Key Terms
	Review Questions
	Problems

	PART III: ADVANCED DESIGN AND IMPLEMENTATION
	Business Vignette: The Many Benefits of BI
	CHAPTER 7: INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL)
	7.1 Introduction to SQL
	7.2 Data Definition Commands
	7.2.1 The Database Model
	7.2.2 Creating the Database
	7.2.3 The Database Schema
	7.2.4 Data Types
	7.2.5 Creating Table Structures
	7.2.6 SQL Constraints
	7.2.7 SQL Indexes

	7.3 Data Manipulation Commands
	7.3.1 Adding Table Rows
	7.3.2 Saving Table Changes
	7.3.3 Listing Table Rows
	7.3.4 Updating Table Rows
	7.3.5 Restoring Table Contents
	7.3.6 Deleting Table Rows
	7.3.7 Inserting Table Rows with a Select Subquery

	7.4 SELECT Queries
	7.4.1 Selecting Rows with Conditional Restrictions
	7.4.2 Arithmetic Operators:The Rule of Precedence
	7.4.3 Logical Operators: AND‚ OR‚ and NOT
	7.4.4 Special Operators

	7.5 Additional Data Definition Commands
	7.5.1 Changing a Column’s Data Type
	7.5.2 Changing a Column’s Data Characteristics
	7.5.3 Adding a Column
	7.5.4 Dropping a Column
	7.5.5 Advanced Data Updates
	7.5.6 Copying Parts of Tables
	7.5.7 Adding Primary and Foreign Key Designations
	7.5.8 Deleting a Table from the Database

	7.6 Additional SELECT Query Keywords
	7.6.1 Ordering a Listing
	7.6.2 Listing Unique Values
	7.6.3 Aggregate Functions
	7.6.4 Grouping Data

	7.7 Virtual Tables: Creating a View
	7.8 Joining Database Tables
	7.8.1 Joining Tables with an Alias
	7.8.2 Recursive Joins
	7.8.3 Outer Joins

	Summary
	Key Terms
	Review Questions
	Problems
	Cases

	CHAPTER 8: ADVANCED SQL
	8.1 Relational Set Operators
	8.1.1 UNION
	8.1.2 UNION ALL
	8.1.3 INTERSECT
	8.1.4 MINUS
	8.1.5 Syntax Alternatives

	8.2 SQL Join Operators
	8.2.1 Cross Join
	8.2.2 Natural Join
	8.2.3 Join USING Clause
	8.2.4 JOIN ON Clause
	8.2.5 Outer Joins

	8.3 Subqueries and Correlated Queries
	8.3.1 WHERE Subqueries
	8.3.2 IN Subqueries
	8.3.3 HAVING Subqueries
	8.3.4 Multirow Subquery Operators: ANY and ALL
	8.3.5 FROM Subqueries
	8.3.6 Attribute List Subqueries
	8.3.7 Correlated Subqueries

	8.4 SQL Functions
	8.4.1 Date and Time Functions
	8.4.2 Numeric Functions
	8.4.3 String Functions
	8.4.4 Conversion Functions

	8.5 Oracle Sequences
	8.6 Updatable Views
	8.7 Procedural SQL
	8.7.1 Triggers
	8.7.2 Stored Procedures
	8.7.3 PL/SQL Processing with Cursors
	8.7.4 PL/SQL Stored Functions

	8.8 Embedded SQL
	Summary
	Key Terms
	Review Questions
	Problems
	Cases

	CHAPTER 9: DATABASE DESIGN
	9.1 The Information System
	9.2 The Systems Development Life Cycle (SDLC)
	9.2.1 Planning
	9.2.2 Analysis
	9.2.3 Detailed Systems Design
	9.2.4 Implementation
	9.2.5 Maintenance

	9.3 The Database Life Cycle (DBLC)
	9.3.1 The Database Initial Study
	9.3.2 Database Design
	9.3.3 Implementation and Loading
	9.3.4 Testing and Evaluation
	9.3.5 Operation
	9.3.6 Maintenance and Evolution

	9.4 Conceptual Design
	9.4.1 Data Analysis and Requirements
	9.4.2 Entity Relationship Modeling and Normalization
	9.4.3 Data Model Verification
	9.4.4 Distributed Database Design

	9.5 DBMS Software Selection
	9.6 Logical Design
	9.6.1 Map the Conceptual Model to the Logical Model
	9.6.2 Validate the Logical Model Using Normalization
	9.6.3 Validate Logical Model Integrity Constraints
	9.6.4 Validate the Logical Model against User Requirements

	9.7 Physical Design
	9.7.1 Define Data Storage Organization
	9.7.2 Define Integrity and Security Measures
	9.7.3 Determine Performance Measures

	9.8 Database Design Strategies
	9.9 Centralized vs. Decentralized Design
	Summary
	Key Terms
	Review Questions
	Problems

	PART IV: ADVANCED DATABASE CONCEPTS
	Business Vignette: Combating Data Explosion
	CHAPTER 10: TRANSACTION MANAGEMENT AND CONCURRENCY CONTROL
	10.1 What Is a Transaction?
	10.1.1 Evaluating Transaction Results
	10.1.2 Transaction Properties
	10.1.3 Transaction Management with SQL
	10.1.4 The Transaction Log

	10.2 Concurrency Control
	10.2.1 Lost Updates
	10.2.2 Uncommitted Data
	10.2.3 Inconsistent Retrievals
	10.2.4 The Scheduler

	10.3 Concurrency Control with Locking Methods
	10.3.1 Lock Granularity
	10.3.2 Lock Types
	10.3.3 Two-Phase Locking to Ensure Serializability
	10.3.4 Deadlocks

	10.4 Concurrency Control with Time Stamping Methods
	10.4.1 Wait/Die and Wound/Wait Schemes

	10.5 Concurrency Control with Optimistic Methods
	10.6 Database Recovery Management
	10.6.1 Transaction Recovery

	Summary
	Key Terms
	Review Questions
	Problems

	CHAPTER 11: DATABASE PERFORMANCE TUNING AND QUERY OPTIMIZATION
	11.1 Database Performance-Tuning Concepts
	11.1.1 Performance Tuning: Client and Server
	11.1.2 DBMS Architecture
	11.1.3 Database Statistics

	11.2 Query Processing
	11.2.1 SQL Parsing Phase
	11.2.2 SQL Execution Phase
	11.2.3 SQL Fetching Phase
	11.2.4 Query Processing Bottlenecks

	11.3 Indexes and Query Optimization
	11.4 Optimizer Choices
	11.4.1 Using Hints to Affect Optimizer Choices

	11.5 SQL Performance Tuning
	11.5.1 Index Selectivity
	11.5.2 Conditional Expressions

	11.6 Query Formulation
	11.7 DBMS Performance Tuning
	11.8 Query Optimization Example
	Summary
	Key Terms
	Review Questions
	Problems

	CHAPTER 12: DISTRIBUTED DATABASE MANAGEMENT SYSTEMS
	12.1 The Evolution of Distributed Database Management Systems
	12.2 DDBMS Advantages and Disadvantages
	12.3 Distributed Processing and Distributed Databases
	12.4 Characteristics of Distributed Database Management Systems
	12.5 DDBMS Components
	12.6 Levels of Data and Process Distribution
	12.6.1 Single-Site Processing‚ Single-Site Data (SPSD)
	12.6.2 Multiple-Site Processing‚ Single-Site Data (MPSD)
	12.6.3 Multiple-Site Processing‚ Multiple-Site Data (MPMD)

	12.7 Distributed Database Transparency Features
	12.8 Distribution Transparency
	12.9 Transaction Transparency
	12.9.1 Distributed Requests and Distributed Transactions
	12.9.2 Distributed Concurrency Control
	12.9.3 Two-Phase Commit Protocol

	12.10 Performance Transparency and Query Optimization
	12.11 Distributed Database Design
	12.11.1 Data Fragmentation
	12.11.2 Data Replication
	12.11.3 Data Allocation

	12.12 Client/Server vs.DDBMS
	12.13 C. J. Data’s Twelve Commandments for Distributed Databases
	Summary
	Key Terms
	Review Questions
	Problems

	CHAPTER 13: BUSINESS INTELLIGENCE AND DATA WAREHOUSES
	13.1 The Need for Data Analysis
	13.2 Business Intelligence
	13.3 Business Intelligence Architecture
	13.4 Decision Support Data
	13.4.1 Operational Data vs. Decision Support Data
	13.4.2 Decision Support Database Requirements

	13.5 The Data Warehouse
	13.5.1 Twelve Rules that Define a Data Warehouse
	13.5.2 Decision Support Architectural Styles

	13.6 Online Analytical Processing
	13.6.1 Multidimensional Data Analysis Techniques
	13.6.2 Advanced Database Support
	13.6.3 Easy-to-Use End-User Interface
	13.6.4 Client/Server Architecture
	13.6.5 OLAP Architecture
	13.6.6 Relational OLAP
	13.6.7 Multidimensional OLAP
	13.6.8 Relational vs. Multidimensional OLAP

	13.7 Star Schemas
	13.7.1 Facts
	13.7.2 Dimensions
	13.7.3 Attributes
	13.7.4 Attribute Hierarchies
	13.7.5 Star Schema Representation
	13.7.6 Performance-Improving Techniques for the Star Schema

	13.8 Implementing a Data Warehouse
	13.8.1 The Data Warehouse as an Active Decision Support Framework
	13.8.2 A Company-Wide Effort that Requires User Involvement
	13.8.3 Satisfy the Trilogy: Data‚ Analysis‚ and Users
	13.8.4 Apply Database Design Procedures

	13.9 Data Mining
	13.10 SQL Extensions for OLAP
	13.10.1 The ROLLUP Extension
	13.10.2 The CUBE Extension
	13.10.3 Materialized Views

	Summary
	Key Terms
	Review Questions
	Problems

	PART V: DATABASES AND THE INTERNET
	Business Vignette: KBB Transforms with Innovative Web Services
	CHAPTER 14: DATABASE CONNECTIVITY AND WEB TECHNOLOGIES
	14.1 Database Connectivity
	14.1.1 Native SQL Connectivity
	14.1.2 ODBC‚ DAO‚ and RDO
	14.1.3 OLE-DB
	14.1.4 ADO.NET
	14.1.5 Java Database Connectivity (JDBC)

	14.2 Internet Databases
	14.2.1 Web-to-Database Middleware: Server-Side Extensions
	14.2.2 Web Server Interfaces
	14.2.3 The Web Browser
	14.2.4 Client-Side Extensions
	14.2.5 Web Application Servers

	14.3 Extensible Markup Language (XML)
	14.3.1 Document Type Definitions (DTD) and XML Schemas
	14.3.2 XML Presentation
	14.3.3 XML Applications

	14.4 SQL Data Services
	Summary
	Key Terms
	Review Questions
	Problems

	PART VI: DATABASE ADMINISTRATION
	Business Vignette: The Rising SQL Injection Threat
	CHAPTER 15: DATABASE ADMINISTRATION AND SECURITY
	15.1 Data as a Corporate Asset
	15.2 The Need for and Role of a Database in an Organization
	15.3 Introduction of a Database: Special Considerations
	15.4 The Evolution of the Database Administration Function
	15.5 The Database Environment’s Human Component
	15.5.1 The DBA’s Managerial Role
	15.5.2 The DBA’s Technical Role

	15.6 Security
	15.6.1 Security Policies
	15.6.2 Security Vulnerabilities
	15.6.3 Database Security

	15.7 Database Administration Tools
	15.7.1 The Data Dictionary
	15.7.2 CASE Tools

	15.8 Developing a Data Administration Strategy
	15.9 The DBA at Work: Using Oracle for Database Administration
	15.9.1 Oracle Database Administration Tools
	15.9.2 The Default Login
	15.9.3 Ensuring an Automatic RDBMS Start
	15.9.4 Creating Tablespaces and Datafiles
	15.9.5 Managing the Database Objects:Tables,Views,Triggers, and Procedures
	15.9.6 Managing Users and Establishing Security
	15.9.7 Customizing the Database Initialization Parameters

	Summary
	Key Terms
	Review Questions

	Glossary
	Index

