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PUBLISHER’S	NOTE

Six	Easy	Pieces	grew	out	of	the	need	to	bring	to	as	wide	an	audience	as	possible
a	 substantial	 yet	 nontechnical	 physics	 primer	 based	 on	 the	 science	 of	Richard
Feynman.	We	have	chosen	 the	 six	 easiest	 chapters	 from	Feynman’s	 celebrated
and	 landmark	 text,	The	 Feynman	 Lectures	 on	 Physics	 (originally	 published	 in
1963),	which	remains	his	most	famous	publication.	General	readers	are	fortunate
that	 Feynman	 chose	 to	 present	 certain	 key	 topics	 in	 largely	 qualitative	 terms
without	formal	mathematics,	and	these	are	brought	together	for	Six	Easy	Pieces.
We	 would	 like	 to	 thank	 Paul	 Davies	 for	 his	 insightful	 introduction	 to	 this

newly	 formed	 collection.	 Following	 his	 introduction	 we	 have	 chosen	 to
reproduce	 two	 prefaces	 from	 The	 Feynman	 Lectures	 on	 Physics,	 one	 by
Feynman	himself	and	one	by	two	of	his	colleagues,	because	they	provide	context
for	the	pieces	that	follow	and	insight	into	both	Richard	Feynman	and	his	science.
Finally,	 we	 would	 like	 to	 thank	 the	 California	 Institute	 of	 Technology’s

Physics	Department	 and	 Institute	Archives,	 in	 particular	Dr.	 Judith	Goodstein,
and	 Dr.	 Brian	 Hatfield,	 for	 his	 outstanding	 advice	 and	 recommendations
throughout	the	development	of	this	project.



INTRODUCTION

There	 is	 a	 popular	misconception	 that	 science	 is	 an	 impersonal,	 dispassionate,
and	 thoroughly	 objective	 enterprise.	Whereas	most	 other	 human	 activities	 are
dominated	 by	 fashions,	 fads,	 and	 personalities,	 science	 is	 supposed	 to	 be
constrained	by	agreed	rules	of	procedure	and	rigorous	tests.	It	is	the	results	that
count,	not	the	people	who	produce	them.
This	is,	of	course,	manifest	nonsense.	Science	is	a	people-driven	activity	like

all	human	endeavor,	and	just	as	subject	to	fashion	and	whim.	In	this	case	fashion
is	 set	not	 so	much	by	choice	of	 subject	matter,	but	by	 the	way	scientists	 think
about	the	world.	Each	age	adopts	its	particular	approach	to	scientific	problems,
usually	following	the	 trail	blazed	by	certain	dominant	figures	who	both	set	 the
agenda	 and	 define	 the	 best	methods	 to	 tackle	 it.	 Occasionally	 scientists	 attain
sufficient	 stature	 that	 they	 become	 noticed	 by	 the	 general	 public,	 and	 when
endowed	with	 outstanding	 flair	 a	 scientist	may	 become	 an	 icon	 for	 the	 entire
scientific	 community.	 In	 earlier	 centuries	 Isaac	 Newton	 was	 an	 icon.	 Newton
personified	 the	 gentleman	 scientist—well	 connected,	 devoutly	 religious,
unhurried,	 and	 methodical	 in	 his	 work.	 His	 style	 of	 doing	 science	 set	 the
standard	for	two	hundred	years.	In	the	first	half	of	the	twentieth	century	Albert
Einstein	 replaced	Newton	 as	 the	 popular	 scientist	 icon.	Eccentric,	 dishevelled,
Germanic,	 absent-minded,	 utterly	 absorbed	 in	 his	 work,	 and	 an	 archetypal
abstract	 thinker,	Einstein	 changed	 the	way	 that	physics	 is	done	by	questioning
the	very	concepts	that	define	the	subject.
Richard	Feynman	has	become	an	icon	for	late	twentieth-century	physics—the

first	American	to	achieve	this	status.	Born	in	New	York	in	1918	and	educated	on
the	 East	 Coast,	 he	 was	 too	 late	 to	 participate	 in	 the	 Golden	 Age	 of	 physics,
which,	in	the	first	three	decades	of	this	century,	transformed	our	worldview	with
the	 twin	 revolutions	 of	 the	 theory	of	 relativity	 and	quantum	mechanics.	These
sweeping	developments	laid	the	foundations	of	the	edifice	we	now	call	the	New
Physics.	 Feynman	 started	with	 those	 foundations	 and	 helped	 build	 the	 ground
floor	of	the	New	Physics.	His	contributions	touched	almost	every	corner	of	the
subject	and	have	had	a	deep	and	abiding	influence	over	the	way	that	physicists
think	about	the	physical	universe.
Feynman	was	 a	 theoretical	 physicist	 par	 excellence.	Newton	 had	 been	 both

experimentalist	 and	 theorist	 in	 equal	 measure.	 Einstein	 was	 quite	 simply



contemptuous	 of	 experiment,	 preferring	 to	 put	 his	 faith	 in	 pure	 thought.
Feynman	was	driven	to	develop	a	deep	theoretical	understanding	of	nature,	but
he	 always	 remained	 close	 to	 the	 real	 and	 often	 grubby	world	 of	 experimental
results.	 Nobody	who	watched	 the	 elderly	 Feynman	 elucidate	 the	 cause	 of	 the
Challenger	space	shuttle	disaster	by	dipping	an	elastic	band	 in	 ice	water	could
doubt	that	here	was	both	a	showman	and	a	very	practical	thinker.
Initially,	Feynman	made	a	name	 for	himself	 from	his	work	on	 the	 theory	of

subatomic	particles,	specifically	the	topic	known	as	quantum	electrodynamics	or
QED.	 In	 fact,	 the	 quantum	 theory	 began	with	 this	 topic.	 In	 1900,	 the	German
physicist	Max	 Planck	 proposed	 that	 light	 and	 other	 electromagnetic	 radiation,
which	 had	 hitherto	 been	 regarded	 as	 waves,	 paradoxically	 behaved	 like	 tiny
packets	 of	 energy,	 or	 “quanta,”	when	 interacting	with	matter.	 These	 particular
quanta	became	known	as	photons.	By	the	early	1930s	the	architects	of	the	new
quantum	 mechanics	 had	 worked	 out	 a	 mathematical	 scheme	 to	 describe	 the
emission	 and	 absorption	 of	 photons	 by	 electrically	 charged	 particles	 such	 as
electrons.	 Although	 this	 early	 formulation	 of	 QED	 enjoyed	 some	 limited
success,	 the	 theory	 was	 clearly	 flawed.	 In	 many	 cases	 calculations	 gave
inconsistent	and	even	infinite	answers	to	well-posed	physical	questions.	It	was	to
the	problem	of	constructing	a	consistent	theory	of	QED	that	the	young	Feynman
turned	his	attention	in	the	late	1940s.
To	place	QED	on	a	sound	basis	it	was	necessary	to	make	the	theory	consistent

not	only	with	the	principles	of	quantum	mechanics	but	with	those	of	the	special
theory	 of	 relativity	 too.	 These	 two	 theories	 come	 with	 their	 own	 distinctive
mathematical	machinery,	 complicated	 systems	 of	 equations	 that	 can	 indeed	 be
combined	and	reconciled	to	yield	a	satisfactory	description	of	QED.	Doing	this
was	a	tough	undertaking,	requiring	a	high	degree	of	mathematical	skill,	and	was
the	 approach	 followed	 by	 Feynman’s	 contemporaries.	 Feynman	 himself,
however,	took	a	radically	different	route—so	radical,	in	fact,	that	he	was	more	or
less	 able	 to	 write	 down	 the	 answers	 straightaway	 without	 using	 any
mathematics!
To	aid	this	extraordinary	feat	of	intuition,	Feynman	invented	a	simple	system

of	 eponymous	 diagrams.	 Feynman	 diagrams	 are	 a	 symbolic	 but	 powerfully
heuristic	way	of	picturing	what	 is	going	on	when	electrons,	photons,	and	other
particles	 interact	with	 each	other.	These	 days	Feynman	diagrams	 are	 a	 routine
aid	to	calculation,	but	in	the	early	1950s	they	marked	a	startling	departure	from
the	traditional	way	of	doing	theoretical	physics.
The	 particular	 problem	 of	 constructing	 a	 consistent	 theory	 of	 quantum



electrodynamics,	although	it	was	a	milestone	in	the	development	of	physics,	was
just	 the	 start.	 It	was	 to	 define	 a	 distinctive	 Feynman	 style,	 a	 style	 destined	 to
produce	 a	 string	 of	 important	 results	 from	 a	 broad	 range	 of	 topics	 in	 physical
science.	The	Feynman	style	can	best	be	described	as	a	mixture	of	reverence	and
disrespect	for	received	wisdom.
Physics	 is	 an	 exact	 science,	 and	 the	 existing	 body	 of	 knowledge,	 while

incomplete,	 can’t	 simply	 be	 shrugged	 aside.	 Feynman	 acquired	 a	 formidable
grasp	of	the	accepted	principles	of	physics	at	a	very	young	age,	and	he	chose	to
work	almost	entirely	on	conventional	problems.	He	was	not	the	sort	of	genius	to
beaver	away	in	isolation	in	a	backwater	of	the	discipline	and	to	stumble	across
the	profoundly	new.	His	 special	 talent	was	 to	 approach	essentially	mainstream
topics	 in	 an	 idiosyncratic	way.	This	meant	 eschewing	 existing	 formalisms	 and
developing	 his	 own	 highly	 intuitive	 approach.	 Whereas	 most	 theoretical
physicists	 rely	 on	 careful	 mathematical	 calculation	 to	 provide	 a	 guide	 and	 a
crutch	 to	 take	 them	 into	 unfamiliar	 territory,	 Feynman’s	 attitude	 was	 almost
cavalier.	You	get	the	impression	that	he	could	read	nature	like	a	book	and	simply
report	on	what	he	found,	without	the	tedium	of	complex	analysis.
Indeed,	in	pursuing	his	interests	in	this	manner	Feynman	displayed	a	healthy

contempt	for	rigorous	formalisms.	It	is	hard	to	convey	the	depth	of	genius	that	is
necessary	to	work	like	this.	Theoretical	physics	is	one	of	the	toughest	intellectual
exercises,	 combining	 abstract	 concepts	 that	 defy	 visualization	 with	 extreme
mathematical	 complexity.	 Only	 by	 adopting	 the	 highest	 standards	 of	 mental
discipline	 can	 most	 physicists	 make	 progress.	 Yet	 Feynman	 appeared	 to	 ride
roughshod	over	this	strict	code	of	practice	and	pluck	new	results	like	ready-made
fruit	from	the	Tree	of	Knowledge.
The	 Feynman	 style	 owed	 a	 great	 deal	 to	 the	 personality	 of	 the	man.	 In	 his

professional	 and	 private	 life	 he	 seemed	 to	 treat	 the	 world	 as	 a	 hugely
entertaining	game.	The	physical	universe	presented	him	with	a	fascinating	series
of	 puzzles	 and	 challenges,	 and	 so	 did	 his	 social	 environment.	 A	 lifelong
prankster,	he	treated	authority	and	the	academic	establishment	with	the	same	sort
of	disrespect	he	showed	for	stuffy	mathematical	formalism.	Never	one	to	suffer
fools	gladly,	he	broke	the	rules	whenever	he	found	them	arbitrary	or	absurd.	His
autobiographical	 writings	 contain	 amusing	 stories	 of	 Feynman	 outwitting	 the
atom-bomb	security	services	during	the	war,	Feynman	cracking	safes,	Feynman
disarming	women	with	outrageously	bold	behavior.	He	treated	his	Nobel	Prize,
awarded	for	his	work	on	QED,	in	a	similar	take-it-or-leave-it	manner.
Alongside	 this	 distaste	 for	 formality,	 Feynman	 had	 a	 fascination	 with	 the



quirky	 and	 obscure.	 Many	 will	 remember	 his	 obsession	 with	 the	 long-lost
country	of	Tuva	in	Central	Asia,	captured	so	delightfully	in	a	documentary	film
made	near	the	time	of	his	death.	His	other	passions	included	playing	the	bongo
drums,	painting,	frequenting	strip	clubs,	and	deciphering	Mayan	texts.
Feynman	 himself	 did	 much	 to	 cultivate	 his	 distinctive	 persona.	 Although

reluctant	 to	put	pen	 to	paper,	he	was	voluble	 in	conversation,	and	 loved	 to	 tell
stories	 about	 his	 ideas	 and	 escapades.	 These	 anecdotes,	 accumulated	 over	 the
years,	helped	add	to	his	mystique	and	made	him	a	proverbial	legend	in	his	own
lifetime.	His	engaging	manner	endeared	him	greatly	 to	 students,	 especially	 the
younger	 ones,	many	of	whom	 idolized	him.	When	Feynman	died	of	 cancer	 in
1988	 the	 students	 at	 Caltech,	 where	 he	 had	 worked	 for	 most	 of	 his	 career,
unfurled	a	banner	with	the	simple	message:	“We	love	you	Dick.”
It	was	Feynman’s	happy-go-lucky	approach	 to	 life	 in	general	and	physics	 in

particular	 that	 made	 him	 such	 a	 superb	 communicator.	 He	 had	 little	 time	 for
formal	 lecturing	or	 even	 for	 supervising	Ph.D.	 students.	Nevertheless	he	could
give	 brilliant	 lectures	 when	 it	 suited	 him,	 deploying	 all	 the	 sparkling	 wit,
penetrating	insight,	and	irreverence	that	he	brought	to	bear	on	his	research	work.
In	 the	early	1960s	Feynman	was	persuaded	 to	 teach	an	 introductory	physics

course	 to	 Caltech	 freshmen	 and	 sophomores.	 He	 did	 so	 with	 characteristic
panache	 and	 his	 inimitable	 blend	 of	 informality,	 zest,	 and	 offbeat	 humor.
Fortunately,	 these	 priceless	 lectures	 were	 saved	 for	 posterity	 in	 book	 form.
Though	far	removed	in	style	and	presentation	from	more	conventional	teaching
texts,	The	Feynman	Lectures	on	Physics	were	a	huge	success,	and	they	excited
and	inspired	a	generation	of	students	across	the	world.	Three	decades	on,	these
volumes	have	lost	nothing	of	their	sparkle	and	lucidity.	Six	Easy	Pieces	is	culled
directly	 from	The	Feynman	Lectures	on	Physics.	 It	 is	 intended	 to	 give	general
readers	 a	 substantive	 taste	 of	 Feynman	 the	 Educator	 by	 drawing	 on	 the	 early,
nontechnical	chapters	from	that	landmark	work.	The	result	is	a	delightful	volume
—it	 serves	 both	 as	 a	 primer	 on	 physics	 for	 nonscientists	 and	 as	 a	 primer	 on
Feynman	himself.
What	 is	most	 impressive	about	Feynman’s	carefully	crafted	exposition	is	 the

way	 that	 he	 can	 develop	 far-reaching	 physical	 notions	 from	 the	 most	 slender
investment	in	concepts,	and	a	minimum	in	the	way	of	mathematics	and	technical
jargon.	He	has	the	knack	of	finding	just	the	right	analogy	or	everyday	illustration
to	bring	out	the	essence	of	a	deep	principle,	without	obscuring	it	in	incidental	or
irrelevant	details.
The	 selection	 of	 topics	 contained	 in	 this	 volume	 is	 not	 intended	 as	 a



comprehensive	 survey	 of	 modern	 physics,	 but	 as	 a	 tantalizing	 taste	 of	 the
Feynman	 approach.	 We	 soon	 discover	 how	 he	 can	 illuminate	 even	 mundane
topics	 like	force	and	motion	with	new	insights.	Key	concepts	are	 illustrated	by
examples	 drawn	 from	 daily	 life	 or	 antiquity.	 Physics	 is	 continually	 linked	 to
other	 sciences	 while	 leaving	 the	 reader	 in	 no	 doubt	 about	 which	 is	 the
fundamental	discipline.
Right	at	the	beginning	of	Six	Easy	Pieces	we	learn	how	all	physics	is	rooted	in

the	notion	of	law—the	existence	of	an	ordered	universe	that	can	be	understood
by	 the	 application	 of	 rational	 reasoning.	However,	 the	 laws	 of	 physics	 are	 not
transparent	 to	 us	 in	 our	 direct	 observations	 of	 nature.	 They	 are	 frustratingly
hidden,	subtly	encoded	in	the	phenomena	we	study.	The	arcane	procedures	of	the
physicist—a	 mixture	 of	 carefully	 designed	 experimentation	 and	 mathematical
theorizing—are	needed	to	unveil	the	underlying	law-like	reality.
Possibly	 the	 best-known	 law	 of	 physics	 is	 Newton’s	 inverse	 square	 law	 of

gravitation,	 discussed	 here	 in	 Chapter	 Five.	 The	 topic	 is	 introduced	 in	 the
context	 of	 the	 solar	 system	 and	 Kepler’s	 laws	 of	 planetary	 motion.	 But
gravitation	is	universal,	applying	across	the	cosmos,	enabling	Feynman	to	spice
his	 account	with	 examples	 from	 astronomy	 and	 cosmology.	Commenting	 on	 a
picture	of	a	globular	cluster	somehow	held	together	by	unseen	forces,	he	waxes
lyrical:	“If	one	cannot	see	gravitation	acting	here,	he	has	no	soul.”
Other	 laws	 are	 known	 that	 refer	 to	 the	 various	 nongravitational	 forces	 of

nature	that	describe	how	particles	of	matter	interact	with	each	other.	There	is	but
a	 handful	 of	 these	 forces,	 and	 Feynman	 himself	 holds	 the	 considerable
distinction	of	being	one	of	the	few	scientists	in	history	to	discover	a	new	law	of
physics,	pertaining	to	the	way	that	a	weak	nuclear	force	affects	the	behavior	of
certain	subatomic	particles.
High-energy	particle	physics	was	the	jewel	in	the	crown	of	postwar	science,	at

once	awesome	and	glamorous,	with	its	huge	accelerator	machines	and	seemingly
unending	list	of	newly	discovered	subatomic	particles.	Feynman’s	research	was
directed	mostly	 toward	making	 sense	 of	 the	 results	 of	 this	 enterprise.	A	 great
unifying	 theme	 among	 particle	 physicists	 has	 been	 the	 role	 of	 symmetry	 and
conservation	laws	in	bringing	order	to	the	subatomic	zoo.
As	 it	 happens,	 many	 of	 the	 symmetries	 known	 to	 particle	 physicists	 were

familiar	already	in	classical	physics.	Chief	among	these	are	the	symmetries	that
arise	from	the	homogeneity	of	space	and	time.	Take	time:	apart	from	cosmology,
where	the	big	bang	marked	the	beginning	of	time,	there	is	nothing	in	physics	to
distinguish	one	moment	of	 time	from	the	next.	Physicists	 say	 that	 the	world	 is



“invariant	under	time	translations,”	meaning	that	whether	you	take	midnight	or
midday	to	be	the	zero	of	time	in	your	measurements,	 it	makes	no	difference	to
the	description	of	physical	phenomena.	Physical	processes	do	not	depend	on	an
absolute	 zero	 of	 time.	 It	 turns	 out	 that	 this	 symmetry	 under	 time	 translation
directly	implies	one	of	the	most	basic,	and	also	most	useful,	laws	of	physics:	the
law	of	conservation	of	energy.	This	law	says	that	you	can	move	energy	around
and	change	its	form	but	you	can’t	create	or	destroy	it.	Feynman	makes	this	law
crystal	 clear	 with	 his	 amusing	 story	 of	 Dennis	 the	 Menace	 who	 is	 always
mischievously	hiding	his	toy	building	blocks	from	his	mother	(Chapter	Four).
The	most	challenging	lecture	in	this	volume	is	the	last,	which	is	an	exposition

on	quantum	physics.	 It	 is	 no	 exaggeration	 to	 say	 that	 quantum	mechanics	 had
dominated	 twentieth-century	 physics	 and	 is	 far	 and	 away	 the	most	 successful
scientific	 theory	 in	 existence.	 It	 is	 indispensable	 for	 understanding	 subatomic
particles,	 atoms	 and	 nuclei,	 molecules	 and	 chemical	 bonding,	 the	 structure	 of
solids,	 superconductors	and	superfluids,	 the	electrical	and	 thermal	conductivity
of	 metals	 and	 semiconductors,	 the	 structure	 of	 stars,	 and	 much	 else.	 It	 has
practical	 applications	 ranging	 from	 the	 laser	 to	 the	microchip.	All	 this	 from	 a
theory	that	at	first	sight—and	second	sight—looks	absolutely	crazy!	Niels	Bohr,
one	of	the	founders	of	quantum	mechanics,	once	remarked	that	anybody	who	is
not	shocked	by	the	theory	hasn’t	understood	it.
The	problem	is	that	quantum	ideas	strike	at	the	very	heart	of	what	we	might

call	 commonsense	 reality.	 In	 particular,	 the	 idea	 that	 physical	 objects	 such	 as
electrons	 or	 atoms	 enjoy	 an	 independent	 existence,	 with	 a	 complete	 set	 of
physical	properties	at	all	times,	is	called	into	question.	For	example,	an	electron
cannot	have	a	position	in	space	and	a	well-defined	speed	at	the	same	moment.	If
you	look	for	where	an	electron	is	located,	you	will	find	it	at	a	place,	and	if	you
measure	 its	speed	you	will	obtain	a	definite	answer,	but	you	cannot	make	both
observations	 at	 once.	 Nor	 is	 it	 meaningful	 to	 attribute	 definite	 yet	 unknown
values	for	the	position	and	speed	to	an	electron	in	the	absence	of	a	complete	set
of	observations.
This	 indeterminism	 in	 the	very	nature	of	atomic	particles	 is	encapsulated	by

Heisenberg’s	 celebrated	 uncertainty	 principle.	 This	 puts	 strict	 limits	 on	 the
precision	 with	 which	 properties	 such	 as	 position	 and	 speed	 can	 be
simultaneously	known.	A	sharp	value	for	position	smears	 the	range	of	possible
values	 of	 speed	 and	 vice	 versa.	 Quantum	 fuzziness	 shows	 up	 in	 the	 way
electrons,	 photons,	 and	 other	 particles	 move.	 Certain	 experiments	 can	 reveal
them	taking	definite	paths	 through	space,	after	 the	fashion	of	bullets	 following



trajectories	 toward	 a	 target.	 But	 other	 experimental	 arrangements	 reveal	 that
these	 entities	 can	 also	 behave	 like	 waves,	 showing	 characteristic	 patterns	 of
diffraction	and	interference.
Feynman’s	 masterly	 analysis	 of	 the	 famous	 “two-slit”	 experiment,	 which

teases	out	the	“shocking”	wave-particle	duality	in	its	starkest	form,	has	become	a
classic	 in	 the	 history	 of	 scientific	 exposition.	 With	 a	 few	 very	 simple	 ideas,
Feynman	manages	to	take	the	reader	to	the	very	heart	of	the	quantum	mystery,
and	leaves	us	dazzled	by	the	paradoxical	nature	of	reality	that	it	exposes.
Although	quantum	mechanics	had	made	the	textbooks	by	the	early	1930s,	it	is

typical	of	Feynman	that,	as	a	young	man,	he	preferred	to	refashion	the	theory	for
himself	 in	 an	 entirely	 new	 guise.	 The	 Feynman	method	 has	 the	 virtue	 that	 it
provides	us	with	a	vivid	picture	of	nature’s	quantum	trickery	at	work.	The	idea	is
that	the	path	of	a	particle	through	space	is	not	generally	well	defined	in	quantum
mechanics.	We	can	imagine	a	freely	moving	electron,	say,	not	merely	traveling
in	a	straight	line	between	A	and	B	as	common	sense	would	suggest,	but	taking	a
variety	 of	 wiggly	 routes.	 Feynman	 invites	 us	 to	 imagine	 that	 somehow	 the
electron	explores	all	possible	routes,	and	in	the	absence	of	an	observation	about
which	path	 is	 taken	we	must	 suppose	 that	 all	 these	 alternative	paths	 somehow
contribute	to	the	reality.	So	when	an	electron	arrives	at	a	point	in	space—say	a
target	screen—many	different	histories	must	be	integrated	together	to	create	this
one	event.
Feynman’s	so-called	path-integral,	or	sum-over-histories	approach	to	quantum

mechanics,	 set	 this	 remarkable	 concept	 out	 as	 a	 mathematical	 procedure.	 It
remained	 more	 or	 less	 a	 curiosity	 for	 many	 years,	 but	 as	 physicists	 pushed
quantum	mechanics	to	its	limits—applying	it	to	gravitation	and	even	cosmology
—so	 the	 Feynman	 approach	 turned	 out	 to	 offer	 the	 best	 calculational	 tool	 for
describing	 a	 quantum	universe.	History	may	well	 judge	 that,	 among	 his	many
outstanding	 contributions	 to	 physics,	 the	 path-integral	 formulation	 of	 quantum
mechanics	is	the	most	significant.
Many	 of	 the	 ideas	 discussed	 in	 this	 volume	 are	 deeply	 philosophical.	 Yet

Feynman	had	an	abiding	suspicion	of	philosophers.	I	once	had	occasion	to	tackle
him	 about	 the	 nature	 of	 mathematics	 and	 the	 laws	 of	 physics,	 and	 whether
abstract	mathematical	laws	could	be	considered	to	enjoy	an	independent	Platonic
existence.	He	gave	a	spirited	and	skillful	description	of	why	this	indeed	appears
so	 but	 soon	 backed	 off	 when	 I	 pressed	 him	 to	 take	 a	 specific	 philosophical
position.	He	was	similarly	wary	when	I	attempted	to	draw	him	out	on	the	subject
of	 reductionism.	 With	 hindsight,	 I	 believe	 that	 Feynman	 was	 not,	 after	 all,



contemptuous	 of	 philosophical	 problems.	 But,	 just	 as	 he	 was	 able	 to	 do	 fine
mathematical	physics	without	systematic	mathematics,	so	he	produced	some	fine
philosophical	 insights	 without	 systematic	 philosophy.	 It	 was	 formalism	 he
disliked,	not	content.
It	 is	unlikely	that	 the	world	will	see	another	Richard	Feynman.	He	was	very

much	a	man	of	his	time.	The	Feynman	style	worked	well	for	a	subject	that	was
in	 the	process	of	consolidating	a	 revolution	and	embarking	on	 the	 far-reaching
exploration	of	 its	consequences.	Postwar	physics	was	secure	in	its	foundations,
mature	 in	 its	 theoretical	 structures,	 yet	 wide	 open	 for	 kibitzing	 exploitation.
Feynman	entered	a	wonderland	of	abstract	concepts	and	imprinted	his	personal
brand	of	thinking	upon	many	of	them.	This	book	provides	a	unique	glimpse	into
the	mind	of	a	remarkable	human	being.
	
September	1994

PAUL	DAVIES



SPECIAL	PREFACE

(from	The	Feynman	Lectures	on	Physics)

	
	
	
	
	
	
	
Toward	 the	 end	 of	 his	 life,	 Richard	 Feynman’s	 fame	 had	 transcended	 the
confines	 of	 the	 scientific	 community.	 His	 exploits	 as	 a	 member	 of	 the
commission	 investigating	 the	 space	 shuttle	 Challenger	 disaster	 gave	 him
widespread	 exposure;	 similarly,	 a	 best-selling	 book	 about	 his	 picaresque
adventures	made	him	a	 folk	hero	almost	of	 the	proportions	of	Albert	Einstein.
But	 back	 in	 1961,	 even	 before	 his	 Nobel	 Prize	 increased	 his	 visibility	 to	 the
general	public,	Feynman	was	more	than	merely	famous	among	members	of	the
scientific	community—he	was	legendary.	Undoubtedly,	the	extraordinary	power
of	his	teaching	helped	spread	and	enrich	the	legend	of	Richard	Feynman.
He	 was	 a	 truly	 great	 teacher,	 perhaps	 the	 greatest	 of	 his	 era	 and	 ours.	 For

Feynman,	the	lecture	hall	was	a	theater,	and	the	lecturer	a	performer,	responsible
for	providing	drama	and	fireworks	as	well	as	facts	and	figures.	He	would	prowl
about	 the	 front	 of	 a	 classroom,	 arms	 waving,	 “the	 impossible	 combination	 of
theoretical	physicist	and	circus	barker,	all	body	motion	and	sound	effects,”	wrote
The	New	York	Times.	Whether	he	addressed	an	audience	of	students,	colleagues,
or	the	general	public,	for	those	lucky	enough	to	see	Feynman	lecture	in	person,
the	 experience	 was	 usually	 unconventional	 and	 always	 unforgettable,	 like	 the
man	himself.
He	 was	 the	 master	 of	 high	 drama,	 adept	 at	 riveting	 the	 attention	 of	 every

lecture-hall	audience.	Many	years	ago,	he	taught	a	course	in	Advanced	Quantum
Mechanics,	 a	 large	 class	 comprised	 of	 a	 few	 registered	 graduate	 students	 and
most	 of	 the	 Caltech	 physics	 faculty.	 During	 one	 lecture,	 Feynman	 started
explaining	how	to	represent	certain	complicated	integrals	diagrammatically:	time
on	 this	 axis,	 space	 on	 that	 axis,	wiggly	 line	 for	 this	 straight	 line,	 etc.	 Having



described	 what	 is	 known	 to	 the	 world	 of	 physics	 as	 a	 Feynman	 diagram,	 he
turned	 around	 to	 face	 the	 class,	 grinning	 wickedly.	 “And	 this	 is	 called	 THE
diagram!”	 Feynman	 had	 reached	 the	 denouement,	 and	 the	 lecture	 hall	 erupted
with	spontaneous	applause.
For	many	years	after	the	lectures	that	make	up	this	book	were	given,	Feynman

was	 an	 occasional	 guest	 lecturer	 for	 Caltech’s	 freshman	 physics	 course.
Naturally,	his	appearances	had	to	be	kept	secret	so	there	would	be	room	left	 in
the	hall	for	the	registered	students.	At	one	such	lecture	the	subject	was	curved-
space	 time,	 and	Feynman	was	characteristically	brilliant.	But	 the	unforgettable
moment	came	at	 the	beginning	of	 the	 lecture.	The	 supernova	of	1987	had	 just
been	discovered,	and	Feynman	was	very	excited	about	it.	He	said,	“Tycho	Brahe
had	his	supernova,	and	Kepler	had	his.	Then	there	weren’t	any	for	400	years.	But
now	I	have	mine.”	The	class	fell	silent,	and	Feynman	continued	on.	“There	are
10”	stars	in	the	galaxy.	That	used	to	be	a	huge	number.	But	it’s	only	a	hundred
billion.	 It’s	 less	 than	 the	 national	 deficit!	 We	 used	 to	 call	 them	 astronomical
numbers.	Now	we	should	call	them	economical	numbers.”	The	class	dissolved	in
laughter,	and	Feynman,	having	captured	his	audience,	went	on	with	his	lecture.
Showmanship	 aside,	 Feynman’s	 pedagogical	 technique	 was	 simple.	 A

summation	 of	 his	 teaching	 philosophy	 was	 found	 among	 his	 papers	 in	 the
Caltech	archives,	in	a	note	he	had	scribbled	to	himself	while	in	Brazil	in	1952:

First	figure	out	why	you	want	the	students	to	learn	the	subject	and	what
you	 want	 them	 to	 know,	 and	 the	 method	 will	 result	 more	 or	 less	 by
common	sense.

What	 came	 to	Feynman	by	 “common	 sense”	were	 often	 brilliant	 twists	 that
perfectly	captured	the	essence	of	his	point.	Once,	during	a	public	lecture,	he	was
trying	 to	 explain	 why	 one	 must	 not	 verify	 an	 idea	 using	 the	 same	 data	 that
suggested	the	idea	in	the	first	place.	Seeming	to	wander	off	the	subject,	Feynman
began	talking	about	license	plates.	“You	know,	the	most	amazing	thing	happened
to	 me	 tonight.	 I	 was	 coming	 here,	 on	 the	 way	 to	 the	 lecture,	 and	 I	 came	 in
through	the	parking	lot.	And	you	won’t	believe	what	happened.	I	saw	a	car	with
the	 license	 plate	 ARW	 357.	 Can	 you	 imagine?	 Of	 all	 the	 millions	 of	 license
plates	 in	 the	 state,	 what	 was	 the	 chance	 that	 I	 would	 see	 that	 particular	 one
tonight?	Amazing!”	A	 point	 that	 even	many	 scientists	 fail	 to	 grasp	was	made
clear	through	Feynman’s	remarkable	“common	sense.”
In	35	years	at	Caltech	(from	1952	to	1987),	Feynman	was	listed	as	teacher	of

record	 for	 34	 courses.	 Twenty-five	 of	 them	 were	 advanced	 graduate	 courses,



strictly	 limited	 to	graduate	students,	unless	undergraduates	asked	permission	to
take	them	(they	often	did,	and	permission	was	nearly	always	granted).	The	rest
were	 mainly	 introductory	 graduate	 courses.	 Only	 once	 did	 Feynman	 teach
courses	purely	 for	 undergraduates,	 and	 that	was	 the	 celebrated	occasion	 in	 the
academic	 years	 1961	 to	 1962	 and	 1962	 to	 1963,	with	 a	 brief	 reprise	 in	 1964,
when	 he	 gave	 the	 lectures	 that	 were	 to	 become	 The	 Feynman	 Lectures	 on
Physics.
At	 the	 time	 there	was	 a	 consensus	 at	Caltech	 that	 freshman	 and	 sophomore

students	 were	 getting	 turned	 off	 rather	 than	 spurred	 on	 by	 their	 two	 years	 of
compulsory	physics.	To	 remedy	 the	 situation,	Feynman	was	 asked	 to	 design	 a
series	of	lectures	to	be	given	to	the	students	over	the	course	of	two	years,	first	to
freshmen,	 and	 then	 to	 the	 same	 class	 as	 sophomores.	When	 he	 agreed,	 it	was
immediately	decided	that	the	lectures	should	be	transcribed	for	publication.	That
job	 turned	out	 to	be	 far	more	difficult	 than	anyone	had	 imagined.	Turning	out
publishable	 books	 required	 a	 tremendous	 amount	 of	 work	 on	 the	 part	 of	 his
colleagues,	 as	 well	 as	 Feynman	 himself,	 who	 did	 the	 final	 editing	 of	 every
chapter.
And	the	nuts	and	bolts	of	running	a	course	had	to	be	addressed.	This	task	was

greatly	complicated	by	the	fact	that	Feynman	had	only	a	vague	outline	of	what
he	wanted	to	cover.	This	meant	that	no	one	knew	what	Feynman	would	say	until
he	 stood	 in	 front	of	 a	 lecture	hall	 filled	with	 students	 and	 said	 it.	The	Caltech
professors	who	assisted	him	would	 then	scramble	as	best	 they	could	 to	handle
mundane	details,	such	as	making	up	homework	problems.
Why	 did	 Feynman	 devote	 more	 than	 two	 years	 to	 revolutionize	 the	 way

beginning	physics	was	taught?	One	can	only	speculate,	but	there	were	probably
three	basic	reasons.	One	is	that	he	loved	to	have	an	audience,	and	this	gave	him	a
bigger	theater	 than	he	usually	had	in	graduate	courses.	The	second	was	that	he
genuinely	 cared	 about	 students,	 and	 he	 simply	 thought	 that	 teaching	 freshmen
was	an	important	thing	to	do.	The	third	and	perhaps	most	important	reason	was
the	sheer	challenge	of	reformulating	physics,	as	he	understood	it,	so	that	it	could
be	presented	to	young	students.	This	was	his	specialty,	and	was	the	standard	by
which	 he	 measured	 whether	 something	 was	 really	 understood.	 Feynman	 was
once	asked	by	a	Caltech	faculty	member	to	explain	why	spin	1/2	particles	obey
Fermi-Dirac	statistics.	He	gauged	his	audience	perfectly	and	said,	“I’ll	prepare	a
freshman	lecture	on	it.”	But	a	few	days	later	he	returned	and	said,	“You	know,	I
couldn’t	do	it.	I	couldn’t	reduce	it	 to	the	freshman	level.	That	means	we	really
don’t	understand	it.”



This	 specialty	 of	 reducing	 deep	 ideas	 to	 simple,	 understandable	 terms	 is
evident	throughout	The	Feynman	Lectures	on	Physics,	but	nowhere	more	so	than
in	 his	 treatment	 of	 quantum	 mechanics.	 To	 aficionados,	 what	 he	 has	 done	 is
clear.	 He	 has	 presented,	 to	 beginning	 students,	 the	 path	 integral	 method,	 the
technique	 of	 his	 own	 devising	 that	 allowed	 him	 to	 solve	 some	 of	 the	 most
profound	problems	in	physics.	His	own	work	using	path	integrals,	among	other
achievements,	led	to	the	1965	Nobel	Prize	that	he	shared	with	Julian	Schwinger
and	Sin-Itero	Tomanaga.
Through	 the	 distant	 veil	 of	 memory,	 many	 of	 the	 students	 and	 faculty

attending	the	lectures	have	said	that	having	two	years	of	physics	with	Feynman
was	the	experience	of	a	lifetime.	But	that’s	not	how	it	seemed	at	the	time.	Many
of	the	students	dreaded	the	class,	and	as	the	course	wore	on,	attendance	by	the
registered	students	started	dropping	alarmingly.	But	at	the	same	time,	more	and
more	faculty	and	graduate	students	started	attending.	The	room	stayed	full,	and
Feynman	may	never	have	known	he	was	losing	some	of	his	intended	audience.
But	 even	 in	 Feynman’s	 view,	 his	 pedagogical	 endeavor	 did	 not	 succeed.	 He
wrote	in	the	1963	preface	to	the	Lectures:	“I	don’t	think	I	did	very	well	by	the
students.”	Rereading	the	books,	one	sometimes	seems	to	catch	Feynman	looking
over	 his	 shoulder,	 not	 at	 his	 young	 audience,	 but	 directly	 at	 his	 colleagues,
saying,	“Look	at	that!	Look	how	I	finessed	that	point!	Wasn’t	that	clever?”	But
even	 when	 he	 thought	 he	 was	 explaining	 things	 lucidly	 to	 freshmen	 or
sophomores,	it	was	not	really	they	who	were	able	to	benefit	most	from	what	he
was	doing.	It	was	his	peers—scientists,	physicists,	and	professors—who	would
be	 the	main	 beneficiaries	 of	 his	magnificent	 achievement,	 which	was	 nothing
less	 than	 to	 see	physics	 through	 the	 fresh	 and	dynamic	perspective	of	Richard
Feynman.
Feynman	 was	 more	 than	 a	 great	 teacher.	 His	 gift	 was	 that	 he	 was	 an

extraordinary	teacher	of	teachers.	If	the	purpose	in	giving	The	Feynman	Lectures
on	 Physics	 was	 to	 prepare	 a	 roomful	 of	 undergraduate	 students	 to	 solve
examination	 problems	 in	 physics,	 he	 cannot	 be	 said	 to	 have	 succeeded
particularly	 well.	 Moreover,	 if	 the	 intent	 was	 for	 the	 books	 to	 serve	 as
introductory	 college	 textbooks,	 he	 cannot	 be	 said	 to	 have	 achieved	 his	 goal.
Nevertheless,	the	books	have	been	translated	into	ten	foreign	languages	and	are
available	 in	 four	 bilingual	 editions.	 Feynman	 himself	 believed	 that	 his	 most
important	contribution	to	physics	would	not	be	QED,	or	the	theory	of	superfluid
helium,	or	polarons,	or	partons.	His	foremost	contribution	would	be	the	three	red
books	 of	 The	 Feynman	 Lectures	 on	 Physics.	 That	 belief	 fully	 justifies	 this



commemorative	issue	of	these	celebrated	books.

DAVID	L.	GOODSTEIN

GERRY	NEUGEBAUER

April	1989 California	Institute	of	Technology



FEYNMAN’S	PREFACE

(from	The	Feynman	Lectures	on	Physics)

	
	
	
	
	
	
	
These	are	the	lectures	in	physics	that	I	gave	last	year	and	the	year	before	to	the
freshman	 and	 sophomore	 classes	 at	 Caltech.	 The	 lectures	 are,	 of	 course,	 not
verbatim—they	have	been	edited,	sometimes	extensively	and	sometimes	less	so.
The	 lectures	 form	 only	 part	 of	 the	 complete	 course.	 The	whole	 group	 of	 180
students	gathered	in	a	big	lecture	room	twice	a	week	to	hear	these	lectures	and
then	they	broke	up	into	small	groups	of	15	to	20	students	in	recitation	sections
under	 the	 guidance	 of	 a	 teaching	 assistant.	 In	 addition,	 there	was	 a	 laboratory
session	once	a	week.
The	special	problem	we	tried	to	get	at	with	these	lectures	was	to	maintain	the

interest	of	the	very	enthusiastic	and	rather	smart	students	coming	out	of	the	high
schools	 and	 into	 Caltech.	 They	 have	 heard	 a	 lot	 about	 how	 interesting	 and
exciting	 physics	 is—the	 theory	 of	 relativity,	 quantum	 mechanics,	 and	 other
modern	ideas.	By	the	end	of	two	years	of	our	previous	course,	many	would	be
very	discouraged	because	there	were	really	very	few	grand,	new,	modern	ideas
presented	to	them.	They	were	made	to	study	inclined	planes,	electrostatics,	and
so	forth,	and	after	two	years	it	was	quite	stultifying.	The	problem	was	whether	or
not	we	could	make	a	course	which	would	save	 the	more	advanced	and	excited
student	by	maintaining	his	enthusiasm.
The	lectures	here	are	not	in	any	way	meant	to	be	a	survey	course,	but	are	very

serious.	I	thought	to	address	them	to	the	most	intelligent	in	the	class	and	to	make
sure,	if	possible,	that	even	the	most	intelligent	student	was	unable	to	completely
encompass	 everything	 that	 was	 in	 the	 lectures—by	 putting	 in	 suggestions	 of
applications	of	the	ideas	and	concepts	in	various	directions	outside	the	main	line



of	attack.	For	this	reason,	though,	I	tried	very	hard	to	make	all	the	statements	as
accurate	 as	 possible,	 to	 point	 out	 in	 every	 case	where	 the	 equations	 and	 ideas
fitted	 into	 the	 body	 of	 physics,	 and	 how—when	 they	 learned	 more—things
would	be	modified.	 I	 also	 felt	 that	 for	 such	 students	 it	 is	 important	 to	 indicate
what	it	is	that	they	should—if	they	are	sufficiently	clever—be	able	to	understand
by	 deduction	 from	 what	 has	 been	 said	 before,	 and	 what	 is	 being	 put	 in	 as
something	new.	When	new	ideas	came	in,	I	would	try	either	 to	deduce	them	if
they	were	deducible,	or	to	explain	that	it	was	a	new	idea	which	hadn’t	any	basis
in	 terms	of	 things	 they	had	already	 learned	and	which	was	not	 supposed	 to	be
provable—but	was	just	added	in.
At	 the	 start	 of	 these	 lectures,	 I	 assumed	 that	 the	 students	 knew	 something

when	 they	came	out	of	high	school—such	 things	as	geometrical	optics,	simple
chemistry	ideas,	and	so	on.	I	also	didn’t	see	that	there	was	any	reason	to	make
the	 lectures	 in	 a	 definite	 order,	 in	 the	 sense	 that	 I	 would	 not	 be	 allowed	 to
mention	 something	 until	 I	was	 ready	 to	 discuss	 it	 in	 detail.	There	was	 a	 great
deal	 of	mention	 of	 things	 to	 come,	without	 complete	 discussions.	 These	more
complete	 discussions	 would	 come	 later	 when	 the	 preparation	 became	 more
advanced.	 Examples	 are	 the	 discussions	 of	 inductance,	 and	 of	 energy	 levels,
which	are	 at	 first	 brought	 in	 in	 a	very	qualitative	way	and	are	 later	developed
more	completely.
At	the	same	time	that	I	was	aiming	at	the	more	active	student,	I	also	wanted	to

take	care	of	 the	 fellow	 for	whom	 the	extra	 fireworks	and	side	applications	are
merely	disquieting	and	who	cannot	be	expected	to	learn	most	of	the	material	in
the	lecture	at	all.	For	such	students,	I	wanted	there	to	be	at	least	a	central	core	or
backbone	 of	 material	 which	 he	 could	 get.	 Even	 if	 he	 didn’t	 understand
everything	in	a	lecture,	I	hoped	he	wouldn’t	get	nervous.	I	didn’t	expect	him	to
understand	everything,	but	only	the	central	and	most	direct	features.	It	takes,	of
course,	 a	 certain	 intelligence	on	his	part	 to	 see	which	are	 the	central	 theorems
and	central	ideas,	and	which	are	the	more	advanced	side	issues	and	applications
which	he	may	understand	only	in	later	years.
In	giving	these	lectures	there	was	one	serious	difficulty:	in	the	way	the	course

was	given,	there	wasn’t	any	feedback	from	the	students	to	the	lecturer	to	indicate
how	well	 the	 lectures	were	going	over.	This	 is	 indeed	a	very	serious	difficulty,
and	 I	 don’t	 know	 how	 good	 the	 lectures	 really	 are.	 The	 whole	 thing	 was
essentially	an	experiment.	And	if	I	did	it	again	I	wouldn’t	do	it	the	same	way—I
hope	I	don’t	have	to	do	it	again!	I	think,	though,	that	things	worked	out—so	far
as	the	physics	is	concerned—quite	satisfactorily	in	the	first	year.



In	the	second	year	I	was	not	so	satisfied.	In	the	first	part	of	the	course,	dealing
with	electricity	and	magnetism,	I	couldn’t	think	of	any	really	unique	or	different
way	of	doing	it—of	any	way	that	would	be	particularly	more	exciting	than	the
usual	way	of	presenting	 it.	So	 I	don’t	 think	 I	did	very	much	 in	 the	 lectures	on
electricity	 and	 magnetism.	 At	 the	 end	 of	 the	 second	 year	 I	 had	 originally
intended	 to	 go	 on,	 after	 the	 electricity	 and	 magnetism,	 by	 giving	 some	 more
lectures	 on	 the	 properties	 of	 materials,	 but	 mainly	 to	 take	 up	 things	 like
fundamental	 modes,	 solutions	 of	 the	 diffusion	 equation,	 vibrating	 systems,
orthogonal	 functions,	 ...	 developing	 the	 first	 stages	 of	what	 are	 usually	 called
“the	mathematical	methods	of	physics.”	In	retrospect,	I	think	that	if	I	were	doing
it	again	I	would	go	back	to	that	original	idea.	But	since	it	was	not	planned	that	I
would	be	giving	 these	 lectures	again,	 it	was	 suggested	 that	 it	might	be	a	good
idea	to	try	to	give	an	introduction	to	the	quantum	mechanics—what	you	will	find
in	Volume	III.
It	is	perfectly	clear	that	students	who	will	major	in	physics	can	wait	until	their

third	year	 for	quantum	mechanics.	On	 the	other	hand,	 the	argument	was	made
that	many	of	the	students	in	our	course	study	physics	as	a	background	for	their
primary	 interest	 in	 other	 fields.	 And	 the	 usual	 way	 of	 dealing	 with	 quantum
mechanics	 makes	 that	 subject	 almost	 unavailable	 for	 the	 great	 majority	 of
students	because	they	have	to	take	so	long	to	learn	it.	Yet,	in	its	real	applications
—especially	in	its	more	complex	applications,	such	as	in	electrical	engineering
and	 chemistry—the	 full	machinery	of	 the	differential	 equation	 approach	 is	 not
actually	 used.	 So	 I	 tried	 to	 describe	 the	 principles	 of	 quantum	mechanics	 in	 a
way	 which	 wouldn’t	 require	 that	 one	 first	 know	 the	 mathematics	 of	 partial
differential	equations.	Even	for	a	physicist	I	think	that	is	an	interesting	thing	to
try	 to	 do—to	 present	 quantum	mechanics	 in	 this	 reverse	 fashion—for	 several
reasons	which	may	be	apparent	in	the	lectures	themselves.	However,	I	think	that
the	experiment	in	the	quantum	mechanics	part	was	not	completely	successful—
in	large	part	because	I	really	did	not	have	enough	time	at	the	end	(I	should,	for
instance,	have	had	three	or	four	more	lectures	in	order	to	deal	more	completely
with	 such	matters	 as	 energy	 bands	 and	 the	 spatial	 dependence	 of	 amplitudes).
Also,	I	had	never	presented	the	subject	this	way	before,	so	the	lack	of	feedback
was	particularly	serious.	I	now	believe	the	quantum	mechanics	should	be	given
at	a	later	time.	Maybe	I’ll	have	a	chance	to	do	it	again	someday.	Then	I’ll	do	it
right.
The	 reason	 there	 are	no	 lectures	on	how	 to	 solve	problems	 is	 because	 there

were	recitation	sections.	Although	I	did	put	in	three	lectures	in	the	first	year	on



how	to	solve	problems,	they	are	not	included	here.	Also	there	was	a	lecture	on
inertial	 guidance	which	certainly	belongs	 after	 the	 lecture	on	 rotating	 systems,
but	which	was,	unfortunately,	omitted.	The	 fifth	and	sixth	 lectures	are	actually
due	to	Matthew	Sands,	as	I	was	out	of	town.
The	question,	of	course,	is	how	well	this	experiment	has	succeeded.	My	own

point	 of	 view—which,	 however,	 does	 not	 seem	 to	 be	 shared	 by	 most	 of	 the
people	who	worked	with	 the	 students—is	 pessimistic.	 I	 don’t	 think	 I	 did	 very
well	by	the	students.	When	I	look	at	the	way	the	majority	of	the	students	handled
the	problems	on	the	examinations,	I	think	that	the	system	is	a	failure.	Of	course,
my	friends	point	out	to	me	that	there	were	one	or	two	dozen	students	who—very
surprisingly—understood	almost	everything	in	all	of	the	lectures,	and	who	were
quite	active	in	working	with	the	material	and	worrying	about	the	many	points	in
an	 excited	 and	 interested	 way.	 These	 people	 have	 now,	 I	 believe,	 a	 first-rate
background	 in	physics—and	 they	are,	after	all,	 the	ones	 I	was	 trying	 to	get	at.
But	then,	“The	power	of	instruction	is	seldom	of	much	efficacy	except	in	those
happy	dispositions	where	it	is	almost	superfluous.”	(Gibbon)
Still,	I	didn’t	want	to	leave	any	student	completely	behind,	as	perhaps	I	did.	I

think	one	way	we	could	help	the	students	more	would	be	by	putting	more	hard
work	into	developing	a	set	of	problems	which	would	elucidate	some	of	the	ideas
in	the	lectures.	Problems	give	a	good	opportunity	to	fill	out	 the	material	of	 the
lectures	and	make	more	realistic,	more	complete,	and	more	settled	 in	 the	mind
the	ideas	that	have	been	exposed.
I	 think,	 however,	 that	 there	 isn’t	 any	 solution	 to	 this	 problem	 of	 education

other	 than	 to	 realize	 that	 the	 best	 teaching	 can	 be	 done	 only	 when	 there	 is	 a
direct	individual	relationship	between	a	student	and	a	good	teacher—a	situation
in	which	the	student	discusses	the	ideas,	thinks	about	the	things,	and	talks	about
the	 things.	 It’s	 impossible	 to	 learn	very	much	by	simply	sitting	 in	a	 lecture,	or
even	by	simply	doing	problems	that	are	assigned.	But	 in	our	modern	 times	we
have	so	many	students	to	teach	that	we	have	to	try	to	find	some	substitute	for	the
ideal.	Perhaps	my	lectures	can	make	some	contribution.	Perhaps	in	some	small
place	 where	 there	 are	 individual	 teachers	 and	 students,	 they	 may	 get	 some
inspiration	or	some	ideas	from	the	lectures.	Perhaps	they	will	have	fun	thinking
them	through—or	going	on	to	develop	some	of	the	ideas	further.

June	1963 RICHARD	P.	FEYNMAN



1

ATOMS	IN	MOTION

Introduction

	This	two-year	course	in	physics	is	presented	from	the	point	of	view	that	you,
the	reader,	are	going	to	be	a	physicist.	This	is	not	necessarily	the	case	of	course,
but	that	is	what	every	professor	in	every	subject	assumes!	If	you	are	going	to	be
a	physicist,	you	will	have	a	lot	to	study:	two	hundred	years	of	the	most	rapidly
developing	 field	 of	 knowledge	 that	 there	 is.	 So	much	 knowledge,	 in	 fact,	 that
you	 might	 think	 that	 you	 cannot	 learn	 all	 of	 it	 in	 four	 years,	 and	 truly	 you



cannot;	you	will	have	to	go	to	graduate	school	too!
Surprisingly	enough,	in	spite	of	the	tremendous	amount	of	work	that	has	been

done	for	all	this	time	it	is	possible	to	condense	the	enormous	mass	of	results	to	a
large	extent—that	is,	to	find	laws	which	summarize	all	our	knowledge.	Even	so,
the	 laws	 are	 so	 hard	 to	 grasp	 that	 it	 is	 unfair	 to	 you	 to	 start	 exploring	 this
tremendous	subject	without	some	kind	of	map	or	outline	of	 the	 relationship	of
one	 part	 of	 the	 subject	 of	 science	 to	 another.	 Following	 these	 preliminary
remarks,	 the	first	 three	chapters	will	 therefore	outline	the	relation	of	physics	to
the	 rest	 of	 the	 sciences,	 the	 relations	 of	 the	 sciences	 to	 each	 other,	 and	 the
meaning	of	science,	to	help	us	develop	a	“feel”	for	the	subject.
You	might	ask	why	we	cannot	teach	physics	by	just	giving	the	basic	laws	on

page	one	and	then	showing	how	they	work	in	all	possible	circumstances,	as	we
do	in	Euclidean	geometry,	where	we	state	the	axioms	and	then	make	all	sorts	of
deductions.	(So,	not	satisfied	to	learn	physics	in	four	years,	you	want	to	learn	it
in	four	minutes?)	We	cannot	do	it	in	this	way	for	two	reasons.	First,	we	do	not
yet	know	all	the	basic	laws:	there	is	an	expanding	frontier	of	ignorance.	Second,
the	correct	statement	of	the	laws	of	physics	involves	some	very	unfamiliar	ideas
which	require	advanced	mathematics	for	their	description.	Therefore,	one	needs
a	 considerable	 amount	 of	 preparatory	 training	 even	 to	 learn	 what	 the	 words
mean.	No,	it	is	not	possible	to	do	it	that	way.	We	can	only	do	it	piece	by	piece.
Each	piece,	or	part,	of	the	whole	of	nature	is	always	merely	an	approximation

to	 the	 complete	 truth,	 or	 the	 complete	 truth	 so	 far	 as	 we	 know	 it.	 In	 fact,
everything	we	know	is	only	some	kind	of	approximation,	because	we	know	that
we	do	not	know	all	the	laws	as	yet.	Therefore,	things	must	be	learned	only	to	be
unlearned	again	or,	more	likely,	to	be	corrected.
The	principle	of	science,	the	definition,	almost,	is	the	following:	The	test	of	all

knowledge	is	experiment.	Experiment	is	the	sole	judge	of	scientific	“truth.”	But
what	is	the	source	of	knowledge?	Where	do	the	laws	that	are	to	be	tested	come
from?	Experiment,	itself,	helps	to	produce	these	laws,	in	the	sense	that	it	gives
us	 hints.	 But	 also	 needed	 is	 imagination	 to	 create	 from	 these	 hints	 the	 great
generalizations—to	 guess	 at	 the	 wonderful,	 simple,	 but	 very	 strange	 patterns
beneath	them	all,	and	then	to	experiment	to	check	again	whether	we	have	made
the	right	guess.	This	imagining	process	is	so	difficult	that	there	is	a	division	of
labor	in	physics:	there	are	theoretical	physicists	who	imagine,	deduce,	and	guess
at	new	laws,	but	do	not	experiment;	and	then	 there	are	experimental	physicists
who	experiment,	imagine,	deduce,	and	guess.
We	said	that	the	laws	of	nature	are	approximate:	that	we	first	find	the	“wrong”



ones,	 and	 then	 we	 find	 the	 “right”	 ones.	 Now,	 how	 can	 an	 experiment	 be
“wrong”?	First,	 in	a	 trivial	way:	 if	 something	 is	wrong	with	 the	apparatus	 that
you	did	not	notice.	But	these	things	are	easily	fixed,	and	checked	back	and	forth.
So	without	snatching	at	such	minor	things,	how	can	the	results	of	an	experiment
be	wrong?	Only	by	being	inaccurate.	For	example,	the	mass	of	an	object	never
seems	to	change:	a	spinning	top	has	the	same	weight	as	a	still	one.	So	a	“law”
was	invented:	mass	is	constant,	independent	of	speed.	That	“law”	is	now	found
to	be	incorrect.	Mass	is	found	to	increase	with	velocity,	but	appreciable	increases
require	 velocities	 near	 that	 of	 light.	 A	 true	 law	 is:	 if	 an	 object	 moves	 with	 a
speed	of	less	than	one	hundred	miles	a	second	the	mass	is	constant	to	within	one
part	 in	 a	million.	 In	 some	 such	 approximate	 form	 this	 is	 a	 correct	 law.	 So	 in
practice	one	might	think	that	the	new	law	makes	no	significant	difference.	Well,
yes	 and	 no.	 For	 ordinary	 speeds	we	 can	 certainly	 forget	 it	 and	 use	 the	 simple
constant-mass	law	as	a	good	approximation.	But	for	high	speeds	we	are	wrong,
and	the	higher	the	speed,	the	more	wrong	we	are.
Finally,	 and	most	 interesting,	philosophically	we	are	 completely	wrong	 with

the	 approximate	 law.	 Our	 entire	 picture	 of	 the	 world	 has	 to	 be	 altered	 even
though	the	mass	changes	only	by	a	little	bit.	This	is	a	very	peculiar	thing	about
the	philosophy,	or	the	ideas,	behind	the	laws.	Even	a	very	small	effect	sometimes
requires	profound	changes	in	our	ideas.
Now,	what	should	we	teach	first?	Should	we	teach	the	correct	but	unfamiliar

law	with	 its	 strange	 and	 difficult	 conceptual	 ideas,	 for	 example	 the	 theory	 of
relativity,	four-dimensional	space-time,	and	so	on?	Or	should	we	first	teach	the
simple	 “constant-mass”	 law,	 which	 is	 only	 approximate,	 but	 does	 not	 involve
such	difficult	 ideas?	The	first	 is	more	exciting,	more	wonderful,	and	more	fun,
but	the	second	is	easier	to	get	at	first,	and	is	a	first	step	to	a	real	understanding	of
the	first	idea.	This	point	arises	again	and	again	in	teaching	physics.	At	different
times	we	shall	have	to	resolve	it	in	different	ways,	but	at	each	stage	it	is	worth
learning	what	is	now	known,	how	accurate	it	is,	how	it	fits	into	everything	else,
and	how	it	may	be	changed	when	we	learn	more.
Let	us	now	proceed	with	our	outline,	or	general	map,	of	our	understanding	of

science	today	(in	particular,	physics,	but	also	of	other	sciences	on	the	periphery),
so	 that	when	we	 later	concentrate	on	some	particular	point	we	will	have	some
idea	of	 the	background,	why	 that	particular	point	 is	 interesting,	and	how	it	 fits
into	the	big	structure.	So,	what	is	our	overall	picture	of	the	world?



Matter	is	made	of	atoms

If,	in	some	cataclysm,	all	of	scientific	knowledge	were	to	be	destroyed,	and	only
one	 sentence	 passed	 on	 to	 the	 next	 generations	 of	 creatures,	 what	 statement
would	 contain	 the	 most	 information	 in	 the	 fewest	 words?	 I	 believe	 it	 is	 the
atomic	hypothesis	 (or	 the	atomic	 fact,	 or	whatever	you	wish	 to	 call	 it)	 that	all
things	are	made	of	atoms—little	particles	that	move	around	in	perpetual	motion,
attracting	 each	other	when	 they	 are	 a	 little	 distance	 apart,	 but	 repelling	 upon
being	squeezed	into	one	another.	In	that	one	sentence,	you	will	see,	there	is	an
enormous	amount	of	information	about	the	world,	if	just	a	little	imagination	and
thinking	are	applied.
To	 illustrate	 the	 power	 of	 the	 atomic	 idea,	 suppose	 that	we	 have	 a	 drop	 of

water	 a	 quarter	 of	 an	 inch	 on	 the	 side.	 If	 we	 look	 at	 it	 very	 closely	 we	 see
nothing	 but	water—smooth,	 continuous	water.	Even	 if	we	magnify	 it	with	 the
best	optical	microscope	available—roughly	two	thousand	times—then	the	water
drop	will	be	 roughly	 forty	 feet	across,	about	as	big	as	a	 large	 room,	and	 if	we
looked	rather	closely,	we	would	still	see	relatively	smooth	water—but	here	and
there	 small	 football-shaped	 things	 swimming	 back	 and	 forth.	Very	 interesting.
These	 are	 paramecia.	You	may	 stop	 at	 this	 point	 and	 get	 so	 curious	 about	 the
paramecia	with	 their	wiggling	cilia	and	 twisting	bodies	 that	you	go	no	 further,
except	 perhaps	 to	 magnify	 the	 paramecia	 still	 more	 and	 see	 inside.	 This,	 of
course,	is	a	subject	for	biology,	but	for	the	present	we	pass	on	and	look	still	more
closely	at	the	water	material	itself,	magnifying	it	two	thousand	times	again.	Now
the	drop	of	water	extends	about	fifteen	miles	across,	and	if	we	look	very	closely
at	 it	 we	 see	 a	 kind	 of	 teeming,	 something	 which	 no	 longer	 has	 a	 smooth
appearance—it	looks	something	like	a	crowd	at	a	football	game	as	seen	from	a
very	great	distance.	In	order	to	see	what	this	teeming	is	about,	we	will	magnify	it
another	two	hundred	and	fifty	times	and	we	will	see	something	similar	to	what	is
shown	 in	 Fig.	 1-1.	 This	 is	 a	 picture	 of	 water	 magnified	 a	 billion	 times,	 but
idealized	in	several	ways.	In	the	first	place,	the	particles	are	drawn	in	a	simple
manner	with	sharp	edges,	which	is	inaccurate.	Secondly,	for	simplicity,	they	are
sketched	almost	schematically	in	a	two-dimensional	arrangement,	but	of	course
they	are	moving	around	in	three	dimensions.	Notice	that	there	are	two	kinds	of
“blobs”	 or	 circles	 to	 represent	 the	 atoms	 of	 oxygen	 (black)	 and	 hydrogen
(white),	and	that	each	oxygen	has	two	hydrogens	tied	to	it.	(Each	little	group	of
an	oxygen	with	its	two	hydrogens	is	called	a	molecule.)	The	picture	is	idealized



further	in	that	the	real	particles	in	nature	are	continually	jiggling	and	bouncing,
turning	 and	 twisting	 around	 one	 another.	 You	 will	 have	 to	 imagine	 this	 as	 a
dynamic	rather	than	a	static	picture.	Another	thing	that	cannot	be	illustrated	in	a
drawing	is	the	fact	that	the	particles	are	“stuck	together”—that	they	attract	each
other,	this	one	pulled	by	that	one,	etc.	The	whole	group	is	“glued	together,”	so	to
speak.	On	the	other	hand,	the	particles	do	not	squeeze	through	each	other.	If	you
try	to	squeeze	two	of	them	too	close	together,	they	repel.
The	atoms	are	1	or	2	×	10-8	cm	in	radius.	Now	10-8	cm	is	called	an	angstrom

(just	 as	 another	 name),	 so	 we	 say	 they	 are	 1	 or	 2	 angstroms	 (Å)	 in	 radius.
Another	way	to	remember	their	size	is	this:	if	an	apple	is	magnified	to	the	size	of
the	earth,	then	the	atoms	in	the	apple	are	approximately	the	size	of	the	original
apple.
Now	imagine	this	great	drop	of	water	with	all	of	these	jiggling	particles	stuck

together	and	tagging	along	with	each	other.	The	water	keeps	its	volume;	it	does
not	 fall	 apart,	 because	 of	 the	 attraction	 of	 the	molecules	 for	 each	 other.	 If	 the
drop	is	on	a	slope,	where	it	can	move	from	one	place	to	another,	the	water	will
flow,	but	it	does	not	just	disappear—things	do	not	just	fly	apart—because	of	the
molecular	 attraction.	 Now	 the	 jiggling	 motion	 is	 what	 we	 represent	 as	 heat:
when	we	increase	the	temperature,	we	increase	the	motion.	If	we	heat	the	water,
the	 jiggling	 increases	 and	 the	 volume	 between	 the	 atoms	 increases,	 and	 if	 the
heating	continues	there	comes	a	time	when	the	pull	between	the	molecules	is	not
enough	to	hold	them	together	and	they	do	fly	apart	and	become	separated	from
one	 another.	 Of	 course,	 this	 is	 how	 we	 manufacture	 steam	 out	 of	 water—by
increasing	 the	 temperature;	 the	 particles	 fly	 apart	 because	 of	 the	 increased
motion.

Figure	1-1

In	 Fig.	 1-2	 we	 have	 a	 picture	 of	 steam.	 This	 picture	 of	 steam	 fails	 in	 one



respect:	at	ordinary	atmospheric	pressure	 there	certainly	would	not	be	as	many
as	 three	 in	 this	 figure.	 Most	 squares	 this	 size	 would	 contain	 none—but	 we
accidentally	have	two	and	a	half	or	three	in	the	picture	(just	so	it	would	not	be
completely	blank).	Now	in	the	case	of	steam	we	see	the	characteristic	molecules
more	clearly	than	in	the	case	of	water.	For	simplicity,	the	molecules	are	drawn	so
that	there	is	a	120°	angle	between	the	hydrogen	atoms.	In	actual	fact	the	angle	is
105°3’,	and	the	distance	between	the	center	of	a	hydrogen	and	the	center	of	the
oxygen	is	0.957	Å,	so	we	know	this	molecule	very	well.
Let	us	see	what	some	of	 the	properties	of	steam	vapor	or	any	other	gas	are.

The	molecules,	being	separated	from	one	another,	will	bounce	against	the	walls.
Imagine	a	room	with	a	number	of	tennis	balls	(a	hundred	or	so)	bouncing	around
in	perpetual	motion.	When	they	bombard	the	wall,	this	pushes	the	wall	away.	(Of
course	we	would	have	to	push	the	wall	back.)	This	means	that	the	gas	exerts	a
jittery	 force	which	 our	 coarse	 senses	 (not	 being	 ourselves	magnified	 a	 billion
times)	feel	only	as	an	average	push.	In	order	to	confine	a	gas	we	must	apply	a
pressure.	 Figure	 1-3	 shows	 a	 standard	 vessel	 for	 holding	 gases	 (used	 in	 all
textbooks),	a	cylinder	with	a	piston	in	it.	Now,	it	makes	no	difference	what	the
shapes	 of	water	molecules	 are,	 so	 for	 simplicity	we	 shall	 draw	 them	as	 tennis
balls	 or	 little	 dots.	 These	 things	 are	 in	 perpetual	 motion	 in	 all	 directions.	 So
many	of	 them	are	hitting	 the	 top	piston	all	 the	 time	 that	 to	keep	 it	 from	being
patiently	knocked	out	of	 the	 tank	by	 this	continuous	banging,	we	shall	have	 to
hold	the	piston	down	by	a	certain	force,	which	we	call	the	pressure	 (really,	 the
pressure	times	the	area	is	the	force).	Clearly,	the	force	is	proportional	to	the	area,
for	 if	 we	 increase	 the	 area	 but	 keep	 the	 number	 of	 molecules	 per	 cubic
centimeter	the	same,	we	increase	the	number	of	collisions	with	the	piston	in	the
same	proportion	as	the	area	was	increased.

Figure	1-2

Now	 let	 us	 put	 twice	 as	 many	 molecules	 in	 this	 tank,	 so	 as	 to	 double	 the



density,	and	let	them	have	the	same	speed,	i.e.,	the	same	temperature.	Then,	to	a
close	 approximation,	 the	number	of	 collisions	will	 be	doubled,	 and	 since	 each
will	be	just	as	“energetic”	as	before,	the	pressure	is	proportional	to	the	density.	If
we	consider	the	true	nature	of	the	forces	between	the	atoms,	we	would	expect	a
slight	 decrease	 in	 pressure	 because	 of	 the	 attraction	 between	 the	 atoms,	 and	 a
slight	 increase	 because	 of	 the	 finite	 volume	 they	 occupy.	 Nevertheless,	 to	 an
excellent	 approximation,	 if	 the	 density	 is	 low	 enough	 that	 there	 are	 not	many
atoms,	the	pressure	is	proportional	to	the	density.

Figure	1-3

We	 can	 also	 see	 something	 else:	 If	 we	 increase	 the	 temperature	 without
changing	the	density	of	the	gas,	i.e.,	if	we	increase	the	speed	of	the	atoms,	what
is	going	to	happen	to	the	pressure?	Well,	 the	atoms	hit	harder	because	they	are
moving	faster,	and	in	addition	they	hit	more	often,	so	the	pressure	increases.	You
see	how	simple	the	ideas	of	atomic	theory	are.
Let	 us	 consider	 another	 situation.	Suppose	 that	 the	piston	moves	 inward,	 so

that	the	atoms	are	slowly	compressed	into	a	smaller	space.	What	happens	when
an	atom	hits	the	moving	piston?	Evidently	it	picks	up	speed	from	the	collision.
You	can	try	it	by	bouncing	a	ping-pong	ball	from	a	forward-moving	paddle,	for
example,	 and	 you	 will	 find	 that	 it	 comes	 off	 with	 more	 speed	 than	 that	 with
which	it	struck.	(Special	example:	if	an	atom	happens	to	be	standing	still	and	the
piston	hits	it,	it	will	certainly	move.)	So	the	atoms	are	“hotter”	when	they	come
away	 from	 the	 piston	 than	 they	 were	 before	 they	 struck	 it.	 Therefore	 all	 the
atoms	which	are	in	the	vessel	will	have	picked	up	speed.	This	means	that	when
we	compress	a	gas	slowly,	the	temperature	of	the	gas	increases.	So,	under	slow
compression,	 a	 gas	will	 increase	 in	 temperature,	 and	 under	 slow	 expansion	 it



will	decrease	in	temperature.
We	now	 return	 to	 our	 drop	of	water	 and	 look	 in	 another	 direction.	Suppose

that	we	decrease	the	temperature	of	our	drop	of	water.	Suppose	that	the	jiggling
of	the	molecules	of	the	atoms	in	the	water	is	steadily	decreasing.	We	know	that
there	are	forces	of	attraction	between	the	atoms,	so	 that	after	a	while	 they	will
not	 be	 able	 to	 jiggle	 so	 well.	 What	 will	 happen	 at	 very	 low	 temperatures	 is
indicated	 in	Fig.	1-4:	 the	molecules	 lock	 into	 a	new	pattern	which	 is	 ice.	This
particular	schematic	diagram	of	ice	is	wrong	because	it	is	in	two	dimensions,	but
it	 is	 right	 qualitatively.	The	 interesting	 point	 is	 that	 the	material	 has	 a	definite
place	for	every	atom,	and	you	can	easily	appreciate	that	if	somehow	or	other	we
were	to	hold	all	the	atoms	at	one	end	of	the	drop	in	a	certain	arrangement,	each
atom	in	a	certain	place,	then	because	of	the	structure	of	interconnections,	which
is	 rigid,	 the	other	end	miles	away	(at	our	magnified	scale)	will	have	a	definite
location.	 So	 if	 we	 hold	 a	 needle	 of	 ice	 at	 one	 end,	 the	 other	 end	 resists	 our
pushing	it	aside,	unlike	the	case	of	water,	in	which	the	structure	is	broken	down
because	of	the	increased	jiggling	so	that	the	atoms	all	move	around	in	different
ways.	The	difference	between	solids	and	liquids	is,	then,	that	in	a	solid	the	atoms
are	arranged	in	some	kind	of	an	array,	called	a	crystalline	array,	and	they	do	not
have	a	random	position	at	long	distances;	the	position	of	the	atoms	on	one	side
of	the	crystal	is	determined	by	that	of	other	atoms	millions	of	atoms	away	on	the
other	 side	 of	 the	 crystal.	 Figure	 1-4	 is	 an	 invented	 arrangement	 for	 ice,	 and
although	 it	 contains	 many	 of	 the	 correct	 features	 of	 ice,	 it	 is	 not	 the	 true
arrangement.	One	of	the	correct	features	is	that	there	is	a	part	of	the	symmetry
that	is	hexagonal.	You	can	see	that	if	we	turn	the	picture	around	an	axis	by	60°,
the	picture	returns	to	itself.	So	there	is	a	symmetry	in	the	ice	which	accounts	for
the	six-sided	appearance	of	snowflakes.	Another	thing	we	can	see	from	Fig.	1-4
is	why	ice	shrinks	when	it	melts.	The	particular	crystal	pattern	of	ice	shown	here
has	many	 “holes”	 in	 it,	 as	 does	 the	 true	 ice	 structure.	When	 the	 organization
breaks	down,	these	holes	can	be	occupied	by	molecules.	Most	simple	substances,
with	 the	exception	of	water	and	 type	metal,	expand	upon	melting,	because	 the
atoms	are	closely	packed	in	the	solid	crystal	and	upon	melting	need	more	room
to	jiggle	around,	but	an	open	structure	collapses,	as	in	the	case	of	water.



Figure	1-4

Now	although	ice	has	a	“rigid”	crystalline	form,	its	temperature	can	change—
ice	has	heat.	If	we	wish,	we	can	change	the	amount	of	heat.	What	is	the	heat	in
the	case	of	ice?	The	atoms	are	not	standing	still.	They	are	jiggling	and	vibrating.
So	even	though	there	is	a	definite	order	to	the	crystal—a	definite	structure—all
of	 the	 atoms	 are	 vibrating	 “in	 place.”	 As	 we	 increase	 the	 temperature,	 they
vibrate	with	 greater	 and	 greater	 amplitude,	 until	 they	 shake	 themselves	 out	 of
place.	 We	 call	 this	 melting.	 As	 we	 decrease	 the	 temperature,	 the	 vibration
decreases	 and	decreases	until,	 at	 absolute	 zero,	 there	 is	 a	minimum	amount	of
vibration	that	the	atoms	can	have,	but	not	zero.	This	minimum	amount	of	motion
that	 atoms	 can	 have	 is	 not	 enough	 to	 melt	 a	 substance,	 with	 one	 exception:
helium.	Helium	merely	decreases	the	atomic	motions	as	much	as	it	can,	but	even
at	 absolute	 zero	 there	 is	 still	 enough	motion	 to	keep	 it	 from	 freezing.	Helium,
even	at	absolute	zero,	does	not	freeze,	unless	the	pressure	is	made	so	great	as	to
make	 the	 atoms	 squash	 together.	 If	 we	 increase	 the	 pressure,	 we	 can	make	 it
solidify.

Atomic	processes

So	much	for	the	description	of	solids,	liquids,	and	gases	from	the	atomic	point	of
view.	However,	the	atomic	hypothesis	also	describes	processes,	and	so	we	shall
now	look	at	a	number	of	processes	from	an	atomic	standpoint.	The	first	process
that	we	shall	look	at	is	associated	with	the	surface	of	the	water.	What	happens	at
the	surface	of	the	water?	We	shall	now	make	the	picture	more	complicated—and
more	 realistic—by	 imagining	 that	 the	 surface	 is	 in	 air.	 Figure	 1-5	 shows	 the
surface	of	water	in	air.	We	see	the	water	molecules	as	before,	forming	a	body	of
liquid	water,	but	now	we	also	see	the	surface	of	the	water.	Above	the	surface	we
find	a	number	of	things:	First	of	all	there	are	water	molecules,	as	in	steam.	This



is	 water	 vapor,	 which	 is	 always	 found	 above	 liquid	 water.	 (There	 is	 an
equilibrium	 between	 the	 steam	 vapor	 and	 the	 water	 which	 will	 be	 described
later.)	In	addition	we	find	some	other	molecules—here	two	oxygen	atoms	stuck
together	by	themselves,	forming	an	oxygen	molecule,	 there	 two	nitrogen	atoms
also	stuck	together	to	make	a	nitrogen	molecule.	Air	consists	almost	entirely	of
nitrogen,	 oxygen,	 some	 water	 vapor,	 and	 lesser	 amounts	 of	 carbon	 dioxide,
argon,	and	other	things.	So	above	the	water	surface	is	the	air,	a	gas,	containing
some	water	vapor.	Now	what	is	happening	in	this	picture?	The	molecules	in	the
water	are	always	jiggling	around.	From	time	to	time,	one	on	the	surface	happens
to	be	hit	a	little	harder	than	usual,	and	gets	knocked	away.	It	is	hard	to	see	that
happening	in	the	picture	because	it	is	a	still	picture.	But	we	can	imagine	that	one
molecule	near	the	surface	has	just	been	hit	and	is	flying	out,	or	perhaps	another
one	 has	 been	 hit	 and	 is	 flying	 out.	 Thus,	 molecule	 by	 molecule,	 the	 water
disappears—it	 evaporates.	 But	 if	 we	 close	 the	 vessel	 above,	 after	 a	 while	 we
shall	find	a	large	number	of	molecules	of	water	amongst	the	air	molecules.	From
time	to	time,	one	of	these	vapor	molecules	comes	flying	down	to	the	water	and
gets	stuck	again.	So	we	see	that	what	 looks	like	a	dead,	uninteresting	thing—a
glass	of	water	with	a	cover,	that	has	been	sitting	there	for	perhaps	twenty	years
—really	contains	a	dynamic	and	interesting	phenomenon	which	is	going	on	all
the	time.	To	our	eyes,	our	crude	eyes,	nothing	is	changing,	but	if	we	could	see	it
a	 billion	 times	magnified,	we	would	 see	 that	 from	 its	 own	 point	 of	 view	 it	 is
always	changing:	molecules	are	leaving	the	surface,	molecules	are	coming	back.

Figure	1-5

Why	do	we	see	no	change?	Because	just	as	many	molecules	are	leaving	as	are
coming	back!	In	the	long	run	“nothing	happens.”	If	we	then	take	the	top	of	the
vessel	off	and	blow	the	moist	air	away,	replacing	it	with	dry	air,	then	the	number
of	molecules	leaving	is	just	the	same	as	it	was	before,	because	this	depends	on



the	jiggling	of	the	water,	but	the	number	coming	back	is	greatly	reduced	because
there	are	 so	many	 fewer	water	molecules	 above	 the	water.	Therefore	 there	 are
more	going	out	than	coming	in,	and	the	water	evaporates.	Hence,	if	you	wish	to
evaporate	water	turn	on	the	fan!
Here	is	something	else:	Which	molecules	leave?	When	a	molecule	leaves	it	is

due	to	an	accidental,	extra	accumulation	of	a	little	bit	more	than	ordinary	energy,
which	 it	 needs	 if	 it	 is	 to	 break	 away	 from	 the	 attractions	 of	 its	 neighbors.
Therefore,	 since	 those	 that	 leave	have	more	 energy	 than	 the	 average,	 the	ones
that	 are	 left	 have	 less	 average	 motion	 than	 they	 had	 before.	 So	 the	 liquid
gradually	 cools	 if	 it	 evaporates.	 Of	 course,	 when	 a	 molecule	 of	 vapor	 comes
from	the	air	to	the	water	below	there	is	a	sudden	great	attraction	as	the	molecule
approaches	 the	 surface.	 This	 speeds	 up	 the	 incoming	 molecule	 and	 results	 in
generation	 of	 heat.	 So	when	 they	 leave	 they	 take	 away	heat;	when	 they	 come
back	they	generate	heat.	Of	course	when	there	is	no	net	evaporation	the	result	is
nothing—the	water	is	not	changing	temperature.	If	we	blow	on	the	water	so	as	to
maintain	a	continuous	preponderance	in	the	number	evaporating,	then	the	water
is	cooled.	Hence,	blow	on	soup	to	cool	it!
Of	 course	 you	 should	 realize	 that	 the	 processes	 just	 described	 are	 more

complicated	than	we	have	indicated.	Not	only	does	the	water	go	into	the	air,	but
also,	 from	time	 to	 time,	one	of	 the	oxygen	or	nitrogen	molecules	will	come	 in
and	“get	lost”	in	the	mass	of	water	molecules,	and	work	its	way	into	the	water.
Thus	 the	 air	 dissolves	 in	 the	water;	 oxygen	 and	 nitrogen	molecules	will	work
their	way	into	the	water	and	the	water	will	contain	air.	If	we	suddenly	take	the
air	 away	 from	 the	 vessel,	 then	 the	 air	molecules	will	 leave	more	 rapidly	 than
they	come	in,	and	in	doing	so	will	make	bubbles.	This	is	very	bad	for	divers,	as
you	may	know.
Now	we	go	on	to	another	process.	In	Fig.	1-6	we	see,	from	an	atomic	point	of

view,	a	solid	dissolving	in	water.	If	we	put	a	crystal	of	salt	in	the	water,	what	will
happen?	 Salt	 is	 a	 solid,	 a	 crystal,	 an	 organized	 arrangement	 of	 “salt	 atoms.”
Figure	1-7	 is	an	 illustration	of	 the	 three-dimensional	structure	of	common	salt,
sodium	chloride.	Strictly	speaking,	the	crystal	is	not	made	of	atoms,	but	of	what
we	call	ions.	An	ion	is	an	atom	which	either	has	a	few	extra	electrons	or	has	lost
a	 few	electrons.	 In	a	salt	crystal	we	find	chlorine	 ions	(chlorine	atoms	with	an
extra	electron)	and	sodium	ions	(sodium	atoms	with	one	electron	missing).	The
ions	all	stick	together	by	electrical	attraction	in	the	solid	salt,	but	when	we	put
them	in	the	water	we	find,	because	of	the	attractions	of	the	negative	oxygen	and
positive	hydrogen	for	the	ions,	that	some	of	the	ions	jiggle	loose.	In	Fig.	1-6	we



see	a	chlorine	ion	getting	loose,	and	other	atoms	floating	in	the	water	in	the	form
of	 ions.	 This	 picture	was	made	with	 some	 care.	Notice,	 for	 example,	 that	 the
hydrogen	ends	of	the	water	molecules	are	more	likely	to	be	near	the	chlorine	ion,
while	near	the	sodium	ion	we	are	more	likely	to	find	the	oxygen	end,	because	the
sodium	is	positive	and	the	oxygen	end	of	the	water	is	negative,	and	they	attract
electrically.	Can	we	tell	from	this	picture	whether	the	salt	is	dissolving	in	water
or	crystallizing	out	of	water?	Of	course	we	cannot	 tell,	because	while	some	of
the	atoms	are	 leaving	 the	crystal	other	 atoms	are	 rejoining	 it.	The	process	 is	 a
dynamic	one,	just	as	in	the	case	of	evaporation,	and	it	depends	on	whether	there
is	 more	 or	 less	 salt	 in	 the	 water	 than	 the	 amount	 needed	 for	 equilibrium.	 By
equilibrium	we	mean	that	situation	in	which	the	rate	at	which	atoms	are	leaving
just	matches	the	rate	at	which	they	are	coming	back.	If	there	is	almost	no	salt	in
the	water,	more	atoms	leave	than	return,	and	the	salt	dissolves.	If,	on	the	other
hand,	 there	 are	 too	many	 “salt	 atoms,”	more	 return	 than	 leave,	 and	 the	 salt	 is
crystallizing.

Figure	1-6



Figure	1-7

In	passing,	we	mention	that	the	concept	of	a	molecule	of	a	substance	is	only
approximate	 and	exists	only	 for	 a	 certain	 class	of	 substances.	 It	 is	 clear	 in	 the
case	of	water	that	the	three	atoms	are	actually	stuck	together.	It	is	not	so	clear	in
the	case	of	sodium	chloride	in	the	solid.	There	is	just	an	arrangement	of	sodium
and	chlorine	 ions	 in	a	cubic	pattern.	There	 is	no	natural	way	 to	group	 them	as
“molecules	of	salt.”
Returning	 to	 our	 discussion	of	 solution	 and	precipitation,	 if	we	 increase	 the

temperature	of	the	salt	solution,	then	the	rate	at	which	atoms	are	taken	away	is
increased,	and	so	is	the	rate	at	which	atoms	are	brought	back.	It	turns	out	to	be
very	difficult,	in	general,	to	predict	which	way	it	is	going	to	go,	whether	more	or
less	 of	 the	 solid	 will	 dissolve.	 Most	 substances	 dissolve	 more,	 but	 some
substances	dissolve	less,	as	the	temperature	increases.

Chemical	reactions

In	all	of	the	processes	which	have	been	described	so	far,	the	atoms	and	the	ions
have	not	 changed	partners,	 but	 of	 course	 there	 are	 circumstances	 in	which	 the
atoms	 do	 change	 combinations,	 forming	 new	molecules.	 This	 is	 illustrated	 in
Fig.	1-8.	A	process	in	which	the	rearrangement	of	the	atomic	partners	occurs	is
what	we	call	a	chemical	reaction.	The	other	processes	so	far	described	are	called
physical	 processes,	 but	 there	 is	 no	 sharp	 distinction	 between	 the	 two.	 (Nature
does	not	care	what	we	call	it,	she	just	keeps	on	doing	it.)	This	figure	is	supposed
to	represent	carbon	burning	in	oxygen.	In	the	case	of	oxygen,	two	oxygen	atoms
stick	together	very	strongly.	(Why	do	not	three	or	even	four	stick	together?	That
is	one	of	 the	very	peculiar	characteristics	of	such	atomic	processes.	Atoms	are
very	 special:	 they	 like	 certain	 particular	 partners,	 certain	 particular	 directions,
and	so	on.	It	is	the	job	of	physics	to	analyze	why	each	one	wants	what	it	wants.
At	any	rate,	two	oxygen	atoms	form,	saturated	and	happy,	a	molecule.)



Figure	1-8

The	 carbon	 atoms	 are	 supposed	 to	 be	 in	 a	 solid	 crystal	 (which	 could	 be
graphite	 or	 diamond1).	 Now,	 for	 example,	 one	 of	 the	 oxygen	 molecules	 can
come	over	to	the	carbon,	and	each	atom	can	pick	up	a	carbon	atom	and	go	flying
off	 in	 a	 new	 combination—“carbon-oxygen”—which	 is	 a	molecule	 of	 the	 gas
called	carbon	monoxide.	It	is	given	the	chemical	name	CO.	It	is	very	simple:	the
letters	 “CO”	 are	 practically	 a	 picture	 of	 that	 molecule.	 But	 carbon	 attracts
oxygen	 much	 more	 than	 oxygen	 attracts	 oxygen	 or	 carbon	 attracts	 carbon.
Therefore	in	this	process	the	oxygen	may	arrive	with	only	a	little	energy,	but	the
oxygen	 and	 carbon	 will	 snap	 together	 with	 a	 tremendous	 vengeance	 and
commotion,	and	everything	near	them	will	pick	up	the	energy.	A	large	amount	of
motion	energy,	kinetic	energy,	 is	 thus	generated.	This	of	course	 is	burning;	we
are	 getting	 heat	 from	 the	 combination	 of	 oxygen	 and	 carbon.	 The	 heat	 is
ordinarily	 in	 the	 form	 of	 the	 molecular	 motion	 of	 the	 hot	 gas,	 but	 in	 certain
circumstances	it	can	be	so	enormous	that	it	generates	light.	That	is	how	one	gets
flames.
In	addition,	the	carbon	monoxide	is	not	quite	satisfied.	It	is	possible	for	it	to

attach	another	oxygen,	so	that	we	might	have	a	much	more	complicated	reaction
in	which	the	oxygen	is	combining	with	the	carbon,	while	at	the	same	time	there
happens	 to	be	a	collision	with	a	carbon	monoxide	molecule.	One	oxygen	atom
could	attach	itself	to	the	CO	and	ultimately	form	a	molecule,	composed	of	one
carbon	and	two	oxygens,	which	is	designated	CO2	and	called	carbon	dioxide.	If
we	burn	the	carbon	with	very	little	oxygen	in	a	very	rapid	reaction	(for	example,
in	an	automobile	engine,	where	the	explosion	is	so	fast	that	there	is	not	time	for
it	to	make	carbon	dioxide)	a	considerable	amount	of	carbon	monoxide	is	formed.
In	many	such	rearrangements,	a	very	large	amount	of	energy	is	released,	forming
explosions,	flames,	etc.,	depending	on	the	reactions.	Chemists	have	studied	these
arrangements	 of	 the	 atoms,	 and	 found	 that	 every	 substance	 is	 some	 type	 of
arrangement	of	atoms.



To	illustrate	this	idea,	let	us	consider	another	example.	If	we	go	into	a	field	of
small	 violets,	 we	 know	 what	 “that	 smell”	 is.	 It	 is	 some	 kind	 of	molecule,	 or
arrangement	of	atoms,	that	has	worked	its	way	into	our	noses.	First	of	all,	how
did	it	work	its	way	in?	That	is	rather	easy.	If	the	smell	is	some	kind	of	molecule
in	 the	 air,	 jiggling	 around	 and	 being	 knocked	 every	which	way,	 it	might	 have
accidentally	worked	its	way	into	the	nose.	Certainly	it	has	no	particular	desire	to
get	into	our	nose.	It	is	merely	one	helpless	part	of	a	jostling	crowd	of	molecules,
and	 in	 its	 aimless	 wanderings	 this	 particular	 chunk	 of	matter	 happens	 to	 find
itself	in	the	nose.
Now	chemists	can	take	special	molecules	like	the	odor	of	violets,	and	analyze

them	and	tell	us	the	exact	arrangement	of	the	atoms	in	space.	We	know	that	the
carbon	 dioxide	molecule	 is	 straight	 and	 symmetrical:	O—C—O.	 (That	 can	 be
determined	easily,	too,	by	physical	methods.)	However,	even	for	the	vastly	more
complicated	 arrangements	 of	 atoms	 that	 there	 are	 in	 chemistry,	 one	 can,	 by	 a
long,	remarkable	process	of	detective	work,	find	the	arrangements	of	the	atoms.
Figure	1-9	is	a	picture	of	the	air	in	the	neighborhood	of	a	violet;	again	we	find
nitrogen	 and	 oxygen	 in	 the	 air,	 and	 water	 vapor.	 (Why	 is	 there	 water	 vapor?
Because	 the	 violet	 is	 wet.	 All	 plants	 transpire.)	 However,	 we	 also	 see	 a
“monster”	 composed	 of	 carbon	 atoms,	 hydrogen	 atoms,	 and	 oxygen	 atoms,
which	have	 picked	 a	 certain	 particular	 pattern	 in	which	 to	 be	 arranged.	 It	 is	 a
much	more	complicated	arrangement	than	that	of	carbon	dioxide;	in	fact,	it	is	an
enormously	complicated	arrangement.	Unfortunately,	we	cannot	picture	all	 that
is	 really	known	about	 it	chemically,	because	 the	precise	arrangement	of	all	 the
atoms	 is	 actually	 known	 in	 three	 dimensions,	while	 our	 picture	 is	 in	 only	 two
dimensions.	The	six	carbons	which	form	a	ring	do	not	form	a	flat	ring,	but	a	kind
of	 “puckered”	 ring.	All	 of	 the	 angles	 and	 distances	 are	 known.	So	 a	 chemical
formula	is	merely	a	picture	of	such	a	molecule.	When	the	chemist	writes	such	a
thing	 on	 the	 blackboard,	 he	 is	 trying	 to	 “draw,”	 roughly	 speaking,	 in	 two
dimensions.	 For	 example,	 we	 see	 a	 “ring”	 of	 six	 carbons,	 and	 a	 “chain”	 of
carbons	 hanging	 on	 the	 end,	 with	 an	 oxygen	 second	 from	 the	 end,	 three
hydrogens	tied	to	that	carbon,	two	carbons	and	three	hydrogens	sticking	up	here,
etc.



Figure	1-9

How	does	the	chemist	find	what	the	arrangement	is?	He	mixes	bottles	full	of
stuff	together,	and	if	it	turns	red,	it	tells	him	that	it	consists	of	one	hydrogen	and
two	carbons	tied	on	here;	if	it	turns	blue,	on	the	other	hand,	that	is	not	the	way	it
is	at	all.	This	is	one	of	the	most	fantastic	pieces	of	detective	work	that	has	ever
been	 done—organic	 chemistry.	 To	 discover	 the	 arrangement	 of	 the	 atoms	 in
these	enormously	complicated	arrays	the	chemist	looks	at	what	happens	when	he
mixes	two	different	substances	together.	The	physicist	could	never	quite	believe
that	 the	 chemist	 knew	 what	 he	 was	 talking	 about	 when	 he	 described	 the
arrangement	of	the	atoms.	For	about	twenty	years	it	has	been	possible,	in	some
cases,	to	look	at	such	molecules	(not	quite	as	complicated	as	this	one,	but	some
which	contain	parts	of	it)	by	a	physical	method,	and	it	has	been	possible	to	locate
every	atom,	not	by	looking	at	colors,	but	by	measuring	where	they	are.	And	lo
and	behold!,	the	chemists	are	almost	always	correct.
It	turns	out,	in	fact,	that	in	the	odor	of	violets	there	are	three	slightly	different

molecules,	which	differ	only	in	the	arrangement	of	the	hydrogen	atoms.
One	problem	of	chemistry	is	to	name	a	substance,	so	that	we	will	know	what

it	 is.	Find	a	name	for	 this	shape!	Not	only	must	 the	name	tell	 the	shape,	but	 it
must	also	tell	that	here	is	an	oxygen	atom,	there	a	hydrogen—exactly	what	and
where	 each	 atom	 is.	 So	 we	 can	 appreciate	 that	 the	 chemical	 names	 must	 be
complex	in	order	to	be	complete.	You	see	that	the	name	of	this	thing	in	the	more
complete	form	that	will	tell	you	the	structure	of	it	is	4-(2,	2,	3,	6	tetramethyl-5-
cyclohexenyl)-3-buten-2-one,	and	that	tells	you	that	this	is	the	arrangement.	We
can	 appreciate	 the	 difficulties	 that	 the	 chemists	 have,	 and	 also	 appreciate	 the
reason	for	such	long	names.	It	is	not	that	they	wish	to	be	obscure,	but	they	have
an	extremely	difficult	problem	in	trying	to	describe	the	molecules	in	words!



Figure	1-10	The	substance	pictured	is	α-irone.

How	do	we	know	that	there	are	atoms?	By	one	of	the	tricks	mentioned	earlier:
we	make	the	hypothesis	that	there	are	atoms,	and	one	after	the	other	results	come
out	 the	way	we	predict,	as	 they	ought	 to	 if	 things	are	made	of	atoms.	There	 is
also	somewhat	more	direct	evidence,	a	good	example	of	which	is	the	following:
The	 atoms	 are	 so	 small	 that	 you	 cannot	 see	 them	with	 a	 light	microscope—in
fact,	 not	 even	with	 an	 electron	microscope.	 (With	 a	 light	microscope	 you	 can
only	see	things	which	are	much	bigger.)	Now	if	the	atoms	are	always	in	motion,
say	in	water,	and	we	put	a	big	ball	of	something	in	the	water,	a	ball	much	bigger
than	the	atoms,	the	ball	will	jiggle	around—much	as	in	a	push	ball	game,	where
a	great	big	ball	 is	pushed	around	by	a	lot	of	people.	The	people	are	pushing	in
various	directions,	 and	 the	ball	moves	around	 the	 field	 in	 an	 irregular	 fashion.
So,	in	the	same	way,	the	“large	ball”	will	move	because	of	the	inequalities	of	the
collisions	on	one	side	to	the	other,	from	one	moment	to	the	next.	Therefore,	if	we
look	at	very	 tiny	particles	 (colloids)	 in	water	 through	an	excellent	microscope,
we	 see	 a	 perpetual	 jiggling	 of	 the	 particles,	 which	 is	 the	 result	 of	 the
bombardment	of	the	atoms.	This	is	called	the	Brownian	motion.
We	can	 see	 further	 evidence	 for	 atoms	 in	 the	 structure	 of	 crystals.	 In	many

cases	 the	 structures	 deduced	 by	 x-ray	 analysis	 agree	 in	 their	 spatial	 “shapes”
with	the	forms	actually	exhibited	by	crystals	as	they	occur	in	nature.	The	angles
between	the	various	“faces”	of	a	crystal	agree,	within	seconds	of	arc,	with	angles
deduced	on	the	assumption	that	a	crystal	is	made	of	many	“layers”	of	atoms.
Everything	is	made	of	atoms.	That	is	the	key	hypothesis.	The	most	important

hypothesis	 in	 all	 of	 biology,	 for	 example,	 is	 that	 everything	 that	 animals	 do,
atoms	do.	 In	other	words,	 there	 is	nothing	 that	 living	 things	do	 that	cannot	be
understood	from	the	point	of	view	that	they	are	made	of	atoms	acting	according
to	 the	 laws	 of	 physics.	 This	was	 not	 known	 from	 the	 beginning:	 it	 took	 some
experimenting	and	theorizing	to	suggest	this	hypothesis,	but	now	it	is	accepted,
and	it	is	the	most	useful	theory	for	producing	new	ideas	in	the	field	of	biology.
If	a	piece	of	steel	or	a	piece	of	salt,	consisting	of	atoms	one	next	to	the	other,



can	have	such	interesting	properties;	 if	water—which	is	nothing	but	these	little
blobs,	mile	 upon	mile	 of	 the	 same	 thing	 over	 the	 earth—can	 form	waves	 and
foam,	and	make	rushing	noises	and	strange	patterns	as	it	runs	over	cement;	if	all
of	this,	all	the	life	of	a	stream	of	water,	can	be	nothing	but	a	pile	of	atoms,	how
much	 more	 is	 possible?	 If	 instead	 of	 arranging	 the	 atoms	 in	 some	 definite
pattern,	 again	 and	 again	 repeated,	 on	 and	 on,	 or	 even	 forming	 little	 lumps	 of
complexity	 like	 the	odor	 of	 violets,	we	make	 an	 arrangement	which	 is	always
different	 from	 place	 to	 place,	 with	 different	 kinds	 of	 atoms	 arranged	 in	many
ways,	 continually	 changing,	 not	 repeating,	 how	 much	 more	 marvelously	 is	 it
possible	 that	 this	 thing	might	 behave?	 Is	 it	 possible	 that	 that	 “thing”	walking
back	and	forth	in	front	of	you,	talking	to	you,	is	a	great	glob	of	these	atoms	in	a
very	 complex	 arrangement,	 such	 that	 the	 sheer	 complexity	 of	 it	 staggers	 the
imagination	as	to	what	it	can	do?	When	we	say	we	are	a	pile	of	atoms,	we	do	not
mean	 we	 are	 merely	 a	 pile	 of	 atoms,	 because	 a	 pile	 of	 atoms	 which	 is	 not
repeated	from	one	 to	 the	other	might	well	have	 the	possibilities	which	you	see
before	you	in	the	mirror.





2

BASIC	PHYSICS

Introduction

	 In	 this	chapter,	we	shall	examine	 the	most	 fundamental	 ideas	 that	we	have
about	physics—the	nature	of	things	as	we	see	them	at	the	present	time.	We	shall
not	 discuss	 the	 history	 of	 how	we	know	 that	 all	 these	 ideas	 are	 true;	 you	will
learn	these	details	in	due	time.
The	 things	 with	 which	 we	 concern	 ourselves	 in	 science	 appear	 in	 myriad

forms,	and	with	a	multitude	of	attributes.	For	example,	if	we	stand	on	the	shore
and	look	at	the	sea,	we	see	the	water,	the	waves	breaking,	the	foam,	the	sloshing
motion	of	the	water,	the	sound,	the	air,	the	winds	and	the	clouds,	the	sun	and	the
blue	 sky,	 and	 light;	 there	 is	 sand	 and	 there	 are	 rocks	 of	 various	 hardness	 and
permanence,	 color	 and	 texture.	 There	 are	 animals	 and	 seaweed,	 hunger	 and
disease,	 and	 the	 observer	 on	 the	 beach;	 there	 may	 be	 even	 happiness	 and
thought.	Any	other	spot	in	nature	has	a	similar	variety	of	things	and	influences.
It	is	always	as	complicated	as	that,	no	matter	where	it	is.	Curiosity	demands	that
we	 ask	questions,	 that	we	 try	 to	 put	 things	 together	 and	 try	 to	 understand	 this
multitude	 of	 aspects	 as	 perhaps	 resulting	 from	 the	 action	 of	 a	 relatively	 small
number	 of	 elemental	 things	 and	 forces	 acting	 in	 an	 infinite	 variety	 of
combinations.
For	 example:	 Is	 the	 sand	 other	 than	 the	 rocks?	That	 is,	 is	 the	 sand	 perhaps

nothing	but	a	great	number	of	very	tiny	stones?	Is	the	moon	a	great	rock?	If	we
understood	rocks,	would	we	also	understand	the	sand	and	the	moon?	Is	the	wind
a	sloshing	of	 the	air	analogous	 to	 the	 sloshing	motion	of	 the	water	 in	 the	 sea?
What	 common	 features	 do	 different	 movements	 have?	 What	 is	 common	 to
different	 kinds	of	 sound?	How	many	different	 colors	 are	 there?	And	 so	on.	 In
this	way	we	try	gradually	 to	analyze	all	 things,	 to	put	 together	 things	which	at
first	sight	look	different,	with	the	hope	that	we	may	be	able	to	reduce	the	number
of	different	things	and	thereby	understand	them	better.
A	 few	 hundred	 years	 ago,	 a	method	was	 devised	 to	 find	 partial	 answers	 to



such	questions.	Observation,	reason,	and	experiment	make	up	what	we	call	 the
scientific	method.	We	shall	have	 to	 limit	ourselves	 to	a	bare	description	of	our
basic	 view	 of	 what	 is	 sometimes	 called	 fundamental	 physics,	 or	 fundamental
ideas	which	have	arisen	from	the	application	of	the	scientific	method.
What	do	we	mean	by	“understanding”	something?	We	can	 imagine	 that	 this

complicated	array	of	moving	things	which	constitutes	“the	world”	is	something
like	a	great	chess	game	being	played	by	 the	gods,	and	we	are	observers	of	 the
game.	We	do	not	know	what	the	rules	of	the	game	are;	all	we	are	allowed	to	do
is	to	watch	the	playing.	Of	course,	if	we	watch	long	enough,	we	may	eventually
catch	 on	 to	 a	 few	 of	 the	 rules.	 The	 rules	 of	 the	 game	 are	 what	 we	 mean	 by
fundamental	physics.	Even	if	we	knew	every	rule,	however,	we	might	not	be	able
to	understand	why	a	particular	move	is	made	in	the	game,	merely	because	it	 is
too	complicated	and	our	minds	are	limited.	If	you	play	chess	you	must	know	that
it	 is	 easy	 to	 learn	 all	 the	 rules,	 and	 yet	 it	 is	 often	 very	 hard	 to	 select	 the	 best
move	or	 to	understand	why	a	player	moves	as	he	does.	So	 it	 is	 in	nature,	only
much	more	so;	but	we	may	be	able	at	least	to	find	all	the	rules.	Actually,	we	do
not	 have	 all	 the	 rules	 now.	 (Every	 once	 in	 a	 while	 something	 like	 castling	 is
going	 on	 that	 we	 still	 do	 not	 understand.)	 Aside	 from	 not	 knowing	 all	 of	 the
rules,	what	we	really	can	explain	in	terms	of	those	rules	is	very	limited,	because
almost	 all	 situations	 are	 so	 enormously	 complicated	 that	we	 cannot	 follow	 the
plays	of	the	game	using	the	rules,	much	less	tell	what	is	going	to	happen	next.
We	must,	therefore,	limit	ourselves	to	the	more	basic	question	of	the	rules	of	the
game.	If	we	know	the	rules,	we	consider	that	we	“understand”	the	world.
How	can	we	tell	whether	the	rules	which	we	“guess”	at	are	really	right	if	we

cannot	 analyze	 the	 game	 very	well?	 There	 are,	 roughly	 speaking,	 three	ways.
First,	there	may	be	situations	where	nature	has	arranged,	or	we	arrange	nature,	to
be	simple	and	to	have	so	few	parts	that	we	can	predict	exactly	what	will	happen,
and	 thus	we	 can	 check	 how	our	 rules	work.	 (In	 one	 corner	 of	 the	 board	 there
may	be	only	a	few	chess	pieces	at	work,	and	that	we	can	figure	out	exactly.)
A	 second	good	way	 to	 check	 rules	 is	 in	 terms	of	 less	 specific	 rules	 derived

from	them.	For	example,	the	rule	on	the	move	of	a	bishop	on	a	chessboard	is	that
it	moves	only	on	the	diagonal.	One	can	deduce,	no	matter	how	many	moves	may
be	made,	that	a	certain	bishop	will	always	be	on	a	red	square.	So,	without	being
able	 to	 follow	 the	 details,	 we	 can	 always	 check	 our	 idea	 about	 the	 bishop’s
motion	by	finding	out	whether	it	is	always	on	a	red	square.	Of	course	it	will	be,
for	a	 long	time,	until	all	of	a	sudden	we	find	that	 it	 is	on	a	black	 square	(what
happened,	 of	 course,	 is	 that	 in	 the	 meantime	 it	 was	 captured,	 another	 pawn



crossed	for	queening,	and	it	turned	into	a	bishop	on	a	black	square).	That	is	the
way	it	is	in	physics.	For	a	long	time	we	will	have	a	rule	that	works	excellently	in
an	overall	way,	even	when	we	cannot	follow	the	details,	and	then	sometime	we
may	 discover	 a	 new	 rule.	 From	 the	 point	 of	 view	 of	 basic	 physics,	 the	 most
interesting	phenomena	are	of	course	in	the	new	places,	the	places	where	the	rules
do	not	work—not	the	places	where	they	do	work!	That	is	the	way	in	which	we
discover	new	rules.
The	 third	 way	 to	 tell	 whether	 our	 ideas	 are	 right	 is	 relatively	 crude	 but

probably	the	most	powerful	of	them	all.	That	is,	by	rough	approximation.	While
we	may	not	be	able	to	tell	why	Alekhine	moves	this	particular	piece,	perhaps	we
can	roughly	understand	that	he	is	gathering	his	pieces	around	the	king	to	protect
it,	more	or	less,	since	that	is	the	sensible	thing	to	do	in	the	circumstances.	In	the
same	way,	we	can	often	understand	nature,	more	or	 less,	without	being	able	 to
see	what	every	little	piece	is	doing,	in	terms	of	our	understanding	of	the	game.
At	first	the	phenomena	of	nature	were	roughly	divided	into	classes,	like	heat,

electricity,	 mechanics,	 magnetism,	 properties	 of	 substances,	 chemical
phenomena,	 light	 or	 optics,	 x-rays,	 nuclear	 physics,	 gravitation,	 meson
phenomena,	etc.	However,	the	aim	is	to	see	complete	nature	as	different	aspects
of	one	set	of	phenomena.	That	is	the	problem	in	basic	theoretical	physics	today
—to	find	the	laws	behind	experiment;	to	amalgamate	these	classes.	Historically,
we	have	always	been	able	to	amalgamate	them,	but	as	time	goes	on	new	things
are	found.	We	were	amalgamating	very	well,	when	all	of	a	sudden	x-rays	were
found.	Then	we	amalgamated	some	more,	and	mesons	were	found.	Therefore,	at
any	 stage	 of	 the	 game,	 it	 always	 looks	 rather	 messy.	 A	 great	 deal	 is
amalgamated,	 but	 there	 are	 always	 many	 wires	 or	 threads	 hanging	 out	 in	 all
directions.	That	is	the	situation	today,	which	we	shall	try	to	describe.
Some	 historic	 examples	 of	 amalgamation	 are	 the	 following.	 First,	 take	heat

and	mechanics.	When	atoms	are	in	motion,	the	more	motion,	the	more	heat	the
system	contains,	and	so	heat	and	all	 temperature	effects	can	be	represented	by
the	laws	of	mechanics.	Another	tremendous	amalgamation	was	the	discovery	of
the	 relation	between	 electricity,	magnetism,	 and	 light,	which	were	 found	 to	be
different	 aspects	 of	 the	 same	 thing,	 which	 we	 call	 today	 the	 electromagnetic
field.	 Another	 amalgamation	 is	 the	 unification	 of	 chemical	 phenomena,	 the
various	 properties	 of	 various	 substances,	 and	 the	 behavior	 of	 atomic	 particles,
which	is	in	the	quantum	mechanics	of	chemistry.
The	question	is,	of	course,	is	it	going	to	be	possible	to	amalgamate	everything,

and	merely	 discover	 that	 this	 world	 represents	 different	 aspects	 of	 one	 thing?



Nobody	 knows.	 All	 we	 know	 is	 that	 as	 we	 go	 along,	 we	 find	 that	 we	 can
amalgamate	pieces,	and	 then	we	find	some	pieces	 that	do	not	 fit,	and	we	keep
trying	 to	 put	 the	 jigsaw	 puzzle	 together.	Whether	 there	 are	 a	 finite	 number	 of
pieces,	and	whether	there	is	even	a	border	to	the	puzzle,	are	of	course	unknown.
It	will	never	be	known	until	we	finish	the	picture,	 if	ever.	What	we	wish	to	do
here	 is	 to	see	 to	what	extent	 this	amalgamation	process	has	gone	on,	and	what
the	 situation	 is	 at	 present,	 in	 understanding	 basic	 phenomena	 in	 terms	 of	 the
smallest	set	of	principles.	To	express	it	in	a	simple	manner,	what	are	things	made
of	and	how	few	elements	are	there?

Physics	before	1920

It	is	a	little	difficult	to	begin	at	once	with	the	present	view,	so	we	shall	first	see
how	things	looked	in	about	1920	and	then	take	a	few	things	out	of	that	picture.
Before	1920,	our	world	picture	was	something	 like	 this:	The	“stage”	on	which
the	 universe	 goes	 is	 the	 three-dimensional	 space	 of	 geometry,	 as	 described	 by
Euclid,	and	 things	change	 in	a	medium	called	 time.	The	elements	on	 the	 stage
are	 particles,	 for	 example	 the	 atoms,	 which	 have	 some	 properties.	 First,	 the
property	of	inertia:	if	a	particle	is	moving	it	keeps	on	going	in	the	same	direction
unless	forces	act	upon	it.	The	second	element,	 then,	 is	 forces,	which	were	 then
thought	to	be	of	two	varieties:	First,	an	enormously	complicated,	detailed	kind	of
interaction	 force	 which	 held	 the	 various	 atoms	 in	 different	 combinations	 in	 a
complicated	way,	which	determined	whether	salt	would	dissolve	faster	or	slower
when	we	raise	the	temperature.	The	other	force	that	was	known	was	a	long-range
interaction—a	smooth	and	quiet	attraction—which	varied	inversely	as	the	square
of	 the	distance,	and	was	called	gravitation.	This	 law	was	known	and	was	very
simple.	Why	 things	 remain	 in	motion	when	 they	are	moving,	or	why	 there	 is	 a
law	of	gravitation,	was,	of	course,	not	known.
A	description	of	nature	is	what	we	are	concerned	with	here.	From	this	point	of

view,	 then,	a	gas,	and	 indeed	all	matter,	 is	a	myriad	of	moving	particles.	Thus
many	of	 the	 things	we	saw	while	 standing	at	 the	 seashore	can	 immediately	be
connected.	First	 the	pressure:	 this	comes	 from	 the	collisions	of	 the	atoms	with
the	 walls	 or	 whatever;	 the	 drift	 of	 the	 atoms,	 if	 they	 are	 all	 moving	 in	 one
direction	 on	 the	 average,	 is	 wind;	 the	 random	 internal	 motions	 are	 the	 heat.
There	are	waves	of	excess	density,	where	too	many	particles	have	collected,	and
so	as	 they	 rush	off	 they	push	up	piles	of	particles	 farther	out,	 and	 so	on.	This



wave	of	excess	density	 is	sound.	 It	 is	 a	 tremendous	 achievement	 to	be	 able	 to
understand	 so	 much.	 Some	 of	 these	 things	 were	 described	 in	 the	 previous
chapter.
What	kinds	of	particles	are	there?	There	were	considered	to	be	92	at	that	time:

92	 different	 kinds	 of	 atoms	 were	 ultimately	 discovered.	 They	 had	 different
names	associated	with	their	chemical	properties.
The	next	part	of	the	problem	was,	what	are	the	short-range	forces?	Why	does

carbon	attract	one	oxygen	or	perhaps	two	oxygens,	but	not	three	oxygens?	What
is	the	machinery	of	interaction	between	atoms?	Is	it	gravitation?	The	answer	is
no.	 Gravity	 is	 entirely	 too	 weak.	 But	 imagine	 a	 force	 analogous	 to	 gravity,
varying	inversely	with	the	square	of	the	distance,	but	enormously	more	powerful
and	 having	 one	 difference.	 In	 gravity	 everything	 attracts	 everything	 else,	 but
now	imagine	that	there	are	two	kinds	of	“things,”	and	that	this	new	force	(which
is	 the	 electrical	 force,	 of	 course)	 has	 the	 property	 that	 likes	 repel	 but	 unlikes
attract.	The	“thing”	that	carries	this	strong	interaction	is	called	charge.
Then	what	 do	we	have?	Suppose	 that	we	have	 two	unlikes	 that	 attract	 each

other,	 a	plus	and	a	minus,	 and	 that	 they	 stick	very	close	 together.	Suppose	we
have	another	charge	some	distance	away.	Would	it	feel	any	attraction?	It	would
feel	practically	none,	because	if	the	first	two	are	equal	in	size,	the	attraction	for
the	one	and	the	repulsion	for	the	other	balance	out.	Therefore	there	is	very	little
force	at	any	appreciable	distance.	On	 the	other	hand,	 if	we	get	very	close	with
the	extra	charge,	attraction	arises,	because	the	repulsion	of	likes	and	attraction	of
unlikes	will	 tend	 to	 bring	 unlikes	 closer	 together	 and	 push	 likes	 farther	 apart.
Then	 the	 repulsion	will	 be	 less	 than	 the	 attraction.	This	 is	 the	 reason	why	 the
atoms,	which	 are	 constituted	 out	 of	 plus	 and	minus	 electric	 charges,	 feel	 very
little	force	when	they	are	separated	by	appreciable	distance	(aside	from	gravity).
When	they	come	close	together,	they	can	“see	inside”	each	other	and	rearrange
their	 charges,	 with	 the	 result	 that	 they	 have	 a	 very	 strong	 interaction.	 The
ultimate	basis	of	an	interaction	between	the	atoms	is	electrical.	Since	this	force
is	so	enormous,	all	the	plusses	and	all	minuses	will	normally	come	together	in	as
intimate	a	combination	as	they	can.	All	things,	even	ourselves,	are	made	of	fine-
grained,	 enormously	 strongly	 interacting	 plus	 and	 minus	 parts,	 all	 neatly
balanced	out.	Once	in	a	while,	by	accident,	we	may	rub	off	a	few	minuses	or	a
few	plusses	(usually	it	is	easier	to	rub	off	minuses),	and	in	those	circumstances
we	find	 the	force	of	electricity	unbalanced,	 and	we	can	 then	 see	 the	effects	of
these	electrical	attractions.
To	give	an	idea	of	how	much	stronger	electricity	is	than	gravitation,	consider



two	grains	of	sand,	a	millimeter	across,	thirty	meters	apart.	If	the	force	between
them	were	not	balanced,	 if	everything	attracted	everything	else	 instead	of	 likes
repelling,	so	that	there	were	no	cancellations,	how	much	force	would	there	be?
There	would	be	a	force	of	three	million	tons	between	the	two!	You	see,	there	is
very,	very	 little	excess	or	deficit	of	 the	number	of	negative	or	positive	charges
necessary	to	produce	appreciable	electrical	effects.	This	is,	of	course,	the	reason
why	 you	 cannot	 see	 the	 difference	 between	 an	 electrically	 charged	 and	 an
uncharged	 thing—so	 few	 particles	 are	 involved	 that	 they	 hardly	 make	 a
difference	in	the	weight	or	size	of	an	object.
With	 this	picture	 the	atoms	were	easier	 to	understand.	They	were	 thought	 to

have	a	“nucleus”	at	the	center,	which	is	positively	electrically	charged	and	very
massive,	and	the	nucleus	is	surrounded	by	a	certain	number	of	“electrons”	which
are	very	light	and	negatively	charged.	Now	we	go	a	little	ahead	in	our	story	to
remark	that	in	the	nucleus	itself	there	were	found	two	kinds	of	particles,	protons
and	 neutrons,	 almost	 of	 the	 same	 weight	 and	 very	 heavy.	 The	 protons	 are
electrically	 charged	 and	 the	 neutrons	 are	 neutral.	 If	we	 have	 an	 atom	with	 six
protons	inside	its	nucleus,	and	this	is	surrounded	by	six	electrons	(the	negative
particles	in	the	ordinary	world	of	matter	are	all	electrons,	and	these	are	very	light
compared	with	the	protons	and	neutrons	which	make	nuclei),	this	would	be	atom
number	six	in	the	chemical	table,	and	it	is	called	carbon.	Atom	number	eight	is
called	oxygen,	etc.,	because	 the	chemical	properties	depend	upon	 the	electrons
on	 the	 outside,	 and	 in	 fact	 only	 upon	 how	 many	 electrons	 there	 are.	 So	 the
chemical	 properties	 of	 a	 substance	 depend	 only	 on	 a	 number,	 the	 number	 of
electrons.	 (The	whole	 list	 of	 elements	 of	 the	 chemists	 really	 could	 have	 been
called	1,	2,	3,	4,	5,	etc.	Instead	of	saying	“carbon,”	we	could	say	“element	six,”
meaning	six	electrons,	but	of	course,	when	the	elements	were	first	discovered,	it
was	 not	 known	 that	 they	 could	 be	 numbered	 that	way,	 and	 secondly,	 it	would
make	everything	look	rather	complicated.	It	is	better	to	have	names	and	symbols
for	these	things,	rather	than	to	call	everything	by	number.)
More	was	discovered	about	 the	electrical	 force.	The	natural	 interpretation	of

electrical	 interaction	 is	 that	 two	objects	 simply	 attract	 each	other:	 plus	 against
minus.	However,	this	was	discovered	to	be	an	inadequate	idea	to	represent	it.	A
more	adequate	representation	of	 the	situation	is	 to	say	that	 the	existence	of	 the
positive	charge,	in	some	sense,	distorts,	or	creates	a	“condition”	in	space,	so	that
when	 we	 put	 the	 negative	 charge	 in,	 it	 feels	 a	 force.	 This	 potentiality	 for
producing	 a	 force	 is	 called	 an	 electric	 field.	 When	 we	 put	 an	 electron	 in	 an
electric	field,	we	say	it	is	“pulled.”	We	then	have	two	rules:	(a)	charges	make	a



field,	and	(b)	charges	in	fields	have	forces	on	them	and	move.	The	reason	for	this
will	 become	 clear	 when	 we	 discuss	 the	 following	 phenomena:	 If	 we	 were	 to
charge	a	body,	say	a	comb,	electrically,	and	then	place	a	charged	piece	of	paper
at	 a	 distance	 and	 move	 the	 comb	 back	 and	 forth,	 the	 paper	 will	 respond	 by
always	pointing	to	the	comb.	If	we	shake	it	faster,	it	will	be	discovered	that	the
paper	is	a	little	behind,	there	is	a	delay	in	the	action.	(At	the	first	stage,	when	we
move	 the	 comb	 rather	 slowly,	 we	 find	 a	 complication	 which	 is	 magnetism.
Magnetic	 influences	 have	 to	 do	 with	 charges	 in	 relative	 motion,	 so	 magnetic
forces	and	electric	 forces	can	 really	be	attributed	 to	one	 field,	 as	 two	different
aspects	of	exactly	the	same	thing.	A	changing	electric	field	cannot	exist	without
magnetism.)	If	we	move	the	charged	paper	farther	out,	the	delay	is	greater.	Then
an	 interesting	 thing	 is	 observed.	 Although	 the	 forces	 between	 two	 charged
objects	should	go	inversely	as	 the	square	of	 the	distance,	 it	 is	 found,	when	we
shake	a	charge,	that	the	influence	extends	very	much	farther	out	than	we	would
guess	 at	 first	 sight.	 That	 is,	 the	 effect	 falls	 off	 more	 slowly	 than	 the	 inverse
square.
Here	 is	an	analogy:	 If	we	are	 in	a	pool	of	water	and	 there	 is	a	 floating	cork

very	close	by,	we	can	move	it	“directly”	by	pushing	the	water	with	another	cork.
If	you	looked	only	at	the	two	corks,	all	you	would	see	would	be	that	one	moved
immediately	 in	 response	 to	 the	 motion	 of	 the	 other—there	 is	 some	 kind	 of
“interaction”	 between	 them.	 Of	 course,	 what	 we	 really	 do	 is	 to	 disturb	 the
water;	the	water	then	disturbs	the	other	cork.	We	could	make	up	a	“law”	that	if
you	pushed	the	water	a	little	bit,	an	object	close	by	in	the	water	would	move.	If	it
were	farther	away,	of	course,	the	second	cork	would	scarcely	move,	for	we	move
the	water	locally.	On	the	other	hand,	if	we	jiggle	the	cork	a	new	phenomenon	is
involved,	 in	 which	 the	 motion	 of	 the	 water	 moves	 the	 water	 there,	 etc.,	 and
waves	 travel	 away,	 so	 that	by	 jiggling,	 there	 is	 an	 influence	very	much	 farther
out,	 an	 oscillatory	 influence,	 that	 cannot	 be	 understood	 from	 the	 direct
interaction.	 Therefore	 the	 idea	 of	 direct	 interaction	must	 be	 replaced	with	 the
existence	 of	 the	 water,	 or	 in	 the	 electrical	 case,	 with	 what	 we	 call	 the
electromagnetic	field.
The	 electromagnetic	 field	 can	 carry	 waves;	 some	 of	 these	 waves	 are	 light,

others	 are	 used	 in	 radio	 broadcasts,	 but	 the	 general	 name	 is	 electromagnetic
waves.	These	oscillatory	waves	can	have	various	frequencies.	The	only	thing	that
is	really	different	from	one	wave	to	another	is	the	frequency	of	oscillation.	If	we
shake	a	charge	back	and	forth	more	and	more	rapidly,	and	look	at	the	effects,	we
get	 a	 whole	 series	 of	 different	 kinds	 of	 effects,	 which	 are	 all	 unified	 by



specifying	 but	 one	 number,	 the	 number	 of	 oscillations	 per	 second.	 The	 usual
“pickup”	 that	 we	 get	 from	 electric	 currents	 in	 the	 circuits	 in	 the	 walls	 of	 a
building	has	a	frequency	of	about	one	hundred	cycles	per	second.	If	we	increase
the	frequency	to	500	or	1000	kilocycles	(1	kilocycle	=	1000	cycles)	per	second,
we	 are	 “on	 the	 air,”	 for	 this	 is	 the	 frequency	 range	 which	 is	 used	 for	 radio
broadcasts.	 (Of	 course	 it	 has	 nothing	 to	 do	 with	 the	 air!	 We	 can	 have	 radio
broadcasts	without	any	air.)	If	we	again	increase	the	frequency,	we	come	into	the
range	that	is	used	for	FM	and	TV.	Going	still	further,	we	use	certain	short	waves,
for	example	for	radar.	Still	higher,	and	we	do	not	need	an	instrument	to	“see”	the
stuff,	we	can	see	it	with	the	human	eye.	In	the	range	of	frequency	from	5	×	1014

to	 1015	 cycles	 per	 second	 our	 eyes	 would	 see	 the	 oscillation	 of	 the	 charged
comb,	if	we	could	shake	it	that	fast,	as	red,	blue,	or	violet	light,	depending	on	the
frequency.	 Frequencies	 below	 this	 range	 are	 called	 infrared,	 and	 above	 it,
ultraviolet.	The	fact	 that	we	can	see	in	a	particular	frequency	range	makes	that
part	 of	 the	 electromagnetic	 spectrum	 no	more	 impressive	 than	 the	 other	 parts
from	a	physicist’s	standpoint,	but	from	a	human	standpoint,	of	course,	it	is	more
interesting.	 If	 we	 go	 up	 even	 higher	 in	 frequency,	 we	 get	 x-rays.	 X-rays	 are
nothing	but	very	high-frequency	light.	If	we	go	still	higher,	we	get	gamma	rays.
These	 two	 terms,	 x-rays	 and	 gamma	 rays,	 are	 used	 almost	 synonymously.
Usually	electromagnetic	rays	coming	from	nuclei	are	called	gamma	rays,	while
those	 of	 high	 energy	 from	 atoms	 are	 called	 x-rays,	 but	 at	 the	 same	 frequency
they	 are	 indistinguishable	 physically,	 no	matter	what	 their	 source.	 If	we	 go	 to
still	higher	frequencies,	say	to	1024	cycles	per	second,	we	find	that	we	can	make
those	waves	 artificially,	 for	 example	with	 the	 synchrotron	here	 at	Caltech.	We
can	find	electromagnetic	waves	with	stupendously	high	frequencies—with	even
a	 thousand	 times	 more	 rapid	 oscillation—in	 the	 waves	 found	 in	 cosmic	 rays.
These	waves	cannot	be	controlled	by	us.



Table	2-1	The	Electromagnetic	Spectrum.

Quantum	physics

Having	 described	 the	 idea	 of	 the	 electromagnetic	 field,	 and	 that	 this	 field	 can
carry	waves,	we	 soon	 learn	 that	 these	waves	 actually	behave	 in	 a	 strange	way
which	 seems	 very	 unwavelike.	At	 higher	 frequencies	 they	 behave	much	more
like	 particles!	 It	 is	 quantum	 mechanics,	 discovered	 just	 after	 1920,	 which
explains	this	strange	behavior.	In	the	years	before	1920,	the	picture	of	space	as	a
three-dimensional	 space,	 and	 of	 time	 as	 a	 separate	 thing,	 was	 changed	 by
Einstein,	first	into	a	combination	which	we	call	space-time,	and	then	still	further
into	a	curved	space-time	to	represent	gravitation.	So	the	“stage”	is	changed	into
space-time,	and	gravitation	is	presumably	a	modification	of	space-time.	Then	it
was	 also	 found	 that	 the	 rules	 for	 the	motions	 of	 particles	were	 incorrect.	 The
mechanical	rules	of	“inertia‘	and	”forces“	are	wrong—Newton’s	laws	are	wrong
—in	the	world	of	atoms.	Instead,	it	was	discovered	that	things	on	a	small	scale
behave	nothing	like	things	on	a	large	scale.	That	is	what	makes	physics	difficult
—and	very	interesting.	It	is	hard	because	the	way	things	behave	on	a	small	scale
is	so	”unnatural“;	we	have	no	direct	experience	with	it.	Here	things	behave	like
nothing	we	 know	 of,	 so	 that	 it	 is	 impossible	 to	 describe	 this	 behavior	 in	 any
other	than	analytic	ways.	It	is	difficult,	and	takes	a	lot	of	imagination.
Quantum	 mechanics	 has	 many	 aspects.	 In	 the	 first	 place,	 the	 idea	 that	 a

particle	has	a	definite	location	and	a	definite	speed	is	no	longer	allowed;	that	is
wrong.	To	give	an	example	of	how	wrong	classical	physics	is,	there	is	a	rule	in
quantum	mechanics	that	says	that	one	cannot	know	both	where	something	is	and
how	fast	it	is	moving.	The	uncertainty	of	the	momentum	and	the	uncertainty	of



the	 position	 are	 complementary,	 and	 the	 product	 of	 the	 two	 is	 bounded	 by	 a
small	constant.	We	can	write	the	law	like	this:	Δx	Δp	≥	ħ/2,	but	we	shall	explain
it	in	more	detail	later.	This	rule	is	the	explanation	of	a	very	mysterious	paradox:
If	 the	 atoms	 are	 made	 out	 of	 plus	 and	 minus	 charges,	 why	 don’t	 the	 minus
charges	simply	sit	on	top	of	the	plus	charges	(they	attract	each	other)	and	get	so
close	 as	 to	 completely	 cancel	 them	 out?	Why	 are	 atoms	 so	 big?	 Why	 is	 the
nucleus	at	 the	center	with	 the	electrons	around	 it?	 It	was	first	 thought	 that	 this
was	because	the	nucleus	was	so	big;	but	no,	the	nucleus	is	very	small.	An	atom
has	a	diameter	of	about	10—8	cm.	The	nucleus	has	a	diameter	of	about	10—13
cm.	If	we	had	an	atom	and	wished	to	see	the	nucleus,	we	would	have	to	magnify
it	until	the	whole	atom	was	the	size	of	a	large	room,	and	then	the	nucleus	would
be	 a	 bare	 speck	which	 you	 could	 just	 about	make	 out	 with	 the	 eye,	 but	 very
nearly	all	the	weight	of	the	atom	is	in	that	infinitesimal	nucleus.	What	keeps	the
electrons	from	simply	falling	in?	This	principle:	If	they	were	in	the	nucleus,	we
would	 know	 their	 position	 precisely,	 and	 the	 uncertainty	 principle	would	 then
require	that	they	have	a	very	large	(but	uncertain)	momentum,	i.e.,	a	very	large
kinetic	energy.	With	this	energy	they	would	break	away	from	the	nucleus.	They
make	a	compromise:	they	leave	themselves	a	little	room	for	this	uncertainty	and
then	 jiggle	with	 a	 certain	 amount	 of	minimum	motion	 in	 accordance	with	 this
rule.	(Remember	that	when	a	crystal	is	cooled	to	absolute	zero,	we	said	that	the
atoms	do	not	 stop	moving,	 they	 still	 jiggle.	Why?	 If	 they	 stopped	moving,	we
would	know	where	they	were	and	that	they	had	zero	motion,	and	that	is	against
the	uncertainty	principle.	We	cannot	know	where	they	are	and	how	fast	they	are
moving,	so	they	must	be	continually	wiggling	in	there!)
Another	 most	 interesting	 change	 in	 the	 ideas	 and	 philosophy	 of	 science

brought	about	by	quantum	mechanics	is	this:	it	is	not	possible	to	predict	exactly
what	will	happen	in	any	circumstance.	For	example,	it	is	possible	to	arrange	an
atom	which	is	ready	to	emit	light,	and	we	can	measure	when	it	has	emitted	light
by	 picking	 up	 a	 photon	 particle,	 which	 we	 shall	 describe	 shortly.	We	 cannot,
however,	predict	when	it	is	going	to	emit	the	light	or,	with	several	atoms,	which
one	 is	 going	 to.	 You	 may	 say	 that	 this	 is	 because	 there	 are	 some	 internal
“wheels”	which	we	have	not	looked	at	closely	enough.	No,	there	are	no	internal
wheels;	 nature,	 as	 we	 understand	 it	 today,	 behaves	 in	 such	 a	 way	 that	 it	 is
fundamentally	 impossible	 to	 make	 a	 precise	 prediction	 of	 exactly	 what	 will
happen	in	a	given	experiment.	This	is	a	horrible	thing;	in	fact,	philosophers	have
said	 before	 that	 one	 of	 the	 fundamental	 requisites	 of	 science	 is	 that	whenever
you	set	up	the	same	conditions,	the	same	thing	must	happen.	This	is	simply	not



true;	it	is	not	a	fundamental	condition	of	science.	The	fact	is	that	the	same	thing
does	 not	 happen,	 that	 we	 can	 find	 only	 an	 average,	 statistically,	 as	 to	 what
happens.	 Nevertheless,	 science	 has	 not	 completely	 collapsed.	 Philosophers,
incidentally,	say	a	great	deal	about	what	is	absolutely	necessary	for	science,	and
it	 is	 always,	 so	 far	 as	 one	 can	 see,	 rather	 naive,	 and	 probably	 wrong.	 For
example,	some	philosopher	or	other	said	it	is	fundamental	to	the	scientific	effort
that	 if	 an	 experiment	 is	 performed	 in,	 say,	 Stockholm,	 and	 then	 the	 same
experiment	 is	 done	 in,	 say,	 Quito,	 the	 same	 results	 must	 occur.	 That	 is	 quite
false.	It	is	not	necessary	that	science	do	that;	it	may	be	a	fact	of	experience,	but	it
is	not	necessary.	For	example,	if	one	of	the	experiments	is	to	look	out	at	the	sky
and	 see	 the	 aurora	borealis	 in	Stockholm,	you	do	not	 see	 it	 in	Quito;	 that	 is	 a
different	phenomenon.	“But,”	you	say,	“that	is	something	that	has	to	do	with	the
outside;	 can	 you	 close	 yourself	 up	 in	 a	 box	 in	 Stockholm	 and	 pull	 down	 the
shade	 and	 get	 any	 difference?”	 Surely.	 If	 we	 take	 a	 pendulum	 on	 a	 universal
joint,	and	pull	it	out	and	let	go,	then	the	pendulum	will	swing	almost	in	a	plane,
but	not	quite.	Slowly	the	plane	keeps	changing	in	Stockholm,	but	not	in	Quito.
The	 blinds	 are	 down,	 too.	 The	 fact	 that	 this	 happened	 does	 not	 bring	 on	 the
destruction	 of	 science.	 What	 is	 the	 fundamental	 hypothesis	 of	 science,	 the
fundamental	 philosophy?	We	 stated	 it	 in	 the	 first	 chapter:	 the	 sole	 test	 of	 the
validity	of	any	idea	is	experiment.	If	it	turns	out	that	most	experiments	work	out
the	same	in	Quito	as	they	do	in	Stockholm,	then	those	“most	experiments”	will
be	 used	 to	 formulate	 some	 general	 law,	 and	 those	 experiments	 which	 do	 not
come	out	the	same	we	will	say	were	a	result	of	the	environment	near	Stockholm.
We	will	invent	some	way	to	summarize	the	results	of	the	experiment,	and	we	do
not	have	to	be	told	ahead	of	time	what	this	way	will	look	like.	If	we	are	told	that
the	same	experiment	will	always	produce	 the	same	result,	 that	 is	all	very	well,
but	if	when	we	try	it,	it	does	not,	then	it	does	not.	We	just	have	to	take	what	we
see,	and	then	formulate	all	the	rest	of	our	ideas	in	terms	of	our	actual	experience.
Returning	again	 to	quantum	mechanics	 and	 fundamental	physics,	we	cannot

go	 into	 details	 of	 the	 quantum-mechanical	 principles	 at	 this	 time,	 of	 course,
because	 these	 are	 rather	 difficult	 to	 understand.	We	 shall	 assume	 that	 they	 are
there,	 and	 go	 on	 to	 describe	 what	 some	 of	 the	 consequences	 are.	 One	 of	 the
consequences	is	that	things	which	we	used	to	consider	as	waves	also	behave	like
particles,	and	particles	behave	 like	waves;	 in	 fact	everything	behaves	 the	same
way.	 There	 is	 no	 distinction	 between	 a	 wave	 and	 a	 particle.	 So	 quantum
mechanics	unifies	 the	 idea	of	 the	field	and	 its	waves,	and	 the	particles,	all	 into
one.	 Now	 it	 is	 true	 that	 when	 the	 frequency	 is	 low,	 the	 field	 aspect	 of	 the



phenomenon	 is	more	 evident,	 or	more	useful	 as	 an	 approximate	description	 in
terms	 of	 everyday	 experiences.	 But	 as	 the	 frequency	 increases,	 the	 particle
aspects	of	the	phenomenon	become	more	evident	with	the	equipment	with	which
we	 usually	 make	 the	 measurements.	 In	 fact,	 although	 we	 mentioned	 many
frequencies,	 no	 phenomenon	 directly	 involving	 a	 frequency	 has	 yet	 been
detected	 above	 approximately	 1012	 cycles	 per	 second.	 We	 only	 deduce	 the
higher	frequencies	from	the	energy	of	the	particles,	by	a	rule	which	assumes	that
the	particle-wave	idea	of	quantum	mechanics	is	valid.
Thus	we	have	a	new	view	of	electromagnetic	interaction.	We	have	a	new	kind

of	particle	to	add	to	the	electron,	the	proton,	and	the	neutron.	That	new	particle
is	called	a	photon.	The	new	view	of	the	interaction	of	electrons	and	photons	that
is	electromagnetic	theory,	but	with	everything	quantum-mechanically	correct,	is
called	quantum	electrodynamics.	This	 fundamental	 theory	 of	 the	 interaction	 of
light	 and	matter,	 or	 electric	 field	 and	 charges,	 is	 our	greatest	 success	 so	 far	 in
physics.	 In	 this	one	 theory	we	have	 the	basic	rules	for	all	ordinary	phenomena
except	 for	 gravitation	 and	 nuclear	 processes.	 For	 example,	 out	 of	 quantum
electrodynamics	come	all	known	electrical,	mechanical,	and	chemical	laws:	the
laws	for	 the	collision	of	billiard	balls,	 the	motions	of	wires	 in	magnetic	 fields,
the	specific	heat	of	carbon	monoxide,	the	color	of	neon	signs,	the	density	of	salt,
and	the	reactions	of	hydrogen	and	oxygen	to	make	water	are	all	consequences	of
this	one	law.	All	these	details	can	be	worked	out	if	the	situation	is	simple	enough
for	 us	 to	 make	 an	 approximation,	 which	 is	 almost	 never,	 but	 often	 we	 can
understand	more	or	less	what	is	happening.	At	the	present	time	no	exceptions	are
found	to	the	quantum-electrodynamic	laws	outside	the	nucleus,	and	there	we	do
not	know	whether	there	is	an	exception	because	we	simply	do	not	know	what	is
going	on	in	the	nucleus.
In	principle,	then,	quantum	electrodynamics	is	the	theory	of	all	chemistry,	and

of	 life,	 if	 life	 is	 ultimately	 reduced	 to	 chemistry	 and	 therefore	 just	 to	 physics
because	chemistry	 is	already	reduced	(the	part	of	physics	which	 is	 involved	 in
chemistry	 being	 already	 known).	 Furthermore,	 the	 same	 quantum
electrodynamics,	this	great	thing,	predicts	a	lot	of	new	things.	In	the	first	place,	it
tells	 the	 properties	 of	 very	 high-energy	photons,	 gamma	 rays,	etc.	 It	 predicted
another	 very	 remarkable	 thing:	 besides	 the	 electron,	 there	 should	 be	 another
particle	 of	 the	 same	mass,	 but	 of	 opposite	 charge,	 called	 a	positron,	 and	 these
two,	coming	together,	could	annihilate	each	other	with	 the	emission	of	 light	or
gamma	 rays.	 (After	 all,	 light	 and	 gamma	 rays	 are	 all	 the	 same;	 they	 are	 just
different	points	on	a	 frequency	scale.)	The	generalization	of	 this,	 that	 for	each



particle	there	is	an	antiparticle,	turns	out	to	be	true.	In	the	case	of	electrons,	the
antiparticle	 has	 another	 name—it	 is	 called	 a	 positron,	 but	 for	 most	 other
particles,	 it	 is	 called	 anti-so-and-so,	 like	 antiproton	or	 antineutron.	 In	quantum
electrodynamics,	two	numbers	are	put	 in	and	most	of	 the	other	numbers	 in	 the
world	are	supposed	to	come	out.	The	two	numbers	that	are	put	in	are	called	the
mass	 of	 the	 electron	 and	 the	 charge	 of	 the	 electron.	Actually,	 that	 is	 not	 quite
true,	 for	we	have	a	whole	set	of	numbers	for	chemistry	which	 tells	how	heavy
the	nuclei	are.	That	leads	us	to	the	next	part.

Nuclei	and	particle

What	are	the	nuclei	made	of,	and	how	are	they	held	together?	It	is	found	that	the
nuclei	are	held	together	by	enormous	forces.	When	these	are	released,	the	energy
released	is	tremendous	compared	with	chemical	energy,	in	the	same	ratio	as	the
atomic	 bomb	 explosion	 is	 to	 a	TNT	 explosion,	 because,	 of	 course,	 the	 atomic
bomb	has	to	do	with	changes	inside	the	nucleus,	while	the	explosion	of	TNT	has
to	do	with	the	changes	of	the	electrons	on	the	outside	of	the	atoms.	The	question
is,	 what	 are	 the	 forces	 which	 hold	 the	 protons	 and	 neutrons	 together	 in	 the
nucleus?	 Just	 as	 the	 electrical	 interaction	 can	 be	 connected	 to	 a	 particle,	 a
photon,	 Yukawa	 suggested	 that	 the	 forces	 between	 neutrons	 and	 protons	 also
have	 a	 field	 of	 some	 kind,	 and	 that	 when	 this	 field	 jiggles	 it	 behaves	 like	 a
particle.	Thus	 there	could	be	some	other	particles	 in	 the	world	besides	protons
and	neutrons,	 and	he	was	able	 to	deduce	 the	properties	of	 these	particles	 from
the	already	known	characteristics	of	nuclear	 forces.	For	 example,	 he	predicted
they	should	have	a	mass	of	two	or	three	hundred	times	that	of	an	electron;	and	lo
and	behold,	in	cosmic	rays	there	was	discovered	a	particle	of	the	right	mass!	But
it	later	turned	out	to	be	the	wrong	particle.	It	was	called	a	μ-meson,	or	muon.
However,	a	little	while	later,	in	1947	or	1948,	another	particle	was	found,	the

π-meson,	or	pion,	which	satisfied	Yukawa’s	criterion.	Besides	the	proton	and	the
neutron,	then,	in	order	to	get	nuclear	forces	we	must	add	the	pion.	Now,	you	say,
“Oh	great!,	with	this	theory	we	make	quantum	nucleodynamics	using	the	pions
just	 like	 Yukawa	 wanted	 to	 do,	 and	 see	 if	 it	 works,	 and	 everything	 will	 be
explained.”	Bad	luck.	 It	 turns	out	 that	 the	calculations	 that	are	 involved	 in	 this
theory	 are	 so	 difficult	 that	 no	 one	 has	 ever	 been	 able	 to	 figure	 out	 what	 the
consequences	of	 the	 theory	are,	or	 to	check	 it	against	experiment,	and	 this	has
been	going	on	now	for	almost	twenty	years!



So	 we	 are	 stuck	 with	 a	 theory,	 and	 we	 do	 not	 know	whether	 it	 is	 right	 or
wrong,	but	we	do	know	that	it	is	a	little	wrong,	or	at	least	incomplete.	While	we
have	been	dawdling	around	theoretically,	trying	to	calculate	the	consequences	of
this	 theory,	 the	 experimentalists	 have	 been	 discovering	 some	 things.	 For
example,	they	had	already	discovered	this	μ-meson	or	muon,	and	we	do	not	yet
know	 where	 it	 fits.	 Also,	 in	 cosmic	 rays,	 a	 large	 number	 of	 other	 “extra”
particles	 were	 found.	 It	 turns	 out	 that	 today	 we	 have	 approximately	 thirty
particles,	 and	 it	 is	 very	 difficult	 to	 understand	 the	 relationships	 of	 all	 these
particles,	and	what	nature	wants	them	for,	or	what	the	connections	are	from	one
to	 another.	 We	 do	 not	 today	 understand	 these	 various	 particles	 as	 different
aspects	 of	 the	 same	 thing,	 and	 the	 fact	 that	 we	 have	 so	 many	 unconnected
particles	 is	 a	 representation	 of	 the	 fact	 that	 we	 have	 so	 much	 unconnected
information	 without	 a	 good	 theory.	 After	 the	 great	 successes	 of	 quantum
electrodynamics,	 there	 is	 a	 certain	 amount	 of	 knowledge	 of	 nuclear	 physics
which	 is	 rough	knowledge,	sort	of	half	experience	and	half	 theory,	assuming	a
type	of	force	between	protons	and	neutrons	and	seeing	what	will	happen,	but	not
really	 understanding	 where	 the	 force	 comes	 from.	 Aside	 from	 that,	 we	 have
made	very	 little	progress.	We	have	collected	an	enormous	number	of	chemical
elements.	 In	 the	 chemical	 case,	 there	 suddenly	 appeared	 a	 relationship	 among
these	 elements	which	was	 unexpected,	 and	which	 is	 embodied	 in	 the	 periodic
table	of	Mendeléev.	For	example,	sodium	and	potassium	are	about	 the	same	in
their	 chemical	 properties	 and	 are	 found	 in	 the	 same	 column	 in	 the	Mendeléev
chart.	We	have	been	seeking	a	Mendeléev-type	chart	for	the	new	particles.	One
such	 chart	 of	 the	 new	 particles	was	made	 independently	 by	Gell-Mann	 in	 the
USA	and	Nishijima	in	Japan.	The	basis	of	their	classification	is	a	new	number,
like	 the	 electric	 charge,	 which	 can	 be	 assigned	 to	 each	 particle,	 called	 its
“strangeness,”	S.	This	number	is	conserved,	like	the	electric	charge,	in	reactions
which	take	place	by	nuclear	forces.
In	Table	2-2	are	listed	all	 the	particles.	We	cannot	discuss	them	much	at	this

stage,	 but	 the	 table	 will	 at	 least	 show	 you	 how	 much	 we	 do	 not	 know.
Underneath	each	particle	its	mass	is	given	in	a	certain	unit,	called	the	Mev.	One
Mev	 is	 equal	 to	 1.782	 ×	 10—27	 gram.	 The	 reason	 this	 unit	 was	 chosen	 is
historical,	and	we	shall	not	go	into	it	now.	More	massive	particles	are	put	higher
up	on	the	chart;	we	see	that	a	neutron	and	a	proton	have	almost	the	same	mass.
In	vertical	columns	we	have	put	the	particles	with	the	same	electrical	charge,	all
neutral	objects	in	one	column,	all	positively	charged	ones	to	the	right	of	this	one,
and	all	negatively	charged	objects	to	the	left.



Particles	 are	 shown	 with	 a	 solid	 line	 and	 “resonances”	 with	 a	 dashed	 one.
Several	particles	have	been	omitted	from	the	table.	These	include	the	important
zero-mass,	zero-charge	particles,	the	photon	and	the	graviton,	which	do	not	fall
into	the	baryon-meson-lepton	classification	scheme,	and	also	some	of	the	newer
resonances	(K*,	ϕ,	η).	The	antiparticles	of	the	mesons	are	listed	in	the	table,	but
the	antiparticles	of	 the	 leptons	and	baryons	would	have	 to	be	 listed	 in	another
table	 which	 would	 look	 exactly	 like	 this	 one	 reflected	 on	 the	 zero-charge
column.	 Although	 all	 of	 the	 particles	 except	 the	 electron,	 neutrino,	 photon,
graviton,	and	proton	are	unstable,	decay	products	have	been	shown	only	for	the
resonances.	Strangeness	assignments	are	not	applicable	for	leptons,	since	they	do
not	interact	strongly	with	nuclei.
All	 particles	 which	 are	 together	 with	 the	 neutrons	 and	 protons	 are	 called

baryons,	and	the	following	ones	exist:	There	is	a	“lambda,”	with	a	mass	of	1115
Mev,	 and	 three	 others,	 called	 sigmas,	 minus,	 neutral,	 and	 plus,	 with	 several
masses	 almost	 the	 same.	There	 are	 groups	 or	multiplets	with	 almost	 the	 same
mass,	 within	 1	 or	 2	 percent.	 Each	 particle	 in	 a	 multiplet	 has	 the	 same
strangeness.	The	first	multiplet	is	the	proton-neutron	doublet,	and	then	there	is	a
singlet	 (the	 lambda),	 then	 the	 sigma	 triplet,	 and	 finally	 the	 xi	 doublet.	 Very
recently,	 in	1961,	even	a	few	more	particles	were	found.	Or	are	they	particles?
They	 live	 so	 short	 a	 time,	 they	 disintegrate	 almost	 instantaneously,	 as	 soon	 as
they	are	formed,	that	we	do	not	know	whether	they	should	be	considered	as	new
particles,	 or	 some	 kind	 of	 “resonance”	 interaction	 of	 a	 certain	 definite	 energy
between	the	A	and	π	products	into	which	they	disintegrate.



Table	2-2	Elementary	Particles.

In	addition	to	the	baryons	the	other	particles	which	are	involved	in	the	nuclear
interaction	 are	 called	mesons.	 There	 are	 first	 the	 pions,	 which	 come	 in	 three
varieties,	positive,	negative,	and	neutral;	 they	 form	another	multiplet.	We	have
also	found	some	new	things	called	K-mesons,	and	they	occur	as	a	doublet,	K+

and	 K0.	 Also,	 every	 particle	 has	 its	 antiparticle,	 unless	 a	 particle	 is	 its	 own
antiparticle.	For	 example,	 the	π—and	 the	π+	are	 antiparticles,	 but	 the	π0	 is	 its
own	 antiparticle.	 The	 K—	 and	 K+	 are	 antiparticles,	 and	 the	 K0	 and	 K0.	 In
addition,	 in	 1961	 we	 also	 found	 some	more	 mesons	 or	maybe	mesons	which
disintegrate	 almost	 immediately.	A	 thing	 called	ω	which	 goes	 into	 three	 pions
has	 a	 mass	 780	 on	 this	 scale,	 and	 somewhat	 less	 certain	 is	 an	 object	 which



disintegrates	into	two	pions.	These	particles,	called	mesons	and	baryons,	and	the
antiparticles	 of	 the	mesons	 are	 on	 the	 same	 chart,	 but	 the	 antiparticles	 of	 the
baryons	 must	 be	 put	 on	 another	 chart,	 “reflected”	 through	 the	 charge-zero
column.
Just	as	Mendeléev’s	chart	was	very	good,	except	for	the	fact	that	there	were	a

number	of	rare	earth	elements	which	were	hanging	out	loose	from	it,	so	we	have
a	 number	 of	 things	 hanging	 out	 loose	 from	 this	 chart—particles	which	 do	 not
interact	strongly	in	nuclei,	have	nothing	to	do	with	a	nuclear	interaction,	and	do
not	have	a	strong	interaction	(I	mean	the	powerful	kind	of	interaction	of	nuclear
energy).	 These	 are	 called	 leptons,	 and	 they	 are	 the	 following:	 there	 is	 the
electron,	which	has	a	very	small	mass	on	this	scale,	only	0.510	Mev.	Then	there
is	that	other,	the	μ-meson,	the	muon,	which	has	a	mass	much	higher,	206	times
as	 heavy	 as	 an	 electron.	 So	 far	 as	 we	 can	 tell,	 by	 all	 experiments	 so	 far,	 the
difference	 between	 the	 electron	 and	 the	 muon	 is	 nothing	 but	 the	 mass.
Everything	works	exactly	the	same	for	the	muon	as	for	the	electron,	except	that
one	is	heavier	than	the	other.	Why	is	there	another	one	heavier;	what	is	the	use
for	it?	We	do	not	know.	In	addition,	 there	is	a	lepton	which	is	neutral,	called	a
neutrino,	and	this	particle	has	zero	mass.	In	fact,	it	is	now	known	that	there	are
two	different	kinds	of	neutrinos,	one	related	to	electrons	and	the	other	related	to
muons.
Finally,	we	have	 two	other	 particles	which	do	not	 interact	 strongly	with	 the

nuclear	 ones:	 one	 is	 a	 photon,	 and	 perhaps,	 if	 the	 field	 of	 gravity	 also	 has	 a
quantum-mechanical	 analog	 (a	quantum	 theory	of	gravitation	has	not	yet	 been
worked	out),	then	there	will	be	a	particle,	a	graviton,	which	will	have	zero	mass.
What	 is	 this	 “zero	 mass”?	 The	 masses	 given	 here	 are	 the	 masses	 of	 the

particles	at	rest.	The	 fact	 that	a	particle	has	zero	mass	means,	 in	a	way,	 that	 it
cannot	be	at	rest.	A	photon	is	never	at	rest;	it	is	always	moving	at	186,000	miles
a	second.	We	will	understand	more	what	mass	means	when	we	understand	 the
theory	of	relativity,	which	will	come	in	due	time.
Thus	we	are	confronted	with	a	large	number	of	particles,	which	together	seem

to	be	the	fundamental	constituents	of	matter.	Fortunately,	these	particles	are	not
all	different	in	their	interactions	with	one	another.	In	fact,	there	seem	to	be	just
four	 kinds	 of	 interaction	 between	 particles	 which,	 in	 the	 order	 of	 decreasing
strength,	are	the	nuclear	force,	electrical	interactions,	the	beta-decay	interaction,
and	gravity.	The	photon	is	coupled	to	all	charged	particles	and	the	strength	of	the
interaction	is	measured	by	some	number,	which	is	 	The	detailed	 law	of	 this
coupling	 is	 known,	 that	 is	 quantum	 electrodynamics.	Gravity	 is	 coupled	 to	 all



energy,	but	its	coupling	is	extremely	weak,	much	weaker	than	that	of	electricity.
This	law	is	also	known.	Then	there	are	the	so-called	weak	decays—beta	decay,
which	 causes	 the	 neutron	 to	 disintegrate	 into	 proton,	 electron,	 and	 neutrino,
relatively	 slowly.	 This	 law	 is	 only	 partly	 known.	 The	 so-called	 strong
interaction,	 the	meson-baryon	 interaction,	has	a	strength	of	1	 in	 this	scale,	and
the	 law	 is	 completely	 unknown,	 although	 there	 are	 a	 number	 of	 known	 rules,
such	as	that	the	number	of	baryons	does	not	change	in	any	reaction.

Coupling Strength2 Law

Photon	to	charged	particles ∼	10—2 Law	known

Gravity	to	all	energy ∼	10—40 Law	known

Weak	decays ∼	10—5 Law	partly	known

Mesons	to	baryons ∼	1 Law	unknown	(some	rules	known)

Table	2-3	Elementary	Interactions.

This,	 then,	 is	 the	horrible	condition	of	our	physics	 today.	To	summarize	 it,	 I
would	 say	 this:	 outside	 the	 nucleus,	 we	 seem	 to	 know	 all;	 inside	 it,	 quantum
mechanics	 is	valid—the	principles	of	quantum	mechanics	have	not	been	found
to	 fail.	 The	 stage	 on	 which	 we	 put	 all	 of	 our	 knowledge,	 we	 would	 say,	 is
relativistic	 space-time;	 perhaps	 gravity	 is	 involved	 in	 space-time.	 We	 do	 not
know	how	the	universe	got	started,	and	we	have	never	made	experiments	which
check	our	 ideas	of	space	and	 time	accurately,	below	some	tiny	distance,	so	we
only	know	that	our	ideas	work	above	that	distance.	We	should	also	add	that	the
rules	 of	 the	 game	 are	 the	 quantum-mechanical	 principles,	 and	 those	 principles
apply,	so	far	as	we	can	tell,	to	the	new	particles	as	well	as	to	the	old.	The	origin
of	the	forces	in	nuclei	leads	us	to	new	particles,	but	unfortunately	they	appear	in
great	profusion	and	we	lack	a	complete	understanding	of	their	interrelationship,
although	 we	 already	 know	 that	 there	 are	 some	 very	 surprising	 relationships
among	them.	We	seem	gradually	 to	be	groping	toward	an	understanding	of	 the
world	of	subatomic	particles,	but	we	really	do	not	know	how	far	we	have	yet	to



go	in	this	task.



3

THE	RELATION	OF	PHYSICS	TO	OTHER	SCIENCES

Introduction

	Physics	 is	 the	most	 fundamental	 and	all-inclusive	of	 the	 sciences,	 and	has
had	 a	 profound	 effect	 on	 all	 scientific	 development.	 In	 fact,	 physics	 is	 the
present-day	equivalent	of	what	used	to	be	called	natural	philosophy,	from	which
most	 of	 our	 modern	 sciences	 arose.	 Students	 of	 many	 fields	 find	 themselves
studying	 physics	 because	 of	 the	 basic	 role	 it	 plays	 in	 all	 phenomena.	 In	 this



chapter	 we	 shall	 try	 to	 explain	 what	 the	 fundamental	 problems	 in	 the	 other
sciences	are,	but	of	course	it	is	impossible	in	so	small	a	space	really	to	deal	with
the	complex,	 subtle,	beautiful	matters	 in	 these	other	 fields.	Lack	of	 space	also
prevents	our	discussing	the	relation	of	physics	to	engineering,	industry,	society,
and	 war,	 or	 even	 the	 most	 remarkable	 relationship	 between	 mathematics	 and
physics.	(Mathematics	is	not	a	science	from	our	point	of	view,	in	the	sense	that	it
is	 not	 a	 natural	 science.	 The	 test	 of	 its	 validity	 is	 not	 experiment.)	We	must,
incidentally,	make	it	clear	from	the	beginning	that	if	a	thing	is	not	a	science,	it	is
not	necessarily	bad.	For	example,	love	is	not	a	science.	So,	if	something	is	said
not	to	be	a	science,	it	does	not	mean	that	there	is	something	wrong	with	it;	it	just
means	that	it	is	not	a	science.

Chemistry

The	science	which	is	perhaps	the	most	deeply	affected	by	physics	is	chemistry.
Historically,	the	early	days	of	chemistry	dealt	almost	entirely	with	what	we	now
call	 inorganic	 chemistry,	 the	 chemistry	 of	 substances	which	 are	 not	 associated
with	living	things.	Considerable	analysis	was	required	to	discover	the	existence
of	 the	 many	 elements	 and	 their	 relationships—how	 they	 make	 the	 various
relatively	simple	compounds	found	in	rocks,	earth,	etc.	This	early	chemistry	was
very	 important	 for	physics.	The	 interaction	between	 the	 two	sciences	was	very
great	 because	 the	 theory	 of	 atoms	 was	 substantiated	 to	 a	 large	 extent	 by
experiments	 in	 chemistry.	 The	 theory	 of	 chemistry,	 i.e.,	 of	 the	 reactions
themselves,	 was	 summarized	 to	 a	 large	 extent	 in	 the	 periodic	 chart	 of
Mendeléev,	 which	 brings	 out	 many	 strange	 relationships	 among	 the	 various
elements,	and	 it	was	 the	collection	of	 rules	as	 to	which	substance	 is	combined
with	which,	and	how,	that	constituted	inorganic	chemistry.	All	these	rules	were
ultimately	 explained	 in	 principle	 by	 quantum	 mechanics,	 so	 that	 theoretical
chemistry	is	in	fact	physics.	On	the	other	hand,	it	must	be	emphasized	that	this
explanation	 is	 in	 principle.	We	 have	 already	 discussed	 the	 difference	 between
knowing	the	rules	of	the	game	of	chess	and	being	able	to	play.	So	it	 is	that	we
may	 know	 the	 rules,	 but	 we	 cannot	 play	 very	 well.	 It	 turns	 out	 to	 be	 very
difficult	 to	 predict	 precisely	 what	 will	 happen	 in	 a	 given	 chemical	 reaction;
nevertheless,	 the	deepest	part	of	 theoretical	chemistry	must	end	up	 in	quantum
mechanics.
There	is	also	a	branch	of	physics	and	chemistry	which	was	developed	by	both



sciences	 together,	 and	 which	 is	 extremely	 important.	 This	 is	 the	 method	 of
statistics	applied	in	a	situation	in	which	there	are	mechanical	laws,	which	is	aptly
called	statistical	mechanics.	 In	any	chemical	situation	a	 large	number	of	atoms
are	involved,	and	we	have	seen	that	the	atoms	are	all	 jiggling	around	in	a	very
random	and	complicated	way.	If	we	could	analyze	each	collision,	and	be	able	to
follow	in	detail	the	motion	of	each	molecule,	we	might	hope	to	figure	out	what
would	happen,	but	the	many	numbers	needed	to	keep	track	of	all	these	molecules
exceed	so	enormously	 the	capacity	of	any	computer,	and	certainly	 the	capacity
of	 the	mind,	 that	 it	was	 important	 to	 develop	 a	method	 for	 dealing	with	 such
complicated	 situations.	 Statistical	 mechanics,	 then,	 is	 the	 science	 of	 the
phenomena	 of	 heat,	 or	 thermodynamics.	 Inorganic	 chemistry	 is,	 as	 a	 science,
now	 reduced	 essentially	 to	 what	 are	 called	 physical	 chemistry	 and	 quantum
chemistry:	 physical	 chemistry	 to	 study	 the	 rates	 at	 which	 reactions	 occur	 and
what	 is	 happening	 in	 detail	 (How	 do	 the	molecules	 hit?	Which	 pieces	 fly	 off
first?,	etc.),	and	quantum	chemistry	to	help	us	understand	what	happens	in	terms
of	the	physical	laws.
The	 other	 branch	 of	 chemistry	 is	 organic	 chemistry,	 the	 chemistry	 of	 the

substances	which	 are	 associated	with	 living	 things.	For	 a	 time	 it	was	believed
that	 the	 substances	which	 are	 associated	with	 living	 things	were	 so	marvelous
that	they	could	not	be	made	by	hand,	from	inorganic	materials.	This	is	not	at	all
true—they	are	just	the	same	as	the	substances	made	in	inorganic	chemistry,	but
more	 complicated	 arrangements	 of	 atoms	 are	 involved.	 Organic	 chemistry
obviously	 has	 a	 very	 close	 relationship	 to	 the	 biology	 which	 supplies	 its
substances,	 and	 to	 industry,	 and	 furthermore,	 much	 physical	 chemistry	 and
quantum	 mechanics	 can	 be	 applied	 to	 organic	 as	 well	 as	 to	 inorganic
compounds.	However,	 the	main	problems	of	organic	chemistry	are	not	in	these
aspects,	 but	 rather	 in	 the	 analysis	 and	 synthesis	 of	 the	 substances	 which	 are
formed	in	biological	systems,	in	living	things.	This	leads	imperceptibly,	in	steps,
toward	biochemistry,	and	then	into	biology	itself,	or	molecular	biology.

Biology

Thus	we	come	to	the	science	of	biology,	which	is	 the	study	of	living	things.	In
the	early	days	of	biology,	 the	biologists	had	to	deal	with	the	purely	descriptive
problem	of	 finding	 out	what	 living	 things	 there	were,	 and	 so	 they	 just	 had	 to
count	 such	 things	 as	 the	 hairs	 of	 the	 limbs	 of	 fleas.	 After	 these	matters	 were



worked	out	with	a	great	deal	of	interest,	the	biologists	went	into	the	machinery
inside	the	living	bodies,	first	from	a	gross	standpoint,	naturally,	because	it	takes
some	effort	to	get	into	the	finer	details.
There	 was	 an	 interesting	 early	 relationship	 between	 physics	 and	 biology	 in

which	 biology	 helped	 physics	 in	 the	 discovery	 of	 the	 conservation	 of	 energy,
which	was	first	demonstrated	by	Mayer	 in	connection	with	 the	amount	of	heat
taken	in	and	given	out	by	a	living	creature.
If	we	look	at	the	processes	of	biology	of	living	animals	more	closely,	we	see

many	physical	phenomena:	the	circulation	of	blood,	pumps,	pressure,	etc.	There
are	nerves:	we	know	what	is	happening	when	we	step	on	a	sharp	stone,	and	that
somehow	or	other	the	information	goes	from	the	leg	up.	It	is	interesting	how	that
happens.	In	their	study	of	nerves,	the	biologists	have	come	to	the	conclusion	that
nerves	are	very	fine	tubes	with	a	complex	wall	which	is	very	thin;	through	this
wall	 the	 cell	 pumps	 ions,	 so	 that	 there	 are	 positive	 ions	 on	 the	 outside	 and
negative	 ions	 on	 the	 inside,	 like	 a	 capacitor.	 Now	 this	 membrane	 has	 an
interesting	property;	if	it	“discharges”	in	one	place,	i.e.,	if	some	of	the	ions	were
able	to	move	through	one	place,	so	that	the	electric	voltage	is	reduced	there,	that
electrical	 influence	 makes	 itself	 felt	 on	 the	 ions	 in	 the	 neighborhood,	 and	 it
affects	the	membrane	in	such	a	way	that	it	 lets	the	ions	through	at	neighboring
points	also.	This	 in	 turn	affects	 it	 farther	along,	etc.,	and	so	 there	 is	a	wave	of
“penetrability”	of	the	membrane	which	runs	down	the	fiber	when	it	is	“excited”
at	one	end	by	stepping	on	the	sharp	stone.	This	wave	is	somewhat	analogous	to	a
long	 sequence	 of	 vertical	 dominoes;	 if	 the	 end	 one	 is	 pushed	 over,	 that	 one
pushes	 the	next,	etc.	Of	 course	 this	will	 transmit	 only	 one	message	 unless	 the
dominoes	 are	 set	 up	 again;	 and	 similarly	 in	 the	nerve	 cell,	 there	 are	processes
which	 pump	 the	 ions	 slowly	 out	 again,	 to	 get	 the	 nerve	 ready	 for	 the	 next
impulse.	So	it	is	that	we	know	what	we	are	doing	(or	at	least	where	we	are).	Of
course	the	electrical	effects	associated	with	this	nerve	impulse	can	be	picked	up
with	electrical	instruments,	and	because	there	are	electrical	effects,	obviously	the
physics	of	electrical	effects	has	had	a	great	deal	of	 influence	on	understanding
the	phenomenon.
The	opposite	effect	is	that,	from	somewhere	in	the	brain,	a	message	is	sent	out

along	a	nerve.	What	happens	at	the	end	of	the	nerve?	There	the	nerve	branches
out	 into	 fine	 little	 things,	 connected	 to	 a	 structure	 near	 a	 muscle,	 called	 an
endplate.	 For	 reasons	 which	 are	 not	 exactly	 understood,	 when	 the	 impulse
reaches	the	end	of	the	nerve,	little	packets	of	a	chemical	called	acetylcholine	are
shot	 off	 (five	or	 ten	molecules	 at	 a	 time)	 and	 they	 affect	 the	muscle	 fiber	 and



make	 it	 contract—how	 simple!	What	makes	 a	muscle	 contract?	A	muscle	 is	 a
very	large	number	of	fibers	close	together,	containing	two	different	substances,
myosin	 and	 actomyosin,	 but	 the	 machinery	 by	 which	 the	 chemical	 reaction
induced	 by	 acetylcholine	 can	modify	 the	 dimensions	 of	 the	muscle	 is	 not	 yet
known.	 Thus	 the	 fundamental	 processes	 in	 the	 muscle	 that	 make	 mechanical
motions	are	not	known.
Biology	 is	 such	 an	 enormously	 wide	 field	 that	 there	 are	 hosts	 of	 other

problems	 that	we	cannot	mention	at	all—problems	on	how	vision	works	(what
the	light	does	in	the	eye),	how	hearing	works,	etc.	 (The	way	in	which	 thinking
works	we	 shall	 discuss	 later	 under	 psychology.)	Now,	 these	 things	 concerning
biology	which	we	have	 just	 discussed	 are,	 from	a	biological	 standpoint,	 really
not	 fundamental,	at	 the	bottom	of	 life,	 in	 the	sense	 that	even	 if	we	understood
them	we	still	would	not	understand	 life	 itself	To	 illustrate:	 the	men	who	study
nerves	 feel	 their	 work	 is	 very	 important,	 because	 after	 all	 you	 cannot	 have
animals	 without	 nerves.	 But	 you	 can	 have	 life	 without	 nerves.	 Plants	 have
neither	nerves	nor	muscles,	but	 they	are	working,	 they	are	alive,	 just	 the	same.
So	for	the	fundamental	problems	of	biology	we	must	look	deeper;	when	we	do,
we	discover	that	all	living	things	have	a	great	many	characteristics	in	common.
The	most	common	feature	is	that	they	are	made	of	cells,	within	each	of	which	is
complex	 machinery	 for	 doing	 things	 chemically.	 In	 plant	 cells,	 for	 example,
there	 is	 machinery	 for	 picking	 up	 light	 and	 generating	 sucrose,	 which	 is
consumed	in	the	dark	to	keep	the	plant	alive.	When	the	plant	is	eaten	the	sucrose
itself	generates	in	the	animal	a	series	of	chemical	reactions	very	closely	related
to	photosynthesis	(and	its	opposite	effect	in	the	dark)	in	plants.
In	the	cells	of	living	systems	there	are	many	elaborate	chemical	reactions,	in

which	 one	 compound	 is	 changed	 into	 another	 and	 another.	 To	 give	 some
impression	of	the	enormous	efforts	that	have	gone	into	the	study	of	biochemistry,
the	chart	in	Fig.	3-1	summarizes	our	knowledge	to	date	on	just	one	small	part	of
the	many	series	of	reactions	which	occur	in	cells,	perhaps	a	percent	or	so	of	it.
Here	we	see	a	whole	series	of	molecules	which	change	from	one	to	another	in

a	 sequence	 or	 cycle	 of	 rather	 small	 steps.	 It	 is	 called	 the	 Krebs	 cycle,	 the
respiratory	cycle.	Each	of	the	chemicals	and	each	of	the	steps	is	fairly	simple,	in
terms	 of	 what	 change	 is	 made	 in	 the	 molecule,	 but—and	 this	 is	 a	 centrally
important	 discovery	 in	 biochemistry—these	 changes	 are	 relatively	 difficult	 to
accomplish	in	a	laboratory.	 If	we	have	one	substance	and	another	very	similar
substance,	 the	one	does	not	 just	 turn	 into	 the	other,	because	 the	 two	 forms	are
usually	 separated	 by	 an	 energy	 barrier	 or	 “hill.”	 Consider	 this	 analogy:	 If	 we



wanted	to	take	an	object	from	one	place	to	another,	at	the	same	level	but	on	the
other	 side	 of	 a	 hill,	 we	 could	 push	 it	 over	 the	 top,	 but	 to	 do	 so	 requires	 the
addition	 of	 some	 energy.	 Thus	most	 chemical	 reactions	 do	 not	 occur,	 because
there	is	what	is	called	an	activation	energy	 in	the	way.	In	order	to	add	an	extra
atom	 to	 our	 chemical	 requires	 that	 we	 get	 it	 close	 enough	 that	 some
rearrangement	 can	 occur;	 then	 it	 will	 stick.	 But	 if	 we	 cannot	 give	 it	 enough
energy	to	get	it	close	enough,	it	will	not	go	to	completion	it	will	just	go	partway
up	 the	 “hill”	 and	 back	 down	 again.	 However,	 if	 we	 could	 literally	 take	 the
molecules	in	our	hands	and	push	and	pull	the	atoms	around	in	such	a	way	as	to
open	 a	 hole	 to	 let	 the	 new	 atom	 in,	 and	 then	 let	 it	 snap	 back,	we	would	 have
found	another	way,	around	 the	hill,	which	would	not	 require	extra	energy,	and
the	 reaction	 would	 go	 easily.	 Now	 there	 actually	 are,	 in	 the	 cells,	 very	 large
molecules,	much	larger	 than	the	ones	whose	changes	we	have	been	describing,
which	in	some	complicated	way	hold	the	smaller	molecules	just	right,	so	that	the
reaction	 can	 occur	 easily.	 These	 very	 large	 and	 complicated	 things	 are	 called
enzymes.	 (They	 were	 first	 called	 ferments,	 because	 they	 were	 originally
discovered	in	the	fermentation	of	sugar.	In	fact,	some	of	the	first	reactions	in	the
cycle	were	discovered	there.)	In	the	presence	of	an	enzyme	the	reaction	will	go.

Figure	3-1	The	Krebs	cycle.

An	enzyme	is	made	of	another	substance	called	protein.	Enzymes	are	very	big
and	complicated,	and	each	one	is	different,	each	being	built	to	control	a	certain



special	 reaction.	 The	 names	 of	 the	 enzymes	 are	 written	 in	 Fig.	 3-1	 at	 each
reaction.	 (Sometimes	 the	 same	 enzyme	 may	 control	 two	 reactions.)	 We
emphasize	that	the	enzymes	themselves	are	not	involved	in	the	reaction	directly.
They	 do	 not	 change;	 they	 merely	 let	 an	 atom	 go	 from	 one	 place	 to	 another.
Having	 done	 so,	 the	 enzyme	 is	 ready	 to	 do	 it	 to	 the	 next	 molecule,	 like	 a
machine	in	a	factory.	Of	course,	 there	must	be	a	supply	of	certain	atoms	and	a
way	of	disposing	of	other	atoms.	Take	hydrogen,	for	example:	there	are	enzymes
which	 have	 special	 units	 on	 them	 which	 carry	 the	 hydrogen	 for	 all	 chemical
reactions.	 For	 example,	 there	 are	 three	 or	 four	 hydrogen-reducing	 enzymes
which	 are	 used	 all	 over	 our	 cycle	 in	 different	 places.	 It	 is	 interesting	 that	 the
machinery	which	liberates	some	hydrogen	at	one	place	will	 take	that	hydrogen
and	use	it	somewhere	else.
The	most	important	feature	of	the	cycle	of	Fig.	3-1	is	the	transformation	from

GDP	 to	GTP	 (guanosine-di-phosphate	 to	 guanosine-tri-phosphate)	 because	 the
one	substance	has	much	more	energy	in	it	than	the	other.	Just	as	there	is	a	“box”
in	certain	enzymes	for	carrying	hydrogen	atoms	around,	there	are	special	energy-
carrying	 “boxes”	 which	 involve	 the	 triphosphate	 group.	 So,	 GTP	 has	 more
energy	than	GDP	and	if	the	cycle	is	going	one	way,	we	are	producing	molecules
which	 have	 extra	 energy	 and	 which	 can	 go	 drive	 some	 other	 cycle	 which
requires	 energy,	 for	 example	 the	 contraction	 of	 muscle.	 The	 muscle	 will	 not
contract	unless	there	is	GTP.	We	can	take	muscle	fiber,	put	it	in	water,	and	add
GTP,	 and	 the	 fibers	 contract,	 changing	GTP	 to	 GDP	 if	 the	 right	 enzymes	 are
present.	So	 the	 real	 system	 is	 in	 the	GDP-GTP	 transformation;	 in	 the	dark	 the
GTP	which	 has	 been	 stored	 up	 during	 the	 day	 is	 used	 to	 run	 the	whole	 cycle
around	the	other	way.	An	enzyme,	you	see,	does	not	care	in	which	direction	the
reaction	goes,	for	if	it	did	it	would	violate	one	of	the	laws	of	physics.
Physics	 is	of	great	 importance	in	biology	and	other	sciences	for	still	another

reason,	that	has	to	do	with	experimental	techniques.	In	fact,	if	it	were	not	for	the
great	development	of	experimental	physics,	these	biochemistry	charts	would	not
be	known	today.	The	reason	is	that	the	most	useful	tool	of	all	for	analyzing	this
fantastically	 complex	 system	 is	 to	 label	 the	 atoms	 which	 are	 used	 in	 the
reactions.	Thus,	if	we	could	introduce	into	the	cycle	some	carbon	dioxide	which
has	a	“green	mark”	on	it,	and	then	measure	after	three	seconds	where	the	green
mark	is,	and	again	measure	after	ten	seconds,	etc.,	we	could	trace	out	the	course
of	 the	 reactions.	What	 are	 the	 “green	marks”?	They	are	different	 isotopes.	We
recall	 that	 the	 chemical	 properties	 of	 atoms	 are	 determined	 by	 the	 number	 of
electrons,	 not	 by	 the	 mass	 of	 the	 nucleus.	 But	 there	 can	 be,	 for	 example	 in



carbon,	six	neutrons	or	seven	neutrons,	 together	with	 the	six	protons	which	all
carbon	nuclei	have.	Chemically,	 the	 two	atoms	C12	and	C13	are	 the	same,	but
they	differ	in	weight	and	they	have	different	nuclear	properties,	and	so	they	are
distinguishable.	By	using	these	isotopes	of	different	weights,	or	even	radioactive
isotopes	like	C14,	which	provide	a	more	sensitive	means	for	tracing	very	small
quantities,	it	is	possible	to	trace	the	reactions.
Now,	we	 return	 to	 the	description	of	 enzymes	and	proteins.	All	proteins	 are

not	enzymes,	but	all	enzymes	are	proteins.	There	are	many	proteins,	such	as	the
proteins	 in	muscle,	 the	 structural	 proteins	which	 are,	 for	 example,	 in	 cartilage
and	 hair,	 skin,	 etc.,	 that	 are	 not	 themselves	 enzymes.	However,	 proteins	 are	 a
very	characteristic	 substance	of	 life:	 first	of	 all	 they	make	up	all	 the	enzymes,
and	 second,	 they	make	up	much	of	 the	 rest	of	 living	material.	Proteins	have	a
very	 interesting	 and	 simple	 structure.	 They	 are	 a	 series,	 or	 chain,	 of	 different
amino	acids.	There	are	 twenty	different	amino	acids,	and	 they	all	can	combine
with	each	other	 to	form	chains	 in	which	 the	backbone	 is	CO-NH,	etc.	Proteins
are	nothing	but	chains	of	various	ones	of	these	twenty	amino	acids.	Each	of	the
amino	acids	probably	serves	some	special	purpose.	Some,	 for	example,	have	a
sulfur	 atom	at	 a	 certain	place;	when	 two	 sulfur	 atoms	are	 in	 the	 same	protein,
they	 form	a	bond,	 that	 is,	 they	 tie	 the	chain	 together	 at	 two	points	 and	 form	a
loop.	 Another	 has	 extra	 oxygen	 atoms	 which	 make	 it	 an	 acidic	 substance;
another	has	a	basic	characteristic.	Some	of	them	have	big	groups	hanging	out	to
one	 side,	 so	 that	 they	 take	 up	 a	 lot	 of	 space.	 One	 of	 the	 amino	 acids,	 called
proline,	is	not	really	an	amino	acid,	but	imino	acid.	There	is	a	slight	difference,
with	the	result	that	when	proline	is	in	the	chain,	there	is	a	kink	in	the	chain.	If	we
wished	to	manufacture	a	particular	protein,	we	would	give	these	instructions:	put
one	of	those	sulfur	hooks	here;	next,	add	something	to	take	up	space;	then	attach
something	 to	 put	 a	 kink	 in	 the	 chain.	 In	 this	way,	we	will	 get	 a	 complicated-
looking	 chain,	 hooked	 together	 and	 having	 some	 complex	 structure;	 this	 is
presumably	just	the	manner	in	which	all	the	various	enzymes	are	made.	One	of
the	great	triumphs	in	recent	times	(since	1960)	was	at	last	to	discover	the	exact
spatial	atomic	arrangement	of	certain	proteins,	which	 involve	some	fifty-six	or
sixty	amino	acids	in	a	row.	Over	a	thousand	atoms	(more	nearly	two	thousand,	if
we	 count	 the	 hydrogen	 atoms)	 have	 been	 located	 in	 a	 complex	 pattern	 in	 two
proteins.	The	first	was	hemoglobin.	One	of	 the	sad	aspects	of	 this	discovery	 is
that	we	cannot	see	anything	from	the	pattern;	we	do	not	understand	why	it	works
the	way	it	does.	Of	course,	that	is	the	next	problem	to	be	attacked.



Another	 problem	 is	 how	 do	 the	 enzymes	 know	what	 to	 be?	A	 red-eyed	 fly
makes	 a	 red-eyed	 fly	 baby,	 and	 so	 the	 information	 for	 the	 whole	 pattern	 of
enzymes	to	make	red	pigment	must	be	passed	from	one	fly	to	the	next.	This	is
done	by	a	substance	in	the	nucleus	of	the	cell,	not	a	protein,	called	DNA	(short
for	deoxyribonucleic	acid).	This	is	the	key	substance	which	is	passed	from	one
cell	to	another	(for	instance,	sperm	cells	consist	mostly	of	DNA)	and	carries	the
information	as	to	how	to	make	the	enzymes.	DNA	is	the	“blueprint.”	What	does
the	blueprint	look	like	and	how	does	it	work?	First,	the	blueprint	must	be	able	to
reproduce	itself.	Secondly,	it	must	be	able	to	instruct	the	protein.	Concerning	the
reproduction,	 we	 might	 think	 that	 this	 proceeds	 like	 cell	 reproduction.	 Cells
simply	grow	bigger	and	then	divide	in	half.	Must	it	be	thus	with	DNA	molecules,
then,	that	they	too	grow	bigger	and	divide	in	half?	Every	atom	certainly	does	not
grow	 bigger	 and	 divide	 in	 half!	 No,	 it	 is	 impossible	 to	 reproduce	 a	molecule
except	by	some	more	clever	way.
The	 structure	 of	 the	 substance	 DNA	 was	 studied	 for	 a	 long	 time,	 first

chemically	 to	 find	 the	composition,	 and	 then	with	x-rays	 to	 find	 the	pattern	 in
space.	The	result	was	the	following	remarkable	discovery:	The	DNA	molecule	is
a	pair	of	chains,	twisted	upon	each	other.	The	backbone	of	each	of	these	chains,
which	are	analogous	to	the	chains	of	proteins	but	chemically	quite	different,	is	a
series	of	sugar	and	phosphate	groups,	as	shown	in	Fig.	3-2.	Now	we	see	how	the
chain	can	contain	instructions,	for	if	we	could	split	this	chain	down	the	middle,
we	would	have	a	series	BAADC	...	and	every	living	thing	could	have	a	different
series.	Thus	perhaps,	in	some	way,	the	specific	instructions	for	the	manufacture
of	proteins	are	contained	in	the	specific	series	of	the	DNA.
Attached	to	each	sugar	along	the	line,	and	linking	the	two	chains	together,	are

certain	pairs	of	cross-links.	However,	they	are	not	all	of	the	same	kind;	there	are
four	kinds,	called	adenine,	 thymine,	cytosine,	and	guanine,	but	 let	us	call	 them
A,	B,	C,	and	D.	The	 interesting	 thing	 is	 that	only	certain	pairs	can	sit	opposite
each	other,	for	example	A	with	B	and	C	with	D.	These	pairs	are	put	on	the	two
chains	 in	 such	 a	 way	 that	 they	 “fit	 together,”	 and	 have	 a	 strong	 energy	 of
interaction.	However,	C	will	not	fit	with	A,	and	B	will	not	fit	with	C;	 they	will
only	fit	 in	pairs,	A	against	B	and	C	against	D.	Therefore	 if	one	 is	C,	 the	other
must	be	D,	etc.	Whatever	the	letters	may	be	in	one	chain,	each	one	must	have	its
specific	complementary	letter	on	the	other	chain.
What	 then	about	reproduction?	Suppose	we	split	 this	chain	in	 two.	How	can

we	make	 another	 one	 just	 like	 it?	 If,	 in	 the	 substances	 of	 the	 cells,	 there	 is	 a
manufacturing	 department	 which	 brings	 up	 phosphate,	 sugar,	 and	A,	 B,	 C,	 D



units	not	connected	in	a	chain,	the	only	ones	which	will	attach	to	our	split	chain
will	 be	 the	 correct	 ones,	 the	 complements	 of	BAADC	 ...	 ,	 namely,	ABBCD	 ...
Thus	what	happens	is	that	the	chain	splits	down	the	middle	during	cell	division,
one	half	ultimately	to	go	with	one	cell,	the	other	half	to	end	up	in	the	other	cell;
when	separated,	a	new	complementary	chain	is	made	by	each	half-chain.
Next	comes	the	question,	precisely	how	does	the	order	of	the	A,	B,	C,	D	units

determine	the	arrangement	of	the	amino	acids	in	the	protein?	This	is	the	central
unsolved	 problem	 in	 biology	 today.	 The	 first	 clues,	 or	 pieces	 of	 information,
however,	are	these:	There	are	in	the	cell	tiny	particles	called	ribosomes,	and	it	is
now	known	that	that	is	the	place	where	proteins	are	made.	But	the	ribosomes	are
not	in	the	nucleus,	where	the	DNA	and	its	instructions	are.	Something	seems	to
be	the	matter.	However,	it	is	also	known	that	little	molecule	pieces	come	off	the
DNA—not	 as	 long	 as	 the	 big	 DNA	molecule	 that	 carries	 all	 the	 information
itself,	but	like	a	small	section	of	it.	This	is	called	RNA,	but	that	is	not	essential.
It	is	a	kind	of	copy	of	the	DNA,	a	short	copy.	The	RNA,	which	somehow	carries
a	message	as	to	what	kind	of	protein	to	make	goes	over	to	the	ribosome;	that	is
known.	When	it	gets	 there,	protein	 is	synthesized	at	 the	ribosome.	That	 is	also
known.	However,	the	details	of	how	the	amino	acids	come	in	and	are	arranged	in
accordance	with	a	code	that	is	on	the	RNA	are,	as	yet,	still	unknown.	We	do	not
know	how	to	 read	 it.	 If	we	knew,	 for	example,	 the	“lineup”	A,	B,	C,	C,	A,	we
could	not	tell	you	what	protein	is	to	be	made.



Figure	3-2	Schematic	diagram	of	DNA.

Certainly	no	subject	or	field	is	making	more	progress	on	so	many	fronts	at	the
present	 moment	 than	 biology,	 and	 if	 we	 were	 to	 name	 the	 most	 powerful
assumption	of	all,	which	leads	one	on	and	on	in	an	attempt	to	understand	life,	it
is	that	all	things	are	made	of	atoms,	and	that	everything	that	living	things	do	can
be	understood	in	terms	of	the	jigglings	and	wigglings	of	atoms.

Astronomy

In	 this	 rapid-fire	 explanation	 of	 the	 whole	 world,	 we	 must	 now	 turn	 to
astronomy.	Astronomy	 is	 older	 than	 physics.	 In	 fact,	 it	 got	 physics	 started	 by
showing	 the	 beautiful	 simplicity	 of	 the	 motion	 of	 the	 stars	 and	 planets,	 the
understanding	of	which	was	the	beginning	of	physics.	But	the	most	remarkable
discovery	in	all	of	astronomy	is	that	the	stars	are	made	of	atoms	of	the	same	kind
as	 those	 on	 the	 earth.	 3	How	was	 this	 done?	 Atoms	 liberate	 light	 which	 has
definite	 frequencies,	 something	 like	 the	 timbre	of	 a	musical	 instrument,	which
has	definite	 pitches	 or	 frequencies	 of	 sound.	When	we	 are	 listening	 to	 several



different	 tones	 we	 can	 tell	 them	 apart,	 but	 when	 we	 look	 with	 our	 eyes	 at	 a
mixture	of	colors	we	cannot	tell	the	parts	from	which	it	was	made,	because	the
eye	is	nowhere	near	as	discerning	as	the	ear	in	this	connection.	However,	with	a
spectroscope	we	can	analyze	the	frequencies	of	the	light	waves	and	in	this	way
we	can	see	the	very	tunes	of	the	atoms	that	are	in	the	different	stars.	As	a	matter
of	fact,	two	of	the	chemical	elements	were	discovered	on	a	star	before	they	were
discovered	on	 the	 earth.	Helium	was	discovered	on	 the	 sun,	whence	 its	 name,
and	technetium	was	discovered	in	certain	cool	stars.	This,	of	course,	permits	us
to	make	headway	in	understanding	the	stars,	because	they	are	made	of	the	same
kinds	 of	 atoms	which	 are	 on	 the	 earth.	 Now	we	 know	 a	 great	 deal	 about	 the
atoms,	especially	concerning	their	behavior	under	conditions	of	high	temperature
but	 not	 very	great	 density,	 so	 that	we	 can	 analyze	by	 statistical	mechanics	 the
behavior	 of	 the	 stellar	 substance.	 Even	 though	 we	 cannot	 reproduce	 the
conditions	on	the	earth,	using	the	basic	physical	laws	we	often	can	tell	precisely,
or	very	closely,	what	will	happen.	So	it	is	that	physics	aids	astronomy.	Strange	as
it	may	seem,	we	understand	the	distribution	of	matter	 in	the	interior	of	 the	sun
far	better	than	we	understand	the	interior	of	the	earth.	What	goes	on	inside	a	star
is	better	understood	than	one	might	guess	from	the	difficulty	of	having	to	look	at
a	little	dot	of	light	through	a	telescope,	because	we	can	calculate	what	the	atoms
in	the	stars	should	do	in	most	circumstances.
One	 of	 the	most	 impressive	 discoveries	was	 the	 origin	 of	 the	 energy	 of	 the

stars,	that	makes	them	continue	to	burn.	One	of	the	men	who	discovered	this	was
out	with	his	girlfriend	the	night	after	he	realized	that	nuclear	reactions	must	be
going	on	in	the	stars	in	order	to	make	them	shine.	She	said,	“Look	at	how	pretty
the	stars	 shine!”	He	said,	“Yes,	and	 right	now	I	am	 the	only	man	 in	 the	world
who	knows	why	they	shine.”	She	merely	laughed	at	him.	She	was	not	impressed
with	being	out	with	 the	only	man	who,	at	 that	moment,	knew	why	stars	shine.
Well,	it	is	sad	to	be	alone,	but	that	is	the	way	it	is	in	this	world.
It	is	the	nuclear	“burning”	of	hydrogen	which	supplies	the	energy	of	the	sun;

the	hydrogen	is	converted	into	helium.	Furthermore,	ultimately,	the	manufacture
of	various	chemical	elements	proceeds	in	the	centers	of	the	stars,	from	hydrogen.
The	stuff	of	which	we	are	made	was	“cooked”	once,	in	a	star,	and	spit	out.	How
do	we	know?	Because	there	is	a	clue.	The	proportion	of	the	different	isotopes—
how	much	C12,	how	much	C13,	etc.,	 is	 something	which	 is	never	changed	by
chemical	reactions,	because	the	chemical	reactions	are	so	much	the	same	for	the
two.	The	proportions	are	purely	the	result	of	nuclear	reactions.	By	looking	at	the
proportions	 of	 the	 isotopes	 in	 the	 cold,	 dead	 ember	 which	 we	 are,	 we	 can



discover	what	the	furnace	was	like	in	which	the	stuff	of	which	we	are	made	was
formed.	That	furnace	was	like	the	stars,	and	so	it	is	very	likely	that	our	elements
were	“made”	in	the	stars	and	spit	out	in	the	explosions	which	we	call	novae	and
supernovae.	 Astronomy	 is	 so	 close	 to	 physics	 that	 we	 shall	 study	 many
astronomical	things	as	we	go	along.

Geology

We	 turn	now	 to	what	 are	 called	earth	sciences,	 or	geology.	 First,	meteorology
and	 the	 weather.	 Of	 course	 the	 instruments	 of	 meteorology	 are	 physical
instruments,	 and	 the	 development	 of	 experimental	 physics	 made	 these
instruments	 possible,	 as	 was	 explained	 before.	 However,	 the	 theory	 of
meteorology	has	never	been	satisfactorily	worked	out	by	 the	physicist.	“Well,”
you	say,	“there	is	nothing	but	air,	and	we	know	the	equations	of	the	motions	of
air.”	Yes	we	do.	“So	if	we	know	the	condition	of	air	today,	why	can’t	we	figure
out	 the	condition	of	 the	air	 tomorrow?”	First,	we	do	not	really	 know	what	 the
condition	is	 today,	because	the	air	 is	swirling	and	twisting	everywhere.	It	 turns
out	 to	 be	 very	 sensitive,	 and	 even	 unstable.	 If	 you	 have	 ever	 seen	 water	 run
smoothly	over	a	dam,	and	then	turn	into	a	large	number	of	blobs	and	drops	as	it
falls,	you	will	understand	what	I	mean	by	unstable.	You	know	the	condition	of
the	water	before	it	goes	over	the	spillway;	it	is	perfectly	smooth;	but	the	moment
it	begins	to	fall,	where	do	the	drops	begin?	What	determines	how	big	the	lumps
are	going	to	be	and	where	they	will	be?	That	is	not	known,	because	the	water	is
unstable.	Even	a	 smooth	moving	mass	of	air	going	over	a	mountain	 turns	 into
complex	whirlpools	and	eddies.	In	many	fields	we	find	this	situation	of	turbulent
flow	that	we	cannot	analyze	today.	Quickly	we	leave	the	subject	of	weather,	and
discuss	geology!
The	question	basic	to	geology	is,	what	makes	the	earth	the	way	it	is?	The	most

obvious	 processes	 are	 in	 front	 of	 your	 very	 eyes,	 the	 erosion	 processes	 of	 the
rivers,	the	winds,	etc.	It	is	easy	enough	to	understand	these,	but	for	every	bit	of
erosion	there	is	an	equal	amount	of	something	else	going	on.	Mountains	are	no
lower	today,	on	the	average,	than	they	were	in	the	past.	There	must	be	mountain-
forming	processes.	You	will	find,	if	you	study	geology,	that	there	are	mountain-
forming	processes	and	volcanism,	which	nobody	understands	but	which	 is	half
of	geology.	The	phenomenon	of	volcanoes	is	really	not	understood.	What	makes
an	earthquake	is,	ultimately,	not	understood.	It	is	understood	that	if	something	is



pushing	 something	 else,	 it	 snaps	 and	 will	 slide—that	 is	 all	 right.	 But	 what
pushes,	 and	 why?	 The	 theory	 is	 that	 there	 are	 currents	 inside	 the	 earth—
circulating	 currents,	 due	 to	 the	 difference	 in	 temperature	 inside	 and	 outside—
which,	in	their	motion,	push	the	surface	slightly.	Thus	if	there	are	two	opposite
circulations	next	 to	each	other,	 the	matter	will	collect	 in	 the	region	where	 they
meet	and	make	belts	of	mountains	which	are	in	unhappy	stressed	conditions,	and
so	produce	volcanoes	and	earthquakes.
What	about	the	inside	of	the	earth?	A	great	deal	is	known	about	the	speed	of

earthquake	waves	through	the	earth	and	the	density	of	distribution	of	the	earth.
However,	physicists	have	been	unable	 to	get	 a	good	 theory	as	 to	how	dense	a
substance	should	be	at	the	pressures	that	would	be	expected	at	the	center	of	the
earth.	In	other	words,	we	cannot	figure	out	the	properties	of	matter	very	well	in
these	circumstances.	We	do	much	 less	well	with	 the	earth	 than	we	do	with	 the
conditions	 of	matter	 in	 the	 stars.	 The	mathematics	 involved	 seems	 a	 little	 too
difficult,	so	far,	but	perhaps	it	will	not	be	too	long	before	someone	realizes	that	it
is	an	important	problem,	and	really	works	it	out.	The	other	aspect,	of	course,	is
that	 even	 if	 we	 did	 know	 the	 density,	 we	 cannot	 figure	 out	 the	 circulating
currents.	Nor	can	we	really	work	out	the	properties	of	rocks	at	high	pressure.	We
cannot	 tell	 how	 fast	 the	 rocks	 should	 “give”;	 that	must	 all	 be	 worked	 out	 by
experiment.

Psychology

Next,	we	consider	the	science	of	psychology.	Incidentally,	psychoanalysis	is	not
a	 science:	 it	 is	 at	 best	 a	 medical	 process,	 and	 perhaps	 even	more	 like	 witch-
doctoring.	It	has	a	 theory	as	 to	what	causes	disease—lots	of	different	“spirits,”
etc.	The	witch	doctor	has	a	theory	that	a	disease	like	malaria	is	caused	by	a	spirit
which	comes	into	the	air;	it	is	not	cured	by	shaking	a	snake	over	it,	but	quinine
does	help	malaria.	So,	 if	you	are	sick,	 I	would	advise	 that	you	go	 to	 the	witch
doctor	because	he	is	the	man	in	the	tribe	who	knows	the	most	about	the	disease;
on	 the	 other	 hand,	 his	 knowledge	 is	 not	 science.	 Psychoanalysis	 has	 not	 been
checked	carefully	by	experiment,	and	there	is	no	way	to	find	a	list	of	the	number
of	cases	in	which	it	works,	the	number	of	cases	in	which	it	does	not	work,	etc.
The	other	branches	of	psychology,	which	involve	things	like	the	physiology	of

sensation—what	happens	in	the	eye,	and	what	happens	in	the	brain—are,	if	you
wish,	 less	 interesting.	 But	 some	 small	 but	 real	 progress	 has	 been	 made	 in



studying	them.	One	of	the	most	interesting	technical	problems	may	or	may	not
be	 called	 psychology.	 The	 central	 problem	 of	 the	 mind,	 if	 you	 will,	 or	 the
nervous	system,	 is	 this:	when	an	animal	 learns	something,	 it	can	do	something
different	 than	 it	could	before,	and	 its	brain	cell	must	have	changed	 too,	 if	 it	 is
made	out	of	atoms.	In	what	way	is	it	different?	We	do	not	know	where	to	look,
or	 what	 to	 look	 for,	 when	 something	 is	memorized.	We	 do	 not	 know	what	 it
means,	 or	what	 change	 there	 is	 in	 the	nervous	 system,	when	 a	 fact	 is	 learned.
This	 is	 a	very	 important	problem	which	has	not	been	 solved	at	 all.	Assuming,
however,	that	there	is	some	kind	of	memory	thing,	the	brain	is	such	an	enormous
mass	of	interconnecting	wires	and	nerves	that	it	probably	cannot	be	analyzed	in
a	straightforward	manner.	There	is	an	analog	of	this	to	computing	machines	and
computing	 elements,	 in	 that	 they	 also	have	 a	 lot	 of	 lines,	 and	 they	have	 some
kind	of	element,	analogous,	perhaps,	to	the	synapse,	or	connection	of	one	nerve
to	 another.	 This	 is	 a	 very	 interesting	 subject	 which	 we	 have	 not	 the	 time	 to
discuss	 further—the	 relationship	between	 thinking	and	computing	machines.	 It
must	be	appreciated,	of	course,	that	this	subject	will	tell	us	very	little	about	the
real	complexities	of	ordinary	human	behavior.	All	human	beings	are	so	different.
It	will	be	a	long	time	before	we	get	there.	We	must	start	much	further	back.	If	we
could	even	figure	out	how	a	dog	works,	we	would	have	gone	pretty	far.	Dogs	are
easier	to	understand,	but	nobody	yet	knows	how	dogs	work.

How	did	it	get	that	way?

In	order	for	physics	to	be	useful	to	other	sciences	in	a	theoretical	way,	other	than
in	 the	 invention	 of	 instruments,	 the	 science	 in	 question	 must	 supply	 to	 the
physicist	a	description	of	the	object	in	a	physicist’s	language.	They	can	say	“why
does	a	frog	jump?,”	and	the	physicist	cannot	answer.	If	they	tell	him	what	a	frog
is,	that	there	are	so	many	molecules,	there	is	a	nerve	here,	etc.,	that	is	different.
If	they	will	tell	us,	more	or	less,	what	the	earth	or	the	stars	are	like,	then	we	can
figure	it	out.	In	order	for	physical	theory	to	be	of	any	use,	we	must	know	where
the	 atoms	 are	 located.	 In	 order	 to	 understand	 the	 chemistry,	 we	 must	 know
exactly	what	atoms	are	present,	for	otherwise	we	cannot	analyze	it.	That	 is	but
one	limitation,	of	course.
There	is	another	kind	of	problem	in	the	sister	sciences	which	does	not	exist	in

physics;	we	might	call	it,	for	lack	of	a	better	term,	the	historical	question.	How
did	 it	 get	 that	way?	 If	we	understand	all	 about	biology,	we	will	want	 to	know



how	 all	 the	 things	 which	 are	 on	 the	 earth	 got	 there.	 There	 is	 the	 theory	 of
evolution,	an	 important	part	of	biology.	 In	geology,	we	not	only	want	 to	know
how	 the	 mountains	 are	 forming,	 but	 how	 the	 entire	 earth	 was	 formed	 in	 the
beginning,	the	origin	of	the	solar	system,	etc.	That,	of	course,	leads	us	to	want	to
know	what	 kind	 of	matter	 there	was	 in	 the	world.	 How	 did	 the	 stars	 evolve?
What	were	the	initial	conditions?	That	is	the	problem	of	astronomical	history.	A
great	 deal	 has	 been	 found	 out	 about	 the	 formation	 of	 stars,	 the	 formation	 of
elements	 from	which	we	were	made,	 and	 even	 a	 little	 about	 the	 origin	 of	 the
universe.
There	is	no	historical	question	being	studied	in	physics	at	the	present	time.	We

do	 not	 have	 a	 question,	 “Here	 are	 the	 laws	 of	 physics,	 how	 did	 they	 get	 that
way?”	We	do	not	imagine,	at	the	moment,	that	the	laws	of	physics	are	somehow
changing	with	time,	that	they	were	different	in	the	past	than	they	are	at	present.
Of	course	they	may	be,	and	the	moment	we	find	they	are,	the	historical	question
of	physics	will	be	wrapped	up	with	 the	 rest	of	 the	history	of	 the	universe,	and
then	 the	 physicist	 will	 be	 talking	 about	 the	 same	 problems	 as	 astronomers,
geologists,	and	biologists.
Finally,	there	is	a	physical	problem	that	is	common	to	many	fields,	that	is	very

old,	 and	 that	 has	 not	 been	 solved.	 It	 is	 not	 the	 problem	 of	 finding	 new
fundamental	 particles,	 but	 something	 left	 over	 from	 a	 long	 time	 ago—over	 a
hundred	 years.	 Nobody	 in	 physics	 has	 really	 been	 able	 to	 analyze	 it
mathematically	satisfactorily	in	spite	of	its	importance	to	the	sister	sciences.	It	is
the	analysis	of	circulating	or	turbulent	fluids.	If	we	watch	the	evolution	of	a	star,
there	comes	a	point	where	we	can	deduce	that	it	is	going	to	start	convection,	and
thereafter	we	 can	 no	 longer	 deduce	what	 should	 happen.	A	 few	million	 years
later	the	star	explodes,	but	we	cannot	figure	out	the	reason.	We	cannot	analyze
the	weather.	We	do	not	know	the	patterns	of	motions	that	there	should	be	inside
the	earth.	The	simplest	form	of	the	problem	is	to	take	a	pipe	that	is	very	long	and
push	water	 through	 it	 at	high	speed.	We	ask:	 to	push	a	given	amount	of	water
through	 that	 pipe,	 how	much	 pressure	 is	 needed?	No	 one	 can	 analyze	 it	 from
first	principles	and	the	properties	of	water.	If	the	water	flows	very	slowly,	or	if
we	use	a	thick	goo	like	honey,	then	we	can	do	it	nicely.	You	will	find	that	in	your
textbook.	 What	 we	 really	 cannot	 do	 is	 deal	 with	 actual,	 wet	 water	 running
through	a	pipe.	That	 is	 the	central	problem	which	we	ought	 to	 solve	someday,
and	we	have	not.
A	poet	once	said,	“The	whole	universe	is	in	a	glass	of	wine.”	We	will	probably

never	know	in	what	sense	he	meant	that,	for	poets	do	not	write	to	be	understood.



But	it	is	true	that	if	we	look	at	a	glass	of	wine	closely	enough	we	see	the	entire
universe.	There	are	 the	 things	of	physics:	 the	 twisting	 liquid	which	evaporates
depending	 on	 the	 wind	 and	 weather,	 the	 reflections	 in	 the	 glass,	 and	 our
imagination	adds	the	atoms.	The	glass	is	a	distillation	of	the	earth’s	rocks,	and	in
its	 composition	we	 see	 the	 secrets	 of	 the	 universe’s	 age,	 and	 the	 evolution	 of
stars.	What	strange	array	of	chemicals	are	 in	 the	wine?	How	did	 they	come	 to
be?	There	are	the	ferments,	the	enzymes,	the	substrates,	and	the	products.	There
in	wine	 is	 found	 the	 great	 generalization:	 all	 life	 is	 fermentation.	Nobody	 can
discover	 the	 chemistry	 of	wine	without	 discovering,	 as	 did	 Louis	 Pasteur,	 the
cause	 of	much	 disease.	How	vivid	 is	 the	 claret,	 pressing	 its	 existence	 into	 the
consciousness	that	watches	it!	If	our	small	minds,	for	some	convenience,	divide
this	 glass	 of	 wine,	 this	 universe,	 into	 parts—physics,	 biology,	 geology,
astronomy,	psychology,	and	so	on—remember	that	nature	does	not	know	it!	So
let	us	put	it	all	back	together,	not	forgetting	ultimately	what	it	is	for.	Let	it	give
us	one	more	final	pleasure:	drink	it	and	forget	it	all!





4

CONSERVATION	OF	ENERGY

What	is	energy?

	In	this	chapter,	we	begin	our	more	detailed	study	of	the	different	aspects	of
physics,	 having	 finished	 our	 description	 of	 things	 in	 general.	 To	 illustrate	 the
ideas	 and	 the	 kind	 of	 reasoning	 that	might	 be	 used	 in	 theoretical	 physics,	 we
shall	 now	examine	one	of	 the	most	 basic	 laws	of	 physics,	 the	 conservation	of
energy.
There	is	a	fact,	or	if	you	wish,	a	law,	governing	all	natural	phenomena	that	are

known	to	date.	There	is	no	known	exception	to	this	law—it	is	exact	so	far	as	we
know.	The	law	is	called	the	conservation	of	energy.	It	states	that	there	is	a	certain
quantity,	which	we	 call	 energy,	 that	 does	 not	 change	 in	 the	manifold	 changes
which	 nature	 undergoes.	 That	 is	 a	 most	 abstract	 idea,	 because	 it	 is	 a
mathematical	principle;	it	says	that	there	is	a	numerical	quantity	which	does	not
change	 when	 something	 happens.	 It	 is	 not	 a	 description	 of	 a	 mechanism,	 or
anything	concrete;	it	is	just	a	strange	fact	that	we	can	calculate	some	number	and
when	we	finish	watching	nature	go	through	her	tricks	and	calculate	the	number
again,	 it	 is	 the	 same.	 (Something	 like	 the	 bishop	 on	 a	 red	 square,	 and	 after	 a
number	of	moves—details	unknown—it	is	still	on	some	red	square.	It	is	a	law	of
this	nature.)	Since	it	is	an	abstract	idea,	we	shall	illustrate	the	meaning	of	it	by	an
analogy.
Imagine	 a	 child,	 perhaps	 “Dennis	 the	Menace,”	 who	 has	 blocks	 which	 are

absolutely	indestructible,	and	cannot	be	divided	into	pieces.	Each	is	the	same	as
the	other.	Let	us	suppose	that	he	has	28	blocks.	His	mother	puts	him	with	his	28
blocks	 into	 a	 room	 at	 the	 beginning	 of	 the	 day.	 At	 the	 end	 of	 the	 day,	 being
curious,	she	counts	the	blocks	very	carefully,	and	discovers	a	phenomenal	law—
no	matter	what	 he	 does	with	 the	 blocks,	 there	 are	 always	 28	 remaining!	 This
continues	 for	 a	 number	 of	 days,	 until	 one	 day	 there	 are	 only	 27	 blocks,	 but	 a
little	 investigating	 shows	 that	 there	 is	 one	 under	 the	 rug—she	 must	 look
everywhere	 to	 be	 sure	 that	 the	 number	 of	 blocks	 has	 not	 changed.	 One	 day,



however,	 the	 number	 appears	 to	 change—there	 are	 only	 26	 blocks.	 Careful
investigation	indicates	that	the	window	was	open,	and	upon	looking	outside,	the
other	two	blocks	are	found.	Another	day,	careful	count	indicates	that	there	are	30
blocks!	 This	 causes	 considerable	 consternation,	 until	 it	 is	 realized	 that	 Bruce
came	to	visit,	bringing	his	blocks	with	him,	and	he	left	a	few	at	Dennis’s	house.
After	she	has	disposed	of	 the	extra	blocks,	she	closes	 the	window,	does	not	 let
Bruce	in,	and	then	everything	is	going	along	all	right,	until	one	time	she	counts
and	finds	only	25	blocks.	However,	there	is	a	box	in	the	room,	a	toy	box,	and	the
mother	 goes	 to	 open	 the	 toy	 box,	 but	 the	 boy	 says,	 “No,	 do	 not	 open	my	 toy
box,”	and	screams.	Mother	is	not	allowed	to	open	the	toy	box.	Being	extremely
curious,	and	somewhat	ingenious,	she	invents	a	scheme!	She	knows	that	a	block
weighs	three	ounces,	so	she	weighs	the	box	at	a	time	when	she	sees	28	blocks,
and	it	weighs	16	ounces.	The	next	time	she	wishes	to	check,	she	weighs	the	box
again,	subtracts	16	ounces,	and	divides	by	3.	She	discovers	the	following:

(4.1)
There	then	appear	to	be	some	new	deviations,	but	careful	study	indicates	that

the	dirty	water	in	the	bathtub	is	changing	its	level.	The	child	is	throwing	blocks
into	the	water,	and	she	cannot	see	them	because	it	is	so	dirty,	but	she	can	find	out
how	many	blocks	are	in	the	water	by	adding	another	term	to	her	formula.	Since
the	original	height	of	 the	water	was	6	inches	and	each	block	raises	the	water	a
quarter	of	an	inch,	this	new	formula	would	be:

(4.2)
In	 the	 gradual	 increase	 in	 the	 complexity	 of	 her	 world,	 she	 finds	 a	 whole

series	of	terms	representing	ways	of	calculating	how	many	blocks	are	in	places
where	 she	 is	 not	 allowed	 to	 look.	As	 a	 result,	 she	 finds	 a	 complex	 formula,	 a
quantity	which	has	to	be	computed,	which	always	stays	the	same	in	her	situation.



What	 is	 the	 analogy	 of	 this	 to	 the	 conservation	 of	 energy?	 The	 most
remarkable	aspect	that	must	be	abstracted	from	this	picture	is	 that	 there	are	no
blocks.	 Take	 away	 the	 first	 terms	 in	 (4.1)	 and	 (4.2)	 and	 we	 find	 ourselves
calculating	more	or	 less	abstract	 things.	The	analogy	has	 the	 following	points:
First,	 when	 we	 are	 calculating	 the	 energy,	 sometimes	 some	 of	 it	 leaves	 the
system	 and	 goes	 away,	 or	 sometimes	 some	 comes	 in.	 In	 order	 to	 verify	 the
conservation	of	energy,	we	must	be	careful	that	we	have	not	put	any	in	or	taken
any	out.	Second,	the	energy	has	a	large	number	of	different	forms,	and	there	is	a
formula	for	each	one.	These	are	gravitational	energy,	kinetic	energy,	heat	energy,
elastic	energy,	electrical	energy,	chemical	energy,	radiant	energy,	nuclear	energy,
mass	energy.	If	we	total	up	the	formulas	for	each	of	these	contributions,	 it	will
not	change	except	for	energy	going	in	and	out.
It	is	important	to	realize	that	in	physics	today,	we	have	no	knowledge	of	what

energy	is.	We	do	not	have	a	picture	that	energy	comes	in	little	blobs	of	a	definite
amount.	 It	 is	 not	 that	 way.	 However,	 there	 are	 formulas	 for	 calculating	 some
numerical	quantity,	 and	when	we	add	 it	 all	 together	 it	 gives	 “28”—always	 the
same	number.	It	is	an	abstract	thing	in	that	it	does	not	tell	us	the	mechanism	or
the	reasons	for	the	various	formulas.

Gravitational	potential	energy

Conservation	of	energy	can	be	understood	only	if	we	have	the	formula	for	all	of
its	forms.	I	wish	to	discuss	the	formula	for	gravitational	energy	near	the	surface
of	the	earth,	and	I	wish	to	derive	this	formula	in	a	way	which	has	nothing	to	do
with	history	but	is	simply	a	line	of	reasoning	invented	for	this	particular	lecture
to	give	you	an	 illustration	of	 the	remarkable	fact	 that	a	great	deal	about	nature
can	be	extracted	from	a	few	facts	and	close	reasoning.	It	is	an	illustration	of	the
kind	 of	work	 theoretical	 physicists	 become	 involved	 in.	 It	 is	 patterned	 after	 a
most	excellent	argument	by	Mr.	Carnot	on	the	efficiency	of	steam	engines.4
Consider	 weight-lifting	 machines—machines	 which	 have	 the	 property	 that

they	 lift	 one	weight	 by	 lowering	 another.	 Let	 us	 also	make	 a	 hypothesis:	 that
there	 is	no	 such	 thing	as	perpetual	motion	with	 these	weight-lifting	machines.
(In	fact,	that	there	is	no	perpetual	motion	at	all	is	a	general	statement	of	the	law
of	conservation	of	energy.)	We	must	be	careful	to	define	perpetual	motion.	First,
let	us	do	it	for	weight-lifting	machines.	If,	when	we	have	lifted	and	lowered	a	lot



of	weights	and	 restored	 the	machine	 to	 the	original	condition,	we	 find	 that	 the
net	 result	 is	 to	have	 lifted	a	weight,	 then	we	have	 a	perpetual	motion	machine
because	we	can	use	that	lifted	weight	to	run	something	else.	That	is,	provided	the
machine	which	lifted	the	weight	is	brought	back	to	its	exact	original	condition,
and	furthermore	that	it	is	completely	self-contained—that	it	has	not	received	the
energy	to	lift	that	weight	from	some	external	source—like	Bruce’s	blocks.
A	very	simple	weight-lifting	machine	is	shown	in	Fig.	4-1.	This	machine	lifts

weights	three	units	“strong.”	We	place	three	units	on	one	balance	pan,	and	one
unit	on	the	other.	However,	in	order	to	get	it	actually	to	work,	we	must	lift	a	little
weight	 off	 the	 left	 pan.	On	 the	other	 hand,	we	 could	 lift	 a	 one-unit	weight	 by
lowering	the	three-unit	weight,	if	we	cheat	a	little	by	lifting	a	little	weight	off	the
other	pan.	Of	course,	we	realize	 that	with	any	actual	 lifting	machine,	we	must
add	a	little	extra	to	get	it	to	run.	This	we	disregard,	temporarily.	Ideal	machines,
although	 they	 do	 not	 exist,	 do	 not	 require	 anything	 extra.	 A	machine	 that	 we
actually	use	can	be,	in	a	sense,	almost	reversible:	that	is,	if	it	will	lift	the	weight
of	 three	by	lowering	a	weight	of	one,	 then	it	will	also	 lift	nearly	 the	weight	of
one	the	same	amount	by	lowering	the	weight	of	three.

Figure	4-1	Simple	weight-lifting	machine.

We	 imagine	 that	 there	 are	 two	 classes	 of	 machines,	 those	 that	 are	 not
reversible,	which	includes	all	real	machines,	and	those	that	are	reversible,	which
of	 course	 are	 actually	 not	 attainable	 no	matter	 how	 careful	we	may	 be	 in	 our
design	of	bearings,	levers,	etc.	We	suppose,	however,	that	there	is	such	a	thing—
a	 reversible	machine—which	 lowers	one	unit	 of	weight	 (a	pound	or	 any	other
unit)	by	one	unit	of	distance,	and	at	the	same	time	lifts	a	three-unit	weight.	Call
this	 reversible	machine	Machine	A.	Suppose	 this	particular	 reversible	machine
lifts	the	three-unit	weight	a	distance	X.	Then	suppose	we	have	another	machine,
Machine	B,	which	is	not	necessarily	reversible,	which	also	lowers	a	unit	weight
a	unit	distance,	but	which	lifts	three	units	a	distance	Y.	We	can	now	prove	that	Y
is	not	higher	 than	X;	 that	 is,	 it	 is	 impossible	 to	build	a	machine	 that	will	 lift	a
weight	any	higher	than	it	will	be	lifted	by	a	reversible	machine.	Let	us	see	why.



Let	us	suppose	that	Y	was	higher	than	X.	We	take	a	one-unit	weight	and	lower	it
one	unit	height	with	Machine	B,	and	that	lifts	the	three-unit	weight	up	a	distance
Y.	Then	we	could	lower	the	weight	from	Y	to	X,	obtaining	free	power,	and	use	the
reversible	 Machine	 A,	 running	 backwards,	 to	 lower	 the	 three-unit	 weight	 a
distance	X	and	lift	the	one-unit	weight	by	one	unit	height.	This	will	put	the	one-
unit	weight	back	where	it	was	before,	and	leave	both	machines	ready	to	be	used
again!	We	would	therefore	have	perpetual	motion	if	Y	were	higher	than	X,	which
we	assumed	was	impossible.	With	those	assumptions,	we	thus	deduce	that	Y	is
not	higher	 than	X,	 so	 that	of	 all	machines	 that	 can	be	designed,	 the	 reversible
machine	is	the	best.
We	 can	 also	 see	 that	 all	 reversible	 machines	 must	 lift	 to	 exactly	 the	 same

height.	 Suppose	 that	 B	was	 really	 reversible	 also.	 The	 argument	 that	Y	 is	 not
higher	than	X	is,	of	course,	just	as	good	as	it	was	before,	but	we	can	also	make
our	 argument	 the	 other	way	 around,	 using	 the	machines	 in	 the	 opposite	 order,
and	 prove	 that	 X	 is	 not	 higher	 than	 Y.	 This,	 then,	 is	 a	 very	 remarkable
observation	 because	 it	 permits	 us	 to	 analyze	 the	 height	 to	 which	 different
machines	are	going	to	lift	something	without	looking	at	the	interior	mechanism.
We	 know	 at	 once	 that	 if	 somebody	 makes	 an	 enormously	 elaborate	 series	 of
levers	 that	 lift	 three	 units	 a	 certain	 distance	 by	 lowering	 one	 unit	 by	 one	 unit
distance,	and	we	compare	it	with	a	simple	lever	which	does	the	same	thing	and	is
fundamentally	reversible,	his	machine	will	lift	it	no	higher,	but	perhaps	less	high.
If	 his	 machine	 is	 reversible,	 we	 also	 know	 exactly	 how	 high	 it	 will	 lift.	 To
summarize:	 every	 reversible	machine,	 no	matter	 how	 it	 operates,	which	 drops
one	 pound	 one	 foot	 and	 lifts	 a	 three-pound	 weight	 always	 lifts	 it	 the	 same
distance,	X.	This	is	clearly	a	universal	law	of	great	utility.	The	next	question	is,
of	course,	what	is	X?
Suppose	we	have	a	reversible	machine	which	is	going	to	lift	 this	distance	X,

three	for	one.	We	set	up	three	balls	in	a	rack	which	does	not	move,	as	shown	in
Fig.	4-2.	One	ball	is	held	on	a	stage	at	a	distance	one	foot	above	the	ground.	The
machine	 can	 lift	 three	 balls,	 lowering	 one	 by	 a	 distance	 1.	 Now,	 we	 have
arranged	that	 the	platform	which	holds	 three	balls	has	a	floor	and	two	shelves,
exactly	spaced	at	distance	X,	and	further,	 that	 the	rack	which	holds	 the	balls	 is
spaced	at	distance	X,	(a).	First	we	roll	the	balls	horizontally	from	the	rack	to	the
shelves,	(b),	and	we	suppose	that	this	takes	no	energy	because	we	do	not	change
the	height.	The	reversible	machine	then	operates:	it	lowers	the	single	ball	to	the
floor,	and	it	 lifts	 the	rack	a	distance	X,	 (c).	Now	we	have	ingeniously	arranged
the	rack	so	that	these	balls	are	again	even	with	the	platforms.	Thus	we	unload	the



balls	onto	the	rack,	(d);	having	unloaded	the	balls,	we	can	restore	the	machine	to
its	original	condition.	Now	we	have	 three	balls	on	 the	upper	 three	shelves	and
one	at	the	bottom.	But	the	strange	thing	is	that,	in	a	certain	way	of	speaking,	we
have	not	lifted	two	of	them	at	all	because,	after	all,	there	were	balls	on	shelves	2
and	3	before.	The	resulting	effect	has	been	to	lift	one	ball	a	distance	3X.	Now,	if
3X	 exceeds	 one	 foot,	 then	we	 can	 lower	 the	 ball	 to	 return	 the	machine	 to	 the
initial	 condition,	 (f),	 and	we	can	 run	 the	apparatus	again.	Therefore	3X	cannot
exceed	 one	 foot,	 for	 if	 3X	 exceeds	 one	 foot	 we	 can	 make	 perpetual	 motion.
Likewise,	we	can	prove	 that	one	 foot	 cannot	 exceed	3X,	 by	making	 the	whole
machine	run	the	opposite	way,	since	it	is	a	reversible	machine.	Therefore	3X	 is
neither	greater	nor	 less	 than	a	 foot,	 and	we	discover	 then,	by	argument	alone,
the	 law	 that	X	 =	⅓	 foot.	The	generalization	 is	 clear:	 one	pound	 falls	 a	 certain
distance	 in	operating	a	 reversible	machine;	 then	 the	machine	can	 lift	p	 pounds
this	distance	divided	by	p.	Another	way	of	putting	the	result	is	that	three	pounds
times	the	height	lifted,	which	in	our	problem	was	X,	is	equal	to	one	pound	times
the	distance	 lowered,	which	 is	one	 foot	 in	 this	case.	 If	we	 take	all	 the	weights
and	multiply	them	by	the	heights	at	which	they	are	now,	above	the	floor,	let	the
machine	operate,	and	then	multiply	all	the	weights	by	all	the	heights	again,	there
will	be	no	change.	 (We	have	 to	generalize	 the	example	where	we	moved	only
one	weight	to	the	case	where	when	we	lower	one,	we	lift	several	different	ones
—but	that	is	easy.)



Figure	4-2	A	reversible	machine.

We	 call	 the	 sum	 of	 the	 weights	 times	 the	 heights	 gravitational	 potential
energy—the	 energy	 which	 an	 object	 has	 because	 of	 its	 relationship	 in	 space,
relative	to	the	earth.	The	formula	for	gravitational	energy,	then,	so	long	as	we	are
not	too	far	from	the	earth	(the	force	weakens	as	we	go	higher)	is

(4.3)
It	is	a	very	beautiful	line	of	reasoning.	The	only	problem	is	that	perhaps	it	is

not	 true.	 (After	 all,	 nature	does	not	have	 to	 go	 along	with	 our	 reasoning.)	 For
example,	perhaps	perpetual	motion	is,	in	fact,	possible.	Some	of	the	assumptions
may	 be	wrong,	 or	we	may	 have	made	 a	mistake	 in	 reasoning,	 so	 it	 is	 always
necessary	to	check.	It	turns	out	experimentally,	in	fact,	to	be	true.
The	 general	 name	 of	 energy	 which	 has	 to	 do	 with	 location	 relative	 to

something	else	 is	 called	potential	 energy.	 In	 this	particular	case,	of	course,	we
call	it	gravitational	potential	energy.	If	it	is	a	question	of	electrical	forces	against
which	we	are	working,	instead	of	gravitational	forces,	if	we	are	“lifting”	charges
away	from	other	charges	with	a	 lot	of	 levers,	 then	 the	energy	content	 is	called
electrical	potential	energy.	The	general	principle	is	that	the	change	in	the	energy
is	the	force	times	the	distance	that	the	force	is	pushed,	and	that	this	is	a	change	in
energy	in	general:

(4.4)
We	will	return	to	many	of	these	other	kinds	of	energy	as	we	continue	the	course.
The	principle	of	the	conservation	of	energy	is	very	useful	for	deducing	what

will	 happen	 in	 a	 number	 of	 circumstances.	 In	 high	 school	we	 learned	 a	 lot	 of
laws	about	pulleys	and	levers	used	in	different	ways.	We	can	now	see	that	these
“laws”	are	all	the	same	thing,	and	that	we	did	not	have	to	memorize	75	rules	to
figure	 it	out.	A	simple	example	 is	a	smooth	 inclined	plane	which	 is,	happily,	a



three-four-five	triangle	(Fig.	4-3).	We	hang	a	one-pound	weight	on	the	inclined
plane	with	a	pulley,	and	on	the	other	side	of	the	pulley,	a	weight	W.	We	want	to
know	how	heavy	W	must	be	to	balance	the	one	pound	on	the	plane.	How	can	we
figure	that	out?	If	we	say	it	is	just	balanced,	it	is	reversible	and	so	can	move	up
and	 down,	 and	 we	 can	 consider	 the	 following	 situation.	 In	 the	 initial
circumstance,	(a),	the	one-pound	weight	is	at	the	bottom	and	weight	W	is	at	the
top.	When	W	has	slipped	down	in	a	reversible	way,	we	have	a	one-pound	weight
at	the	top	and	the	weight	W	the	slant	distance,	(b),	or	five	feet,	from	the	plane	in
which	 it	 was	 before.	We	 lifted	 the	 one-pound	 weight	 only	 three	 feet	 and	 we
lowered	W	pounds	by	five	feet.

Figure	4-3	Inclined	plane.

Therefore	 W	 =	 ⅗	 of	 a	 pound.	 Note	 that	 we	 deduced	 this	 from	 the
conservation	of	energy,	and	not	from	force	components.	Cleverness,	however,	is
relative.	It	can	be	deduced	in	a	way	which	is	even	more	brilliant,	discovered	by
Stevinus	and	inscribed	on	his	tombstone.	Figure	4-4	explains	that	it	has	to	be	⅗
of	a	pound,	because	the	chain	does	not	go	around.	It	is	evident	that	the	lower	part
of	the	chain	is	balanced	by	itself,	so	that	the	pull	of	the	five	weights	on	one	side
must	balance	the	pull	of	three	weights	on	the	other,	or	whatever	the	ratio	of	the
legs.	You	see,	by	looking	at	this	diagram,	that	W	must	be	⅗	of	a	pound.	(If	you
get	an	epitaph	like	that	on	your	gravestone,	you	are	doing	fine.)
Let	us	now	illustrate	 the	energy	principle	with	a	more	complicated	problem,

the	 screw	 jack	 shown	 in	Fig.	4-5.	A	handle	 20	 inches	 long	 is	 used	 to	 turn	 the
screw,	which	has	10	threads	to	the	inch.	We	would	like	to	know	how	much	force
would	be	needed	at	 the	handle	to	lift	one	ton	(2000	pounds).	If	we	want	to	lift
the	ton	1	inch,	say,	then	we	must	turn	the	handle	around	ten	times.	When	it	goes
around	once	it	goes	approximately	126	inches.	The	handle	must	thus	travel	1260
inches,	and	if	we	used	various	pulleys,	etc.,	we	would	be	lifting	our	one	ton	with
an	unknown	smaller	weight	W	applied	to	the	end	of	the	handle.	So	we	find	out
that	W	is	about	1.6	pounds.	This	is	a	result	of	the	conservation	of	energy.



Figure	4-4	The	epitaph	of	Stevinus.

Figure	4-5	A	screw	jack.

Take	now	the	somewhat	more	complicated	example	shown	in	Fig.	4-6.	A	rod
or	bar,	8	feet	long,	is	supported	at	one	end.	In	the	middle	of	the	bar	is	a	weight	of
60	pounds,	and	at	a	distance	of	two	feet	from	the	support	there	is	a	weight	of	100
pounds.	 How	 hard	 do	 we	 have	 to	 lift	 the	 end	 of	 the	 bar	 in	 order	 to	 keep	 it
balanced,	disregarding	the	weight	of	the	bar?	Suppose	we	put	a	pulley	at	one	end
and	 hang	 a	weight	 on	 the	 pulley.	How	big	would	 the	weight	W	 have	 to	 be	 in
order	for	it	to	balance?	We	imagine	that	the	weight	falls	any	arbitrary	distance—
to	make	it	easy	for	ourselves	suppose	it	goes	down	4	inches—how	high	would
the	two	load	weights	rise?	The	center	rises	2	inches,	and	the	point	a	quarter	of
the	way	from	the	fixed	end	lifts	1	inch.	Therefore,	the	principle	that	the	sum	of
the	heights	times	the	weights	does	not	change	tells	us	that	the	weight	W	times	4
inches	down,	plus	60	pounds	times	2	inches	up,	plus	100	pounds	times	1	inch,
has	to	add	up	to	nothing:



(4.5)
Thus	we	must	have	a	55-pound	weight	 to	balance	 the	bar.	 In	 this	way	we	can
work	out	the	laws	of	“balance”—the	statics	of	complicated	bridge	arrangements,
and	so	on.	This	approach	is	called	the	principle	of	virtual	work,	because	in	order
to	apply	this	argument	we	had	to	imagine	that	the	structure	moves	a	little—even
though	it	is	not	really	moving	or	even	movable.	We	use	the	very	small	imagined
motion	to	apply	the	principle	of	conservation	of	energy.

Figure	4-6	Weighted	rod	supported	on	one	end.

Kinetic	energy

To	 illustrate	 another	 type	 of	 energy	we	 consider	 a	 pendulum	 (Fig.	 4-7).	 If	we
pull	the	mass	aside	and	release	it,	it	swings	back	and	forth.	In	its	motion,	it	loses
height	 in	going	 from	either	end	 to	 the	center.	Where	does	 the	potential	 energy
go?	Gravitational	energy	disappears	when	it	is	down	at	the	bottom;	nevertheless,
it	 will	 climb	 up	 again.	 The	 gravitational	 energy	 must	 have	 gone	 into	 another
form.	Evidently	it	is	by	virtue	of	its	motion	that	it	is	able	to	climb	up	again,	so
we	 have	 the	 conversion	 of	 gravitational	 energy	 into	 some	 other	 form	when	 it
reaches	the	bottom.
We	must	get	a	formula	for	the	energy	of	motion.	Now,	recalling	our	arguments

about	 reversible	machines,	we	 can	 easily	 see	 that	 in	 the	motion	 at	 the	 bottom
must	be	a	quantity	of	energy	which	permits	it	to	rise	a	certain	height,	and	which
has	nothing	to	do	with	the	machinery	by	which	it	comes	up	or	the	path	by	which
it	 comes	 up.	 So	 we	 have	 an	 equivalence	 formula	 something	 like	 the	 one	 we
wrote	for	the	child’s	blocks.	We	have	another	form	to	represent	the	energy.	It	is
easy	to	say	what	it	is.	The	kinetic	energy	at	the	bottom	equals	the	weight	times
the	height	 that	 it	could	go,	corresponding	to	 its	velocity:	K.E.	=	WH.	What	we



need	is	the	formula	which	tells	us	the	height	by	some	rule	that	has	to	do	with	the
motion	of	objects.	If	we	start	something	out	with	a	certain	velocity,	say,	straight
up,	it	will	reach	a	certain	height;	we	do	not	know	what	it	is	yet,	but	it	depends	on
the	 velocity—there	 is	 a	 formula	 for	 that.	 Then	 to	 find	 the	 formula	 for	 kinetic
energy	for	an	object	moving	with	velocity	V,	we	must	calculate	the	height	that	it
could	reach,	and	multiply	by	the	weight.	We	shall	soon	find	that	we	can	write	it
this	way:

Figure	4-7	Pendulum.

(4.6)
Of	course,	the	fact	that	motion	has	energy	has	nothing	to	do	with	the	fact	that	we
are	in	a	gravitational	field.	It	makes	no	difference	where	the	motion	came	from.
This	 is	 a	 general	 formula	 for	 various	 velocities.	 Both	 (4.3)	 and	 (4.6)	 are
approximate	formulas,	the	first	because	it	is	incorrect	when	the	heights	are	great,
i.e.,	when	the	heights	are	so	high	that	gravity	is	weakening;	the	second,	because
of	the	relativistic	correction	at	high	speeds.	However,	when	we	do	finally	get	the
exact	formula	for	the	energy,	then	the	law	of	conservation	of	energy	is	correct.

Other	forms	or	energy

We	can	continue	in	this	way	to	illustrate	the	existence	of	energy	in	other	forms.
First,	 consider	 elastic	 energy.	 If	we	 pull	 down	 on	 a	 spring,	we	must	 do	 some
work,	 for	when	we	have	 it	 down,	we	 can	 lift	weights	with	 it.	Therefore	 in	 its



stretched	 condition	 it	 has	 a	 possibility	 of	 doing	 some	 work.	 If	 we	 were	 to
evaluate	 the	 sums	of	weights	 times	 heights,	 it	would	 not	 check	 out—we	must
add	something	else	to	account	for	the	fact	that	the	spring	is	under	tension.	Elastic
energy	is	the	formula	for	a	spring	when	it	is	stretched.	How	much	energy	is	it?	If
we	let	go,	the	elastic	energy,	as	the	spring	passes	through	the	equilibrium	point,
is	converted	to	kinetic	energy	and	it	goes	back	and	forth	between	compressing	or
stretching	 the	 spring	 and	 kinetic	 energy	 of	 motion.	 (There	 is	 also	 some
gravitational	energy	going	in	and	out,	but	we	can	do	this	experiment	“sideways”
if	we	 like.)	 It	keeps	going	until	 the	 losses—Aha!	We	have	cheated	all	 the	way
through	by	putting	on	little	weights	to	move	things	or	saying	that	the	machines
are	 reversible,	 or	 that	 they	 go	 on	 forever,	 but	we	 can	 see	 that	 things	 do	 stop,
eventually.	Where	 is	 the	 energy	 when	 the	 spring	 has	 finished	moving	 up	 and
down?	This	brings	in	another	form	of	energy:	heat	energy.
Inside	 a	 spring	 or	 a	 lever	 there	 are	 crystals	 which	 are	 made	 up	 of	 lots	 of

atoms,	and	with	great	care	and	delicacy	in	the	arrangement	of	the	parts	one	can
try	 to	 adjust	 things	 so	 that	 as	 something	 rolls	 on	 something	 else,	 none	 of	 the
atoms	 do	 any	 jiggling	 at	 all.	 But	 one	 must	 be	 very	 careful.	 Ordinarily	 when
things	 roll,	 there	 is	 bumping	 and	 jiggling	 because	 of	 the	 irregularities	 of	 the
material,	and	the	atoms	start	to	wiggle	inside.	So	we	lose	track	of	that	energy;	we
find	 the	atoms	are	wiggling	 inside	 in	a	 random	and	confused	manner	after	 the
motion	slows	down.	There	is	still	kinetic	energy,	all	right,	but	it	is	not	associated
with	 visible	 motion.	 What	 a	 dream!	 How	 do	 we	 know	 there	 is	 still	 kinetic
energy?	 It	 turns	 out	 that	with	 thermometers	 you	 can	 find	 out	 that,	 in	 fact,	 the
spring	 or	 the	 lever	 is	warmer,	 and	 that	 there	 is	 really	 an	 increase	 of	 kinetic
energy	by	 a	 definite	 amount.	We	 call	 this	 form	of	 energy	heat	energy,	 but	we
know	that	it	is	not	really	a	new	form,	it	is	just	kinetic	energy—internal	motion.
(One	of	 the	difficulties	with	all	 these	experiments	with	matter	 that	we	do	on	a
large	scale	is	 that	we	cannot	really	demonstrate	the	conservation	of	energy	and
we	cannot	really	make	our	reversible	machines,	because	every	time	we	move	a
large	clump	of	stuff,	 the	atoms	do	not	 remain	absolutely	undisturbed,	and	so	a
certain	amount	of	random	motion	goes	into	the	atomic	system.	We	cannot	see	it,
but	we	can	measure	it	with	thermometers,	etc.)
There	are	many	other	forms	of	energy,	and	of	course	we	cannot	describe	them

in	 any	more	 detail	 just	 now.	 There	 is	 electrical	 energy,	 which	 has	 to	 do	with
pushing	and	pulling	by	electric	 charges.	There	 is	 radiant	 energy,	 the	energy	of
light,	 which	 we	 know	 is	 a	 form	 of	 electrical	 energy	 because	 light	 can	 be
represented	as	wigglings	in	the	electromagnetic	field.	There	is	chemical	energy,



the	energy	which	is	released	in	chemical	reactions.	Actually,	elastic	energy	is,	to
a	certain	extent,	like	chemical	energy,	because	chemical	energy	is	the	energy	of
the	 attraction	 of	 the	 atoms,	 one	 for	 the	 other,	 and	 so	 is	 elastic	 energy.	 Our
modern	understanding	 is	 the	 following:	 chemical	 energy	has	 two	parts,	kinetic
energy	of	 the	 electrons	 inside	 the	 atoms,	 so	 part	 of	 it	 is	 kinetic,	 and	 electrical
energy	of	interaction	of	the	electrons	and	the	protons—the	rest	of	it,	therefore,	is
electrical.	Next	we	come	 to	nuclear	 energy,	 the	energy	which	 is	 involved	with
the	arrangement	of	particles	 inside	 the	nucleus,	and	we	have	formulas	for	 that,
but	we	do	not	have	the	fundamental	laws.	We	know	that	it	is	not	electrical,	not
gravitational,	and	not	purely	chemical,	but	we	do	not	know	what	it	is.	It	seems	to
be	 an	 additional	 form	 of	 energy.	 Finally,	 associated	with	 the	 relativity	 theory,
there	is	a	modification	of	the	laws	of	kinetic	energy,	or	whatever	you	wish	to	call
it,	so	that	kinetic	energy	is	combined	with	another	thing	called	mass	energy.	An
object	has	energy	from	its	sheer	existence.	 If	I	have	a	positron	and	an	electron,
standing	 still	 doing	 nothing—never	 mind	 gravity,	 never	 mind	 anything—and
they	come	together	and	disappear,	radiant	energy	will	be	liberated,	in	a	definite
amount,	and	the	amount	can	be	calculated.	All	we	need	know	is	the	mass	of	the
object.	It	does	not	depend	on	what	it	is—we	make	two	things	disappear,	and	we
get	a	certain	amount	of	energy.	The	formula	was	first	found	by	Einstein;	it	is	E	=
mc2.
It	 is	 obvious	 from	 our	 discussion	 that	 the	 law	 of	 conservation	 of	 energy	 is

enormously	useful	in	making	analyses,	as	we	have	illustrated	in	a	few	examples
without	 knowing	 all	 the	 formulas.	 If	 we	 had	 all	 the	 formulas	 for	 all	 kinds	 of
energy,	we	could	analyze	how	many	processes	should	work	without	having	to	go
into	 the	details.	Therefore	conservation	 laws	are	very	 interesting.	The	question
naturally	arises	as	to	what	other	conservation	laws	there	are	in	physics.	There	are
two	other	conservation	laws	which	are	analogous	to	the	conservation	of	energy.
One	 is	 called	 the	 conservation	 of	 linear	 momentum.	 The	 other	 is	 called	 the
conservation	of	angular	momentum.	We	will	find	out	more	about	these	later.	In
the	last	analysis,	we	do	not	understand	the	conservation	laws	deeply.	We	do	not
understand	the	conservation	of	energy.	We	do	not	understand	energy	as	a	certain
number	of	little	blobs.	You	may	have	heard	that	photons	come	out	in	blobs	and
that	the	energy	of	a	photon	is	Planck’s	constant	times	the	frequency.	That	is	true,
but	 since	 the	 frequency	of	 light	can	be	anything,	 there	 is	no	 law	 that	 says	 that
energy	has	to	be	a	certain	definite	amount.	Unlike	Dennis’s	blocks,	there	can	be
any	amount	of	energy,	at	least	as	presently	understood.	So	we	do	not	understand
this	 energy	 as	 counting	 something	 at	 the	moment,	 but	 just	 as	 a	 mathematical



quantity,	 which	 is	 an	 abstract	 and	 rather	 peculiar	 circumstance.	 In	 quantum
mechanics	it	turns	out	that	the	conservation	of	energy	is	very	closely	related	to
another	 important	property	of	 the	world,	 things	do	not	depend	on	 the	absolute
time.	We	can	set	up	an	experiment	at	a	given	moment	and	try	it	out,	and	then	do
the	same	experiment	at	a	 later	moment,	and	 it	will	behave	 in	exactly	 the	same
way.	Whether	this	is	strictly	true	or	not,	we	do	not	know.	If	we	assume	that	it	is
true,	 and	 add	 the	 principles	 of	 quantum	 mechanics,	 then	 we	 can	 deduce	 the
principle	of	the	conservation	of	energy.	It	is	a	rather	subtle	and	interesting	thing,
and	 it	 is	 not	 easy	 to	 explain.	 The	 other	 conservation	 laws	 are	 also	 linked
together.	 The	 conservation	 of	momentum	 is	 associated	 in	 quantum	mechanics
with	 the	proposition	 that	 it	makes	no	difference	where	 you	do	 the	experiment,
the	results	will	always	be	the	same.	As	independence	in	space	has	to	do	with	the
conservation	 of	 momentum,	 independence	 of	 time	 has	 to	 do	 with	 the
conservation	of	energy,	and	finally,	if	we	turn	our	apparatus,	this	too	makes	no
difference,	and	so	the	invariance	of	the	world	to	angular	orientation	is	related	to
the	 conservation	 of	 angular	 momentum.	 Besides	 these,	 there	 are	 three	 other
conservation	 laws,	 that	 are	 exact	 so	 far	 as	we	 can	 tell	 today,	which	are	much
simpler	to	understand	because	they	are	in	the	nature	of	counting	blocks.
The	first	of	the	three	is	the	conservation	of	charge,	and	that	merely	means	that

you	count	how	many	positive,	minus	how	many	negative	electrical	charges	you
have,	 and	 the	 number	 is	 never	 changed.	You	may	 get	 rid	 of	 a	 positive	with	 a
negative,	but	you	do	not	create	any	net	excess	of	positives	over	negatives.	Two
other	laws	are	analogous	to	this	one—one	is	called	the	conservation	of	baryons.
There	 are	 a	number	of	 strange	particles,	 a	 neutron	 and	 a	proton	 are	 examples,
which	are	called	baryons.	 In	any	reaction	whatever	 in	nature,	 if	we	count	how
many	baryons	are	coming	 into	a	process,	 the	number	of	baryons5	which	come
out	will	be	exactly	the	same.	There	is	another	law,	the	conservation	of	leptons.
We	can	say	that	the	group	of	particles	called	leptons	are	electron,	mu	meson,	and
neutrino.	 There	 is	 an	 antielectron	 which	 is	 a	 positron,	 that	 is,	 a—1	 lepton.
Counting	the	total	number	of	leptons	in	a	reaction	reveals	that	the	number	in	and
out	never	changes,	at	least	so	far	as	we	know	at	present.
These	are	the	six	conservation	laws,	three	of	them	subtle,	involving	space	and

time,	and	three	of	them	simple,	in	the	sense	of	counting	something.
With	 regard	 to	 the	 conservation	 of	 energy,	 we	 should	 note	 that	 available

energy	 is	 another	matter—there	 is	 a	 lot	 of	 jiggling	 around	 in	 the	 atoms	of	 the
water	of	the	sea,	because	the	sea	has	a	certain	temperature,	but	it	is	impossible	to
get	 them	herded	 into	a	definite	motion	without	 taking	energy	 from	somewhere



else.	That	 is,	although	we	know	for	a	fact	 that	energy	 is	conserved,	 the	energy
available	 for	 human	 utility	 is	 not	 conserved	 so	 easily.	The	 laws	which	 govern
how	much	energy	is	available	are	called	the	laws	of	thermodynamics	and	involve
a	concept	called	entropy	for	irreversible	thermodynamic	processes.
Finally,	we	remark	on	the	question	of	where	we	can	get	our	supplies	of	energy

today.	 Our	 supplies	 of	 energy	 are	 from	 the	 sun,	 rain,	 coal,	 uranium,	 and
hydrogen.	The	sun	makes	 the	rain,	and	the	coal	also,	so	 that	all	 these	are	from
the	sun.	Although	energy	is	conserved,	nature	does	not	seem	to	be	interested	in
it;	she	liberates	a	lot	of	energy	from	the	sun,	but	only	one	part	in	two	billion	falls
on	 the	 earth.	Nature	 has	 conservation	 of	 energy,	 but	 does	 not	 really	 care;	 she
spends	 a	 lot	 of	 it	 in	 all	 directions.	 We	 have	 already	 obtained	 energy	 from
uranium;	 we	 can	 also	 get	 energy	 from	 hydrogen,	 but	 at	 present	 only	 in	 an
explosive	 and	 dangerous	 condition.	 If	 it	 can	 be	 controlled	 in	 thermonuclear
reactions,	 it	 turns	 out	 that	 the	 energy	 that	 can	 be	 obtained	 from	 10	 quarts	 of
water	per	second	is	equal	 to	all	of	 the	electrical	power	generated	in	 the	United
States.	With	 150	 gallons	 of	 running	water	 a	minute,	 you	 have	 enough	 fuel	 to
supply	all	the	energy	which	is	used	in	the	United	States	today!	Therefore	it	is	up
to	the	physicist	to	figure	out	how	to	liberate	us	from	the	need	for	having	energy.
It	can	be	done.
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THE	THEORY	OF	GRAVITATION

Planetary	motions

	In	this	chapter	we	shall	discuss	one	of	the	most	far-reaching	generalizations
of	 the	 human	mind.	While	we	 are	 admiring	 the	 human	mind,	we	 should	 take
some	 time	 off	 to	 stand	 in	 awe	 of	 a	 nature	 that	 could	 follow	 with	 such
completeness	 and	 generality	 such	 an	 elegantly	 simple	 principle	 as	 the	 law	 of
gravitation.	What	is	this	law	of	gravitation?	It	is	that	every	object	in	the	universe
attracts	every	other	object	with	a	force	which	for	any	two	bodies	is	proportional
to	 the	mass	of	each	and	varies	 inversely	as	 the	square	of	 the	distance	between
them.	This	statement	can	be	expressed	mathematically	by	the	equation

If	to	this	we	add	the	fact	that	an	object	responds	to	a	force	by	accelerating	in	the
direction	of	the	force	by	an	amount	that	is	inversely	proportional	to	the	mass	of
the	 object,	 we	 shall	 have	 said	 everything	 required,	 for	 a	 sufficiently	 talented
mathematician	could	 then	deduce	all	 the	consequences	of	 these	 two	principles.
However,	 since	 you	 are	 not	 assumed	 to	 be	 sufficiently	 talented	 yet,	 we	 shall
discuss	the	consequences	in	more	detail,	and	not	just	leave	you	with	only	these
two	bare	principles.	We	shall	briefly	relate	the	story	of	the	discovery	of	the	law
of	 gravitation	 and	 discuss	 some	 of	 its	 consequences,	 its	 effects	 on	 history,	 the
mysteries	 that	 such	 a	 law	 entails,	 and	 some	 refinements	 of	 the	 law	 made	 by
Einstein;	we	shall	also	discuss	 the	relationships	of	 the	 law	to	 the	other	 laws	of
physics.	All	this	cannot	be	done	in	one	chapter,	but	these	subjects	will	be	treated
in	due	time	in	subsequent	chapters.
The	story	begins	with	the	ancients	observing	the	motions	of	planets	among	the

stars,	 and	 finally	 deducing	 that	 they	 went	 around	 the	 sun,	 a	 fact	 that	 was
rediscovered	later	by	Copernicus.	Exactly	how	the	planets	went	around	the	sun,
with	exactly	what	motion,	 took	a	little	more	work	to	discover.	In	the	beginning
of	the	fifteenth	century	there	were	great	debates	as	to	whether	they	really	went
around	the	sun	or	not.	Tycho	Brahe	had	an	idea	that	was	different	from	anything



proposed	by	the	ancients:	his	idea	was	that	these	debates	about	the	nature	of	the
motions	 of	 the	 planets	 would	 best	 be	 resolved	 if	 the	 actual	 positions	 of	 the
planets	in	the	sky	were	measured	sufficiently	accurately.	If	measurement	showed
exactly	how	 the	planets	moved,	 then	perhaps	 it	would	be	possible	 to	 establish
one	or	another	viewpoint.	This	was	a	 tremendous	 idea—that	 to	find	something
out,	 it	 is	 better	 to	 perform	 some	 careful	 experiments	 than	 to	 carry	 on	 deep
philosophical	arguments.	Pursuing	 this	 idea,	Tycho	Brahe	studied	 the	positions
of	 the	 planets	 for	 many	 years	 in	 his	 observatory	 on	 the	 island	 of	 Hven,	 near
Copenhagen.	 He	 made	 voluminous	 tables,	 which	 were	 then	 studied	 by	 the
mathematician	 Kepler,	 after	 Tycho’s	 death.	 Kepler	 discovered	 from	 the	 data
some	 very	 beautiful	 and	 remarkable,	 but	 simple,	 laws	 regarding	 planetary
motion.

Kepler’s	laws

First	of	all,	Kepler	found	that	each	planet	goes	around	the	sun	in	a	curve	called
an	ellipse,	with	the	sun	at	a	focus	of	the	ellipse.	An	ellipse	is	not	just	an	oval,	but
is	a	very	specific	and	precise	curve	that	can	be	obtained	by	using	two	tacks,	one
at	each	focus,	a	loop	of	string,	and	a	pencil;	more	mathematically,	it	is	the	locus
of	 all	 points	 the	 sum	of	whose	 distances	 from	 two	 fixed	 points	 (the	 foci)	 is	 a
constant.	Or,	if	you	will,	it	is	a	foreshortened	circle	(Fig.	5-1).
Kepler’s	second	observation	was	that	the	planets	do	not	go	around	the	sun	at	a

uniform	speed,	but	move	 faster	when	 they	are	nearer	 the	sun	and	more	slowly
when	 they	 are	 farther	 from	 the	 sun,	 in	precisely	 this	way:	Suppose	 a	planet	 is
observed	at	any	two	successive	times,	let	us	say	a	week	apart,	and	that	the	radius
vector6	 is	 drawn	 to	 the	 planet	 for	 each	 observed	 position.	 The	 orbital	 arc
traversed	 by	 the	 planet	 during	 the	week,	 and	 the	 two	 radius	 vectors,	 bound	 a
certain	plane	area,	the	shaded	area	shown	in	Fig.	5-2.	If	two	similar	observations
are	made	 a	week	 apart,	 at	 a	 part	 of	 the	 orbit	 farther	 from	 the	 sun	 (where	 the
planet	moves	more	slowly),	the	similarly	bounded	area	is	exactly	the	same	as	in
the	first	case.	So,	 in	accordance	with	 the	second	 law,	 the	orbital	speed	of	each
planet	is	such	that	the	radius	“sweeps	out”	equal	areas	in	equal	times.
Finally,	 a	 third	 law	 was	 discovered	 by	 Kepler	 much	 later;	 this	 law	 is	 of	 a

different	 category	 from	 the	 other	 two,	 because	 it	 deals	 not	with	 only	 a	 single
planet,	 but	 relates	 one	 planet	 to	 another.	 This	 law	 says	 that	 when	 the	 orbital



period	 and	 orbit	 size	 of	 any	 two	 planets	 are	 compared,	 the	 periods	 are
proportional	to	the	 	power	of

Figure	5-1	An	ellipse.

the	orbit	 size.	 In	 this	 statement	 the	period	 is	 the	 time	 interval	 it	 takes	a	planet
to	go	completely	around	its	orbit,	and	the	size	is	measured	by	the	length	of	the
greatest	 diameter	 of	 the	 elliptical	 orbit,	 technically	 known	 as	 the	 major	 axis.
More	simply,	if	the	planets	went	in	circles,	as	they	nearly	do,	the	time	required	to
go	around	the	circle	would	be	proportional	 to	the	 	power	of	 the	diameter	(or
radius).	Thus	Kepler’s	three	laws	are:

I.	Each	planet	moves	around	the	sun	in	an	ellipse,	with	the	sun	at	one	focus.
II.	The	radius	vector	 from	the	sun	 to	 the	planet	sweeps	out	equal	areas	 in
equal	intervals	of	time.

III.	The	 squares	 of	 the	 periods	 of	 any	 two	planets	 are	 proportional	 to	 the
cubes	of	the	semimajor	axes	of	their	respective	orbits:	T	∝	a3/2.

Figure	5-2	Kepler’s	law	of	areas.

Development	of	dynamics



While	 Kepler	 was	 discovering	 these	 laws,	 Galileo	 was	 studying	 the	 laws	 of
motion.	The	 problem	was,	what	makes	 the	 planets	 go	 around?	 (In	 those	 days,
one	of	 the	 theories	proposed	was	 that	 the	planets	went	 around	because	behind
them	were	invisible	angels,	beating	their	wings	and	driving	the	planets	forward.
You	will	see	that	this	theory	is	now	modified!	It	turns	out	that	in	order	to	keep
the	 planets	 going	 around,	 the	 invisible	 angels	must	 fly	 in	 a	 different	 direction
and	 they	 have	 no	wings.	Otherwise,	 it	 is	 a	 somewhat	 similar	 theory!)	Galileo
discovered	 a	 very	 remarkable	 fact	 about	 motion,	 which	 was	 essential	 for
understanding	 these	 laws.	 That	 is	 the	 principle	 of	 inertia—if	 something	 is
moving,	 with	 nothing	 touching	 it	 and	 completely	 undisturbed,	 it	 will	 go	 on
forever,	 coasting	 at	 a	 uniform	 speed	 in	 a	 straight	 line.	 (Why	 does	 it	 keep	 on
coasting?	We	do	not	know,	but	that	is	the	way	it	is.)
Newton	modified	this	idea,	saying	that	the	only	way	to	change	the	motion	of	a

body	 is	 to	 use	 force.	 If	 the	 body	 speeds	 up,	 a	 force	 has	 been	 applied	 in	 the
direction	 of	 motion.	 On	 the	 other	 hand,	 if	 its	 motion	 is	 changed	 to	 a	 new
direction,	a	force	has	been	applied	sideways.	Newton	thus	added	the	idea	that	a
force	 is	 needed	 to	 change	 the	 speed	or	 the	direction	 of	motion	of	 a	 body.	For
example,	 if	a	stone	 is	attached	 to	a	string	and	 is	whirling	around	 in	a	circle,	 it
takes	a	force	to	keep	it	 in	 the	circle.	We	have	to	pull	on	the	string.	In	fact,	 the
law	is	that	the	acceleration	produced	by	the	force	is	inversely	proportional	to	the
mass,	or	 the	force	is	proportional	 to	 the	mass	 times	the	acceleration.	The	more
massive	 a	 thing	 is,	 the	 stronger	 the	 force	 required	 to	 produce	 a	 given
acceleration.	(The	mass	can	be	measured	by	putting	other	stones	on	the	end	of
the	same	string	and	making	them	go	around	the	same	circle	at	the	same	speed.	In
this	way	it	is	found	that	more	or	less	force	is	required,	the	more	massive	object
requiring	more	 force.)	The	 brilliant	 idea	 resulting	 from	 these	 considerations	 is
that	no	tangential	force	is	needed	to	keep	a	planet	in	its	orbit	(the	angels	do	not
have	to	fly	tangentially)	because	the	planet	would	coast	in	that	direction	anyway.
If	there	were	nothing	at	all	to	disturb	it,	the	planet	would	go	off	in	a	straight	line.
But	the	actual	motion	deviates	from	the	line	on	which	the	body	would	have	gone
if	 there	 were	 no	 force,	 the	 deviation	 being	 essentially	 at	 right	 angles	 to	 the
motion,	 not	 in	 the	 direction	 of	 the	 motion.	 In	 other	 words,	 because	 of	 the
principle	of	inertia,	the	force	needed	to	control	the	motion	of	a	planet	around	the
sun	is	not	a	force	around	the	sun	but	toward	the	sun.	(If	there	is	a	force	toward
the	sun,	the	sun	might	be	the	angel,	of	course!)



Newton’s	law	of	gravitation

From	his	better	understanding	of	the	theory	of	motion,	Newton	appreciated	that
the	sun	could	be	the	seat	or	organization	of	forces	that	govern	the	motion	of	the
planets.	 Newton	 proved	 to	 himself	 (and	 perhaps	 we	 shall	 be	 able	 to	 prove	 it
soon)	that	the	very	fact	that	equal	areas	are	swept	out	in	equal	times	is	a	precise
signpost	of	the	proposition	that	all	deviations	are	precisely	radial—that	the	law
of	 areas	 is	 a	 direct	 consequence	 of	 the	 idea	 that	 all	 of	 the	 forces	 are	 directed
exactly	toward	the	sun.
Next,	 by	 analyzing	Kepler’s	 third	 law	 it	 is	 possible	 to	 show	 that	 the	 farther

away	the	planet,	the	weaker	the	forces.	If	two	planets	at	different	distances	from
the	 sun	 are	 compared,	 the	 analysis	 shows	 that	 the	 forces	 are	 inversely
proportional	to	the	squares	of	the	respective	distances.	With	the	combination	of
the	 two	 laws,	 Newton	 concluded	 that	 there	 must	 be	 a	 force,	 inversely	 as	 the
square	of	the	distance,	directed	in	a	line	between	the	two	objects.
Being	 a	 man	 of	 considerable	 feeling	 for	 generalities,	 Newton	 supposed,	 of

course,	that	this	relationship	applied	more	generally	than	just	to	the	sun	holding
the	planets.	It	was	already	known,	for	example,	that	the	planet	Jupiter	had	moons
going	around	it	as	the	moon	of	the	earth	goes	around	the	earth,	and	Newton	felt
certain	that	each	planet	held	its	moons	with	a	force.	He	already	knew	of	the	force
holding	 us	 on	 the	 earth,	 so	 he	 proposed	 that	 this	 was	 a	 universal	 force—that
everything	pulls	everything	else.
The	 next	 problem	 was	 whether	 the	 pull	 of	 the	 earth	 on	 its	 people	 was	 the

“same”	as	its	pull	on	the	moon,	i.e.,	inversely	as	the	square	of	the	distance.	If	an
object	 on	 the	 surface	 of	 the	 earth	 falls	 16	 feet	 in	 the	 first	 second	 after	 it	 is
released	from	rest,	how	far	does	the	moon	fall	in	the	same	time?	We	might	say
that	 the	moon	 does	 not	 fall	 at	 all.	 But	 if	 there	were	 no	 force	 on	 the	moon,	 it
would	go	off	in	a	straight	line,	whereas	it	goes	in	a	circle	instead,	so	it	really	falls
in	from	where	it	would	have	been	if	there	were	no	force	at	all.	We	can	calculate
from	the	radius	of	the	moon’s	orbit	(which	is	about	240,000	miles)	and	how	long
it	takes	to	go	around	the	earth	(approximately	29	days)	how	far	the	moon	moves
in	its	orbit	in	one	second,	and	can	then	calculate	how	far	it	falls	in	one	second.7
This	distance	 turns	out	 to	be	 roughly	 	of	an	 inch	 in	a	 second.	That	 fits	very
well	with	the	inverse	square	law,	because	the	earth’s	radius	is	4000	miles,	and	if
something	which	 is	 4000	miles	 from	 the	 center	 of	 the	 earth	 falls	 16	 feet	 in	 a
second,	something	240,000	miles,	or	60	times	as	far	away,	should	fall	only	



of	16	 feet,	which	 also	 is	 roughly	 	 of	 an	 inch.	Wishing	 to	 put	 this	 theory	 of
gravitation	to	a	test	by	similar	calculations,	Newton	made	his	calculations	very
carefully	 and	 found	 a	 discrepancy	 so	 large	 that	 he	 regarded	 the	 theory	 as
contradicted	 by	 facts,	 and	 did	 not	 publish	 his	 results.	 Six	 years	 later	 a	 new
measurement	of	the	size	of	the	earth	showed	that	the	astronomers	had	been	using
an	 incorrect	 distance	 to	 the	 moon.	When	 Newton	 heard	 of	 this,	 he	 made	 the
calculation	again,	with	the	corrected	figures,	and	obtained	beautiful	agreement.
This	idea	that	the	moon	“falls”	is	somewhat	confusing,	because,	as	you	see,	it

does	 not	 come	 any	 closer.	 The	 idea	 is	 sufficiently	 interesting	 to	merit	 further
explanation:	the	moon	falls	in	the	sense	that	it	 falls	away	from	the	straight	line
that	 it	 would	 pursue	 if	 there	 were	 no	 forces.	 Let	 us	 take	 an	 example	 on	 the
surface	of	the	earth.	An	object	released	near	the	earth’s	surface	will	fall	16	feet
in	 the	 first	 second.	An	object	 shot	 out	horizontally	will	 also	 fall	 16	 feet;	 even
though	it	is	moving	horizontally,	it	still	falls	the	same	16	feet	in	the	same	time.
Figure	5-3	shows	an	apparatus	which	demonstrates	this.	On	the	horizontal	track
is	a	ball	which	is	going	to	be	driven	forward	a	little	distance	away.	At	the	same
height	is	a	ball	which	is	going	to	fall	vertically,	and	there	is	an	electrical	switch
arranged	so	that	at	the	moment	the	first	ball	leaves	the	track,	the	second	ball	is
released.	That	they	come	to	the	same	depth	at	the	same	time	is	witnessed	by	the
fact	that	they	collide	in	midair.	An	object	like	a	bullet,	shot	horizontally,	might
go	a	long	way	in	one	second—perhaps	2000	feet—but	it	will	still	fall	16	feet	if	it
is	aimed	horizontally.	What	happens	 if	we	 shoot	a	bullet	 faster	 and	 faster?	Do
not	forget	that	the	earth’s	surface	is	curved.	If	we	shoot	it	fast	enough,	then	when
it	 falls	 16	 feet	 it	 may	 be	 at	 just	 the	 same	 height	 above	 the	 ground	 as	 it	 was
before.	 How	 can	 that	 be?	 It	 still	 falls,	 but	 the	 earth	 curves	 away,	 so	 it	 falls
“around”	the	earth.	The	question	is,	how	far	does	it	have	to	go	in	one	second	so
that	the	earth	is	16	feet	below	the	horizon?	In	Fig.	5-4	we	see	the	earth	with	its
4000-mile	radius,	and	the	tangential,	straight-line	path	that	the	bullet	would	take
if	 there	 were	 no	 force.	 Now,	 if	 we	 use	 one	 of	 those	 wonderful	 theorems	 in
geometry,	which	says	that	our	tangent	is	the	mean	proportional	between	the	two
parts	of	the	diameter	cut	by	an	equal	chord,	we	see	that	the	horizontal	distance
travelled	is	the	mean	proportional	between	the	16	feet	fallen	and	the	8000-mile
diameter	of	the	earth.	The	square	root	of	(16/5280)	×	8000	comes	out	very	close
to	5	miles.	Thus	we	see	that	if	the	bullet	moves	at	5	miles	a	second,	it	then	will
continue	to	fall	toward	the	earth	at	the	same	rate	of	16	feet	each	second,	but	will
never	get	any	closer	because	the	earth	keeps	curving	away	from	it.	Thus	it	was
that	Mr.	Gagarin	maintained	himself	in	space	while	going	25,000	miles	around



the	earth	at	approximately	5	miles	per	second.	(He	took	a	little	longer	because	he
was	a	little	higher.)

Figure	5-3	Apparatus	for	showing	the	independence	of	vertical	and
horizontal	motions.

Figure	 5-4	 Acceleration	 toward	 the	 center	 of	 a	 circular	 path.	 From	 plane
geometry,	x/S	=	(2R—S)/x	≈	2R/x,	where	R	is	the	radius	of	the	earth,	4000	miles;
x	 is	 the	 distance	 “travelled	 horizontally”	 in	 one	 second;	 and	 S	 is	 the	 distance
“fallen”	in	one	second	(16	feet).
Any	great	discovery	of	a	new	law	is	useful	only	if	we	can	take	more	out	than

we	put	 in.	Now,	Newton	used	 the	second	and	 third	of	Kepler’s	 laws	 to	deduce
his	 law	 of	 gravitation.	What	 did	 he	 predict?	 First,	 his	 analysis	 of	 the	moon’s
motion	was	a	prediction	because	it	connected	the	falling	of	objects	on	the	earth’s
surface	with	that	of	the	moon.	Second,	the	question	is,	is	the	orbit	an	ellipse?	We
shall	see	in	a	later	chapter	how	it	is	possible	to	calculate	the	motion	exactly,	and
indeed	one	can	prove	that	it	should	be	an	ellipse,8	so	no	extra	fact	is	needed	to
explain	Kepler’s	first	law.	Thus	Newton	made	his	first	powerful	prediction.
The	law	of	gravitation	explains	many	phenomena	not	previously	understood.

For	 example,	 the	 pull	 of	 the	 moon	 on	 the	 earth	 causes	 the	 tides,	 hitherto



mysterious.	The	moon	pulls	the	water	up	under	it	and	makes	the	tides—people
had	thought	of	that	before,	but	they	were	not	as	clever	as	Newton,	and	so	they
thought	there	ought	to	be	only	one	tide	during	the	day.	The	reasoning	was	that
the	moon	 pulls	 the	water	 up	 under	 it,	making	 a	 high	 tide	 and	 a	 low	 tide,	 and
since	 the	 earth	 spins	 underneath,	 that	makes	 the	 tide	 at	 one	 station	 go	 up	 and
down	every	24	hours.	Actually	the	tide	goes	up	and	down	in	12	hours.	Another
school	of	 thought	claimed	 that	 the	high	 tide	should	be	on	 the	other	side	of	 the
earth	 because,	 so	 they	 argued,	 the	moon	 pulls	 the	 earth	 away	 from	 the	water!
Both	 of	 these	 theories	 are	 wrong.	 It	 actually	 works	 like	 this:	 The	 pull	 of	 the
moon	for	 the	earth	and	for	 the	water	 is	“balanced”	at	 the	center.	But	 the	water
which	is	closer	to	the	moon	is	pulled	more	than	the	average	and	the	water	which
is	farther	away	from	it	is	pulled	less	than	the	average.	Furthermore,	the	water	can
flow	 while	 the	 more	 rigid	 earth	 cannot.	 The	 true	 picture	 is	 a	 combination	 of
these	two	things.
What	do	we	mean	by	“balanced”?	What	balances?	If	the	moon	pulls	the	whole

earth	toward	it,	why	doesn’t	the	earth	fall	right	“up”	to	the	moon?	Because	the
earth	does	the	same	trick	as	the	moon:	it	goes	in	a	circle	around	a	point	which	is
inside	the	earth	but	not	at	its	center.	The	moon	does	not	just	go	around	the	earth,
the	 earth	 and	 the	moon	both	 go	 around	 a	 central	 position,	 each	 falling	 toward
this	 common	position,	 as	 shown	 in	Fig.	5-5.	 This	motion	 around	 the	 common
center	is	what	balances	the	fall	of	each.	So	the	earth	is	not	going	in	a	straight	line
either;	it	travels	in	a	circle.	The	water	on	the	far	side	is	“unbalanced”	because	the
moon’s	attraction	there	is	weaker	than	it	is	at	the	center	of	the	earth,	where	it	just
balances	 the	 “centrifugal	 force.”	The	 result	 of	 this	 imbalance	 is	 that	 the	water
rises	up,	away	from	the	center	of	the	earth.	On	the	near	side,	the	attraction	from
the	moon	is	stronger,	and	the	imbalance	is	in	the	opposite	direction	in	space,	but
again	away	 from	the	center	of	 the	earth.	The	net	 result	 is	 that	we	get	 two	 tidal
bulges.

Universal	gravitation

What	else	can	we	understand	when	we	understand	gravity?	Everyone	knows	the
earth	is	round.	Why	is	the	earth	round?	That	is	easy;	it	is	due	to	gravitation.	The
earth	 can	 be	 understood	 to	 be	 round	 merely	 because	 everything	 attracts
everything	else	and	 so	 it	has	attracted	 itself	 together	 as	 far	 as	 it	 can!	 If	we	go
even	 further,	 the	 earth	 is	 not	 exactly	 a	 sphere	 because	 it	 is	 rotating,	 and	 this



brings	 in	 centrifugal	 effects	 which	 tend	 to	 oppose	 gravity	 near	 the	 equator.	 It
turns	out	that	the	earth	should	be	elliptical,	and	we	even	get	the	right	shape	for
the	ellipse.	We	can	thus	deduce	that	the	sun,	the	moon,	and	the	earth	should	be
(nearly)	spheres,	just	from	the	law	of	gravitation.

Figure	5-5	The	earth-moon	system,	with	tides.

What	else	can	you	do	with	the	law	of	gravitation?	If	we	look	at	the	moons	of
Jupiter	 we	 can	 understand	 everything	 about	 the	 way	 they	 move	 around	 that
planet.	Incidentally,	there	was	once	a	certain	difficulty	with	the	moons	of	Jupiter
that	 is	 worth	 remarking	 on.	 These	 satellites	 were	 studied	 very	 carefully	 by
Roemer,	who	noticed	that	the	moons	sometimes	seemed	to	be	ahead	of	schedule,
and	sometimes	behind.	(One	can	find	their	schedules	by	waiting	a	very	long	time
and	finding	out	how	long	 it	 takes	on	 the	average	for	 the	moons	 to	go	around.)
Now	they	were	ahead	when	Jupiter	was	particularly	close	to	the	earth	and	they
were	behind	when	Jupiter	was	 farther	 from	 the	earth.	This	would	have	been	a
very	difficult	thing	to	explain	according	to	the	law	of	gravitation—it	would	have
been,	 in	 fact,	 the	 death	 of	 this	 wonderful	 theory	 if	 there	 were	 no	 other
explanation.	If	a	law	does	not	work	even	in	one	place	where	it	ought	to,	it	is	just
wrong.	 But	 the	 reason	 for	 this	 discrepancy	 was	 very	 simple	 and	 beautiful:	 it
takes	a	little	while	to	see	the	moons	of	Jupiter	because	of	the	time	it	takes	light
to	travel	from	Jupiter	to	the	earth.	When	Jupiter	is	closer	to	the	earth	the	time	is	a
little	 less,	 and	when	 it	 is	 farther	 from	 the	earth,	 the	 time	 is	more.	This	 is	why
moons	appear	to	be,	on	the	average,	a	little	ahead	or	a	little	behind,	depending	on
whether	 they	are	closer	 to	or	 farther	 from	the	earth.	This	phenomenon	showed
that	light	does	not	travel	instantaneously,	and	furnished	the	first	estimate	of	the
speed	of	light.	This	was	done	in	1656.
If	all	of	the	planets	push	and	pull	on	each	other,	the	force	which	controls,	let

us	say,	Jupiter	in	going	around	the	sun	is	not	just	the	force	from	the	sun;	there	is



also	 a	 pull	 from,	 say,	 Saturn.	 This	 force	 is	 not	 really	 strong,	 since	 the	 sun	 is
much	more	massive	 than	Saturn,	but	 there	 is	some	 pull,	 so	 the	orbit	of	 Jupiter
should	 not	 be	 a	 perfect	 ellipse,	 and	 it	 is	 not;	 it	 is	 slightly	 off,	 and	 “wobbles”
around	 the	 correct	 elliptical	 orbit.	 Such	 a	motion	 is	 a	 little	more	 complicated.
Attempts	were	made	to	analyze	the	motions	of	Jupiter,	Saturn,	and	Uranus	on	the
basis	of	the	law	of	gravitation.	The	effects	of	each	of	these	planets	on	each	other
were	 calculated	 to	 see	whether	 or	 not	 the	 tiny	 deviations	 and	 irregularities	 in
these	motions	could	be	completely	understood	from	this	one	law.	Lo	and	behold,
for	 Jupiter	 and	 Saturn,	 all	was	well,	 but	Uranus	was	 “weird.”	 It	 behaved	 in	 a
very	 peculiar	 manner.	 It	 was	 not	 travelling	 in	 an	 exact	 ellipse,	 but	 that	 was
understandable,	 because	 of	 the	 attractions	 of	 Jupiter	 and	 Saturn.	 But	 even	 if
allowance	were	made	for	 these	attractions,	Uranus	still	was	not	going	right,	so
the	 laws	 of	 gravitation	 were	 in	 danger	 of	 being	 overturned,	 a	 possibility	 that
could	not	be	ruled	out.	Two	men,	Adams	and	Le	Verrier,	in	England	and	France,
independently,	 arrived	 at	 another	 possibility:	 perhaps	 there	 is	 another	 planet,
dark	 and	 invisible,	 which	 men	 had	 not	 seen.	 This	 planet,	 N,	 could	 pull	 on
Uranus.	They	calculated	where	such	a	planet	would	have	to	be	in	order	to	cause
the	observed	perturbations.	They	sent	messages	to	the	respective	observatories,
saying,	“Gentlemen,	point	your	telescope	to	such	and	such	a	place,	and	you	will
see	a	new	planet.”	It	often	depends	on	with	whom	you	are	working	as	to	whether
they	pay	any	attention	to	you	or	not.	They	did	pay	attention	to	Le	Verrier;	they
looked,	 and	 there	 planet	N	 was!	 The	 other	 observatory	 then	 also	 looked	 very
quickly	in	the	next	few	days	and	saw	it	too.
This	 discovery	 shows	 that	 Newton’s	 laws	 are	 absolutely	 right	 in	 the	 solar

system,	but	do	 they	extend	beyond	the	relatively	small	distances	of	 the	nearest
planets?	The	first	test	lies	in	the	question,	do	stars	attract	each	other	as	well	as
planets?	We	have	definite	evidence	that	they	do	in	the	double	stars.	Figure	5-6
shows	a	double	star—two	stars	very	close	together	(there	is	also	a	third	star	 in
the	picture	so	that	we	will	know	that	the	photograph	was	not	turned).	The	stars
are	also	shown	as	they	appeared	several	years	later.	We	see	that,	relative	to	the
“fixed”	star,	the	axis	of	the	pair	has	rotated,	i.e.,	the	two	stars	are	going	around
each	other.	Do	they	rotate	according	to	Newton’s	laws?	Careful	measurements	of
the	relative	positions	of	one	such	double	star	system	are	shown	in	Fig.	5-7.	There
we	see	a	beautiful	ellipse,	 the	measures	starting	 in	1862	and	going	all	 the	way
around	 to	 1904	 (by	 now	 it	 must	 have	 gone	 around	 once	 more).	 Everything
coincides	with	Newton’s	 laws,	except	 that	 the	star	Sirius	A	 is	not	at	 the	 focus.
Why	should	that	be?	Because	the	plane	of	the	ellipse	is	not	in	the	“plane	of	the



sky.”	We	are	not	looking	at	right	angles	to	the	orbit	plane,	and	when	an	ellipse	is
viewed	at	a	tilt,	it	remains	an	ellipse	but	the	focus	is	no	longer	at	the	same	place.
Thus	we	 can	 analyze	 double	 stars,	moving	 about	 each	 other,	 according	 to	 the
requirements	of	the	gravitational	law.

Figure	5-6	A	double-star	system.



Figure	5-7	Orbit	of	Sirius	B	with	respect	to	Sirius	A.

That	the	law	of	gravitation	is	true	at	even	bigger	distances	is	indicated	in	Fig.
5-8.	If	one	cannot	see	gravitation	acting	here,	he	has	no	soul.	This	figure	shows
one	of	 the	most	 beautiful	 things	 in	 the	 sky—a	globular	 star	 cluster.	All	 of	 the
dots	are	stars.	Although	they	look	as	if	they	are	packed	solid	toward	the	center,
that	 is	due	 to	 the	 fallibility	of	our	 instruments.	Actually,	 the	distances	between
even	the	centermost	stars	are	very	great	and	they	very	rarely	collide.	There	are
more	 stars	 in	 the	 interior	 than	 farther	 out,	 and	 as	we	move	 outward	 there	 are
fewer	and	fewer.	It	is	obvious	that	there	is	an	attraction	among	these	stars.	It	is
clear	 that	 gravitation	 exists	 at	 these	 enormous	 dimensions,	 perhaps	 100,000
times	the	size	of	 the	solar	system.	Let	us	now	go	further,	and	look	at	an	entire
galaxy,	 shown	 in	 Fig.	 5-9.	 The	 shape	 of	 this	 galaxy	 indicates	 an	 obvious
tendency	for	its	matter	to	agglomerate.	Of	course	we	cannot	prove	that	the	law
here	 is	 precisely	 inverse	 square,	 only	 that	 there	 is	 still	 an	 attraction,	 at	 this
enormous	dimension,	 that	holds	 the	whole	 thing	 together.	One	may	say,	“Well,
that	is	all	very	clever	but	why	is	it	not	just	a	ball?”	Because	it	is	spinning	and	has
angular	 momentum	 which	 it	 cannot	 give	 up	 as	 it	 contracts;	 it	 must	 contract
mostly	in	a	plane.	(Incidentally,	if	you	are	looking	for	a	good	problem,	the	exact



details	 of	 how	 the	 arms	 are	 formed	 and	 what	 determines	 the	 shapes	 of	 these
galaxies	have	not	been	worked	out.)	 It	 is,	however,	 clear	 that	 the	 shape	of	 the
galaxy	 is	 due	 to	gravitation	 even	 though	 the	 complexities	of	 its	 structure	have
not	 yet	 allowed	 us	 to	 analyze	 it	 completely.	 In	 a	 galaxy	 we	 have	 a	 scale	 of
perhaps	50,000	to	100,000	light-years.	The	earth’s	distance	from	the	sun	is	8⅓
light-minutes,	so	you	can	see	how	large	these	dimensions	are.

Figure	5-8	A	globular	star	cluster.

Gravity	appears	to	exist	at	even	bigger	dimensions,	as	indicated	by	Fig.	5-10,
which	shows	many	“little”	things	clustered	together.	This	is	a	cluster	of	galaxies,
just	like	a	star	cluster.	Thus	galaxies	attract	each	other	at	such	distances	that	they
too	are	agglomerated	into	clusters.	Perhaps	gravitation	exists	even	over	distances
of	tens	of	millions	of	light-years;	so	far	as	we	now	know,	gravity	seems	to	go	out
forever	inversely	as	the	square	of	the	distance.
Not	only	can	we	understand	the	nebulae,	but	from	the	law	of	gravitation	we

can	even	get	some	ideas	about	the	origin	of	the	stars.	If	we	have	a	big	cloud	of
dust	and	gas,	as	indicated	in	Fig.	5-11,	the	gravitational	attractions	of	the	pieces
of	dust	for	one	another	might	make	them	form	little	lumps.	Barely	visible	in	the
figure	are	“little”	black	spots	which	may	be	the	beginning	of	the	accumulations



of	dust	and	gases	which,	due	 to	 their	gravitation,	begin	 to	 form	stars.	Whether
we	have	ever	seen	a	star	form	or	not	is	still	debatable.	Figure	5-12	shows	the	one
piece	of	evidence	which	suggests	that	we	have.	At	the	left	is	a	picture	of	a	region
of	 gas	with	 some	 stars	 in	 it	 taken	 in	 1947,	 and	 at	 the	 right	 is	 another	 picture,
taken	 only	 seven	 years	 later,	 which	 shows	 two	 new	 bright	 spots.	 Has	 gas
accumulated,	 has	 gravity	 acted	 hard	 enough	 and	 collected	 it	 into	 a	 ball	 big
enough	 that	 the	 stellar	nuclear	 reaction	 starts	 in	 the	 interior	 and	 turns	 it	 into	 a
star?	Perhaps,	 and	 perhaps	 not.	 It	 is	 unreasonable	 that	 in	 only	 seven	 years	we
should	be	so	lucky	as	to	see	a	star	change	itself	into	visible	form;	it	is	much	less
probable	that	we	should	see	two!

Figure	5-9	A	galaxy.

Cavendish’s	experiment

Gravitation,	 therefore,	extends	over	enormous	distances.	But	 if	 there	 is	a	 force
between	any	pair	of	objects,	we	ought	to	be	able	to	measure	the	force	between
our	own	objects.	Instead	of	having	to	watch	the	stars	go	around	each	other,	why



can	we	not	take	a	ball	of	lead	and	a	marble	and	watch	the	marble	go	toward	the
ball	 of	 lead?	 The	 difficulty	 of	 this	 experiment	 when	 done	 in	 such	 a	 simple
manner	 is	 the	 very	 weakness	 or	 delicacy	 of	 the	 force.	 It	 must	 be	 done	 with
extreme	care,	which	means	covering	 the	apparatus	 to	keep	 the	air	out,	making
sure	it	is	not	electrically	charged,	and	so	on;	then	the	force	can	be	measured.	It
was	 first	 measured	 by	 Cavendish	 with	 an	 apparatus	 which	 is	 schematically
indicated	in	Fig.	5-13.	This	first	demonstrated	the	direct	force	between	two	large,
fixed	balls	of	lead	and	two	smaller	balls	of	lead	on	the	ends	of	an	arm	supported
by	a	very	fine	fiber,	called	a	torsion	fiber.	By	measuring	how	much	the	fiber	gets
twisted,	 one	 can	 measure	 the	 strength	 of	 the	 force,	 verify	 that	 it	 is	 inversely
proportional	to	the	square	of	the	distance,	and	determine	how	strong	it	is.	Thus,
one	may	accurately	determine	the	coefficient	G	in	the	formula

Figure	5-10	A	cluster	of	galaxies.



Figure	5-11	An	interstellar	dust	cloud.

All	 the	masses	and	distances	are	known.	You	say,	“We	knew	it	already	for	 the
earth.”	Yes,	but	we	did	not	know	the	mass	of	the	earth.	By	knowing	G	from	this
experiment	 and	 by	 knowing	 how	 strongly	 the	 earth	 attracts,	we	 can	 indirectly
learn	 how	 great	 is	 the	 mass	 of	 the	 earth!	 This	 experiment	 has	 been	 called
“weighing	 the	 earth”	 by	 some	 people,	 and	 it	 can	 be	 used	 to	 determine	 the
coefficient	G	of	 the	gravity	law.	This	 is	 the	only	way	in	which	the	mass	of	 the
earth	can	be	determined.	G	turns	out	to	be

It	is	hard	to	exaggerate	the	importance	of	the	effect	on	the	history	of	science
produced	 by	 this	 great	 success	 of	 the	 theory	 of	 gravitation.	 Compare	 the
confusion,	 the	 lack	 of	 confidence,	 the	 incomplete	 knowledge	 that	 prevailed	 in
the	earlier	ages,	when	there	were	endless	debates	and	paradoxes,	with	the	clarity
and	simplicity	of	this	law—this	fact	that	all	the	moons	and	planets	and	stars	have
such	a	simple	rule	to	govern	them,	and	further	that	man	could	understand	it	and
deduce	how	the	planets	should	move!	This	 is	 the	 reason	for	 the	success	of	 the
sciences	 in	 following	 years,	 for	 it	 gave	 hope	 that	 the	 other	 phenomena	 of	 the



world	might	also	have	such	beautifully	simple	laws.

Figure	5-12	The	formation	of	new	stars?

What	is	gravity?

But	is	this	such	a	simple	law?	What	about	the	machinery	of	it?	All	we	have	done
is	 to	describe	how	 the	earth	moves	around	 the	 sun,	but	we	have	not	 said	what
makes	 it	 go.	 Newton	made	 no	 hypotheses	 about	 this;	 he	was	 satisfied	 to	 find
what	it	did	without	getting	into	the	machinery	of	it.	No	one	has	since	given	any
machinery.	 It	 is	 characteristic	 of	 the	 physical	 laws	 that	 they	 have	 this	 abstract
character.	The	law	of	conservation	of	energy	is	a	theorem	concerning	quantities
that	have	to	be	calculated	and	added	together,	with	no	mention	of	the	machinery,
and	likewise	the	great	laws	of	mechanics	are	quantitative	mathematical	laws	for
which	 no	 machinery	 is	 available.	 Why	 can	 we	 use	 mathematics	 to	 describe
nature	without	a	mechanism	behind	 it?	No	one	knows.	We	have	 to	keep	going
because	we	find	out	more	that	way.



Figure	5-13	A	simplified	diagram	of	the	apparatus	used	by	Cavendish	to	verify
the	law	of	universal	gravitation	for	small	objects	and	to	measure	the	gravitational
constant	G.
Many	 mechanisms	 for	 gravitation	 have	 been	 suggested.	 It	 is	 interesting	 to

consider	one	of	these,	which	many	people	have	thought	of	from	time	to	time.	At
first,	one	 is	quite	excited	and	happy	when	he	“discovers”	 it,	but	he	 soon	 finds
that	 it	 is	 not	 correct.	 It	 was	 first	 discovered	 about	 1750.	 Suppose	 there	 were
many	particles	moving	in	space	at	a	very	high	speed	in	all	directions	and	being
only	 slightly	 absorbed	 in	 going	 through	matter.	When	 they	are	 absorbed,	 they
give	an	impulse	to	the	earth.	However,	since	there	are	as	many	going	one	way	as
another,	 the	 impulses	 all	 balance.	 But	 when	 the	 sun	 is	 nearby,	 the	 particles
coming	toward	the	earth	through	the	sun	are	partially	absorbed,	so	fewer	of	them
are	 coming	 from	 the	 sun	 than	 are	 coming	 from	 the	 other	 side.	 Therefore,	 the
earth	feels	a	net	impulse	toward	the	sun	and	it	does	not	take	one	long	to	see	that
it	 is	 inversely	 proportional	 to	 the	 square	 of	 the	 distance—because	 of	 the
variation	of	the	solid	angle	that	the	sun	subtends	as	we	vary	the	distance.	What	is
wrong	with	that	machinery?	It	 involves	some	new	consequences	which	are	not
true.	This	particular	idea	has	the	following	trouble:	the	earth,	in	moving	around
the	 sun,	would	 impinge	 on	more	 particles	which	 are	 coming	 from	 its	 forward
side	 than	from	its	hind	side	 (when	you	run	 in	 the	 rain,	 the	 rain	 in	your	 face	 is
stronger	 than	 that	 on	 the	 back	 of	 your	 head!).	Therefore	 there	would	 be	more
impulse	given	the	earth	from	the	front,	and	the	earth	would	feel	a	resistance	to
motion	 and	 would	 be	 slowing	 up	 in	 its	 orbit.	 One	 can	 calculate	 how	 long	 it
would	 take	 for	 the	earth	 to	 stop	as	a	 result	of	 this	 resistance,	and	 it	would	not



take	long	enough	for	the	earth	to	still	be	in	its	orbit,	so	this	mechanism	does	not
work.	No	machinery	has	ever	been	invented	that	“explains”	gravity	without	also
predicting	some	other	phenomenon	that	does	not	exist.
Next	we	shall	discuss	the	possible	relation	of	gravitation	to	other	forces.	There

is	no	explanation	of	gravitation	in	terms	of	other	forces	at	the	present	time.	It	is
not	 an	 aspect	 of	 electricity	 or	 anything	 like	 that,	 so	 we	 have	 no	 explanation.
However,	 gravitation	 and	 other	 forces	 are	 very	 similar,	 and	 it	 is	 interesting	 to
note	analogies.	For	example,	the	force	of	electricity	between	two	charged	objects
looks	just	like	the	law	of	gravitation:	the	force	of	electricity	is	a	constant,	with	a
minus	sign,	times	the	product	of	the	charges,	and	varies	inversely	as	the	square
of	the	distance.	It	is	in	the	opposite	direction—likes	repel.	But	is	it	still	not	very
remarkable	 that	 the	 two	 laws	 involve	 the	 same	 function	 of	 distance?	 Perhaps
gravitation	 and	 electricity	 are	much	more	 closely	 related	 than	we	 think.	Many
attempts	have	been	made	to	unify	them;	the	so-called	unified	field	theory	is	only
a	very	elegant	attempt	to	combine	electricity	and	gravitation;	but,	in	comparing
gravitation	and	electricity,	 the	most	 interesting	thing	is	 the	relative	strengths	of
the	forces.	Any	theory	that	contains	them	both	must	also	deduce	how	strong	the
gravity	is.
If	 we	 take,	 in	 some	 natural	 units,	 the	 repulsion	 of	 two	 electrons	 (nature’s

universal	 charge)	 due	 to	 electricity,	 and	 the	 attraction	 of	 two	 electrons	 due	 to
their	masses,	we	can	measure	the	ratio	of	electrical	repulsion	to	the	gravitational
attraction.	The	ratio	is	independent	of	the	distance	and	is	a	fundamental	constant
of	nature.	The	ratio	is	shown	in	Fig.	5-14.	The	gravitational	attraction	relative	to
the	electrical	repulsion	between	two	electrons	is	1	divided	by	4.17	×	1042!	The
question	is,	where	does	such	a	large	number	come	from?	It	is	not	accidental,	like
the	ratio	of	the	volume	of	the	earth	to	the	volume	of	a	flea.	We	have	considered
two	 natural	 aspects	 of	 the	 same	 thing,	 an	 electron.	 This	 fantastic	 number	 is	 a
natural	 constant,	 so	 it	 involves	 something	 deep	 in	 nature.	Where	 could	 such	 a
tremendous	 number	 come	 from?	 Some	 say	 that	 we	 shall	 one	 day	 find	 the
“universal	 equation,”	and	 in	 it,	one	of	 the	 roots	will	be	 this	number.	 It	 is	very
difficult	to	find	an	equation	for	which	such	a	fantastic	number	is	a	natural	root.
Other	 possibilities	 have	 been	 thought	 of;	 one	 is	 to	 relate	 it	 to	 the	 age	 of	 the
universe.	Clearly,	we	have	to	find	another	large	number	somewhere.	But	do	we
mean	the	age	of	the	universe	in	years?	No,	because	years	are	not	“natural”;	they
were	devised	by	men.	As	an	example	of	something	natural,	 let	us	consider	 the
time	it	takes	light	to	go	across	a	proton,	10—24	second.	If	we	compare	this	time



with	the	age	of	the	universe,	2	×	1010	years,	the	answer	is	10—42.	It	has	about
the	 same	 number	 of	 zeros	 going	 off	 it,	 so	 it	 has	 been	 proposed	 that	 the
gravitational	constant	is	related	to	the	age	of	the	universe.	If	that	were	the	case,
the	gravitational	constant	would	change	with	 time,	because	as	 the	universe	got
older	the	ratio	of	the	age	of	the	universe	to	the	time	which	it	takes	for	light	to	go
across	a	proton	would	be	gradually	increasing.	Is	it	possible	that	the	gravitational
constant	is	changing	with	time?	Of	course	the	changes	would	be	so	small	that	it
is	quite	difficult	to	be	sure.

Figure	 5-14	 The	 relative	 strengths	 of	 electrical	 and	 gravitational	 interactions
between	two	electrons.
One	 test	 which	we	 can	 think	 of	 is	 to	 determine	what	would	 have	 been	 the

effect	of	 the	change	during	 the	past	109	years,	which	 is	approximately	 the	age
from	 the	 earliest	 life	 on	 the	 earth	 to	 now,	 and	 one-tenth	 of	 the	 age	 of	 the
universe.	 In	 this	 time,	 the	 gravity	 constant	would	 have	 increased	 by	 about	 10
percent.	 It	 turns	 out	 that	 if	 we	 consider	 the	 structure	 of	 the	 sun—the	 balance
between	 the	 weight	 of	 its	 material	 and	 the	 rate	 at	 which	 radiant	 energy	 is
generated	inside	it—we	can	deduce	that	if	the	gravity	were	10	percent	stronger,
the	sun	would	be	much	more	than	10	percent	brighter—by	the	sixth	power	of	the
gravity	constant!	If	we	calculate	what	happens	to	the	orbit	of	the	earth	when	the
gravity	 is	 changing,	we	 find	 that	 the	 earth	was	 then	 closer	 in.	 Altogether,	 the
earth	would	be	about	100	degrees	centigrade	hotter,	and	all	of	the	water	would
not	have	been	in	the	sea,	but	vapor	in	the	air,	so	life	would	not	have	started	in	the
sea.	So	we	do	not	now	believe	that	the	gravity	constant	is	changing	with	the	age
of	the	universe.	But	such	arguments	as	the	one	we	have	just	given	are	not	very
convincing,	and	the	subject	is	not	completely	closed.
It	is	a	fact	that	the	force	of	gravitation	is	proportional	to	the	mass,	the	quantity

which	 is	 fundamentally	 a	 measure	 of	 inertia—of	 how	 hard	 it	 is	 to	 hold



something	which	is	going	around	in	a	circle.	Therefore	 two	objects,	one	heavy
and	one	light,	going	around	a	larger	object	in	the	same	circle	at	the	same	speed
because	of	gravity,	will	stay	 together	because	 to	go	 in	a	circle	requires	a	 force
which	is	stronger	for	a	bigger	mass.	That	 is,	 the	gravity	is	stronger	for	a	given
mass	in	just	the	right	proportion	so	that	the	two	objects	will	go	around	together.
If	one	object	were	 inside	 the	other	 it	would	stay	 inside;	 it	 is	a	perfect	balance.
Therefore,	Gagarin	or	Titov	would	find	things	“weightless”	inside	a	spaceship;	if
they	happened	to	let	go	of	a	piece	of	chalk,	for	example,	it	would	go	around	the
earth	in	exactly	the	same	way	as	the	whole	spaceship,	and	so	it	would	appear	to
remain	 suspended	before	 them	 in	 space.	 It	 is	 very	 interesting	 that	 this	 force	 is
exactly	 proportional	 to	 the	 mass	 with	 great	 precision,	 because	 if	 it	 were	 not
exactly	 proportional	 there	 would	 be	 some	 effect	 by	 which	 inertia	 and	 weight
would	 differ.	 The	 absence	 of	 such	 an	 effect	 has	 been	 checked	 with	 great
accuracy	by	an	experiment	done	 first	by	Eötvös	 in	1909	and	more	 recently	by
Dicke.	For	all	substances	tried,	the	masses	and	weights	are	exactly	proportional
within	1	part	in	1,000,000,000,	or	less.	This	is	a	remarkable	experiment.

Gravity	and	relativity

Another	topic	deserving	discussion	is	Einstein’s	modification	of	Newton’s	law	of
gravitation.	In	spite	of	all	the	excitement	it	created,	Newton’s	law	of	gravitation
is	 not	 correct!	 It	 was	modified	 by	 Einstein	 to	 take	 into	 account	 the	 theory	 of
relativity.	According	to	Newton,	the	gravitational	effect	is	instantaneous,	that	is,
if	we	were	 to	move	a	mass,	we	would	at	once	feel	a	new	force	because	of	 the
new	 position	 of	 that	 mass;	 by	 such	 means	 we	 could	 send	 signals	 at	 infinite
speed.	Einstein	advanced	arguments	which	suggest	that	we	cannot	send	signals
faster	 than	 the	 speed	 of	 light,	 so	 the	 law	 of	 gravitation	 must	 be	 wrong.	 By
correcting	it	to	take	the	delays	into	account,	we	have	a	new	law,	called	Einstein’s
law	of	gravitation.	One	feature	of	this	new	law	which	is	quite	easy	to	understand
is	 this:	 In	 the	Einstein	relativity	 theory,	anything	which	has	energy	has	mass—
mass	 in	 the	 sense	 that	 it	 is	 attracted	 gravitationally.	 Even	 light,	 which	 has	 an
energy,	has	a	“mass.”	When	a	light	beam,	which	has	energy	in	it,	comes	past	the
sun	there	is	an	attraction	on	it	by	the	sun.	Thus	the	light	does	not	go	straight,	but
is	 deflected.	 During	 the	 eclipse	 of	 the	 sun,	 for	 example,	 the	 stars	 which	 are
around	 the	 sun	 should	 appear	 displaced	 from	where	 they	would	 be	 if	 the	 sun
were	not	there,	and	this	has	been	observed.



Finally,	let	us	compare	gravitation	with	other	theories.	In	recent	years	we	have
discovered	that	all	mass	is	made	of	tiny	particles	and	that	there	are	several	kinds
of	 interactions,	 such	 as	 nuclear	 forces,	etc.	None	 of	 these	 nuclear	 or	 electrical
forces	 has	 yet	 been	 found	 to	 explain	 gravitation.	 The	 quantum-mechanical
aspects	of	nature	have	not	yet	been	carried	over	to	gravitation.	When	the	scale	is
so	small	that	we	need	the	quantum	effects,	the	gravitational	effects	are	so	weak
that	the	need	for	a	quantum	theory	of	gravitation	has	not	yet	developed.	On	the
other	hand,	for	consistency	in	our	physical	theories	it	would	be	important	to	see
whether	Newton’s	law	modified	to	Einstein’s	law	can	be	further	modified	to	be
consistent	with	the	uncertainty	principle.	This	last	modification	has	not	yet	been
completed.



6

QUANTUM	BEHAVIOR



Atomic	mechanics

	In	the	last	few	chapters	we	have	treated	the	essential	ideas	necessary	for	an
understanding	of	most	of	the	important	phenomena	of	light—or	electromagnetic
radiation	in	general.	(We	have	left	a	few	special	topics	for	next	year.	Specifically,
the	theory	of	the	index	of	dense	materials	and	total	internal	reflection.)	What	we
have	dealt	with	is	called	the	“classical	theory”	of	electric	waves,	which	turns	out
to	be	a	completely	adequate	description	of	nature	for	a	large	number	of	effects.
We	have	not	had	to	worry	yet	about	the	fact	that	light	energy	comes	in	lumps	or
“photons.”
We	would	like	to	take	up	as	our	next	subject	the	problem	of	the	behavior	of

relatively	 large	 pieces	 of	matter—their	mechanical	 and	 thermal	 properties,	 for
instance.	 In	discussing	 these,	we	will	 find	 that	 the	“classical”	 (or	older)	 theory
fails	 almost	 immediately,	 because	 matter	 is	 really	 made	 up	 of	 atomic-sized
particles.	Still,	we	will	deal	only	with	the	classical	part,	because	that	is	the	only
part	that	we	can	understand	using	the	classical	mechanics	we	have	been	learning.
But	we	 shall	 not	 be	 very	 successful.	We	 shall	 find	 that	 in	 the	 case	 of	matter,
unlike	 the	case	of	 light,	we	 shall	be	 in	difficulty	 relatively	 soon.	We	could,	of
course,	 continuously	 skirt	 away	 from	 the	 atomic	 effects,	 but	 we	 shall	 instead
interpose	here	a	short	excursion	in	which	we	will	describe	the	basic	ideas	of	the
quantum	properties	of	matter,	i.e.,	the	quantum	ideas	of	atomic	physics,	so	that
you	will	have	some	feeling	for	what	it	is	we	are	leaving	out.	For	we	will	have	to
leave	out	some	important	subjects	that	we	cannot	avoid	coming	close	to.
So	we	will	 give	now	 the	 introduction	 to	 the	 subject	 of	 quantum	mechanics,

but	will	not	be	able	actually	to	get	into	the	subject	until	much	later.
“Quantum	mechanics”	 is	 the	 description	 of	 the	 behavior	 of	matter	 in	 all	 its

details	and,	in	particular,	of	the	happenings	on	an	atomic	scale.	Things	on	a	very
small	scale	behave	like	nothing	that	you	have	any	direct	experience	about.	They
do	not	behave	like	waves,	they	do	not	behave	like	particles,	they	do	not	behave
like	 clouds,	 or	 billiard	 balls,	 or	 weights	 on	 springs,	 or	 like	 anything	 that	 you
have	ever	seen.
Newton	 thought	 that	 light	 was	 made	 up	 of	 particles,	 but	 then	 it	 was

discovered,	as	we	have	seen	here,	that	it	behaves	like	a	wave.	Later,	however	(in
the	 beginning	 of	 the	 twentieth	 century),	 it	 was	 found	 that	 light	 did	 indeed
sometimes	 behave	 like	 a	 particle.	 Historically,	 the	 electron,	 for	 example,	 was
thought	to	behave	like	a	particle,	and	then	it	was	found	that	in	many	respects	it



behaved	like	a	wave.	So	it	 really	behaves	like	neither.	Now	we	have	given	up.
We	say:	“It	is	like	neither.”
There	 is	 one	 lucky	 break,	 however—electrons	 behave	 just	 like	 light.	 The

quantum	behavior	of	atomic	objects	(electrons,	protons,	neutrons,	photons,	and
so	on)	is	the	same	for	all;	they	are	all	“particle	waves,”	or	whatever	you	want	to
call	them.	So	what	we	learn	about	the	properties	of	electrons	(which	we	shall	use
for	our	examples)	will	apply	also	to	all	“particles,”	including	photons	of	light.
The	 gradual	 accumulation	 of	 information	 about	 atomic	 and	 small-scale

behavior	 during	 the	 first	 quarter	 of	 this	 century,	which	 gave	 some	 indications
about	how	small	things	do	behave,	produced	an	increasing	confusion	which	was
finally	resolved	in	1926	and	1927	by	Schrödinger,	Heisenberg,	and	Born.	They
finally	 obtained	 a	 consistent	 description	 of	 the	 behavior	 of	 matter	 on	 a	 small
scale.	We	take	up	the	main	features	of	that	description	in	this	chapter.
Because	atomic	behavior	is	so	unlike	ordinary	experience,	 it	 is	very	difficult

to	 get	 used	 to	 and	 it	 appears	 peculiar	 and	mysterious	 to	 everyone,	 both	 to	 the
novice	and	 to	 the	experienced	physicist.	Even	 the	experts	do	not	understand	 it
the	way	 they	would	 like	 to,	and	 it	 is	perfectly	 reasonable	 that	 they	should	not,
because	 all	 of	 direct,	 human	 experience	 and	 human	 intuition	 applies	 to	 large
objects.	We	know	how	large	objects	will	act,	but	things	on	a	small	scale	just	do
not	 act	 that	 way.	 So	 we	 have	 to	 learn	 about	 them	 in	 a	 sort	 of	 abstract	 or
imaginative	fashion	and	not	by	connection	with	our	direct	experience.
In	 this	 chapter	 we	 shall	 tackle	 immediately	 the	 basic	 element	 of	 the

mysterious	 behavior	 in	 its	 most	 strange	 form.	 We	 choose	 to	 examine	 a
phenomenon	 which	 is	 impossible,	 absolutely	 impossible,	 to	 explain	 in	 any
classical	way,	and	which	has	in	it	the	heart	of	quantum	mechanics.	In	reality,	it
contains	 the	 only	 mystery.	 We	 cannot	 explain	 the	 mystery	 in	 the	 sense	 of
“explaining”	how	it	works.	We	will	tell	you	how	it	works.	In	telling	you	how	it
works	 we	 will	 have	 told	 you	 about	 the	 basic	 peculiarities	 of	 all	 quantum
mechanics.

An	experiment	with	bullets

To	 try	 to	understand	 the	quantum	behavior	of	electrons,	we	shall	compare	and
contrast	their	behavior,	in	a	particular	experimental	setup,	with	the	more	familiar
behavior	 of	 particles	 like	 bullets,	 and	 with	 the	 behavior	 of	 waves	 like	 water
waves.	We	consider	first	the	behavior	of	bullets	in	the	experimental	setup	shown



diagrammatically	 in	Fig.	6-1.	We	 have	 a	machine	 gun	 that	 shoots	 a	 stream	 of
bullets.	It	is	not	a	very	good	gun,	in	that	it	sprays	the	bullets	(randomly)	over	a
fairly	large	angular	spread,	as	indicated	in	the	figure.	In	front	of	the	gun	we	have
a	wall	(made	of	armor	plate)	that	has	in	it	two	holes	just	about	big	enough	to	let
a	bullet	through.	Beyond	the	wall	is	a	backstop	(say	a	thick	wall	of	wood)	which
will	“absorb”	the	bullets	when	they	hit	it.	In	front	of	the	wall	we	have	an	object
which	we	shall	 call	 a	 “detector”	of	bullets.	 It	might	be	a	box	 containing	 sand.
Any	bullet	 that	enters	 the	detector	will	be	stopped	and	accumulated.	When	we
wish,	 we	 can	 empty	 the	 box	 and	 count	 the	 number	 of	 bullets	 that	 have	 been
caught.	The	detector	can	be	moved	back	and	forth	 (in	what	we	will	call	 the	x-
direction).	With	this	apparatus,	we	can	find	out	experimentally	the	answer	to	the
question:	“What	is	the	probability	that	a	bullet	which	passes	through	the	holes	in
the	wall	will	arrive	at	the	backstop	at	the	distance	x	from	the	center?”	First,	you
should	 realize	 that	 we	 should	 talk	 about	 probability,	 because	 we	 cannot	 say
definitely	where	any	particular	bullet	will	go.	A	bullet	which	happens	to	hit	one
of	the	holes	may	bounce	off	the	edges	of	the	hole,	and	may	end	up	anywhere	at
all.	 By	 “probability”	 we	 mean	 the	 chance	 that	 the	 bullet	 will	 arrive	 at	 the
detector,	 which	 we	 can	 measure	 by	 counting	 the	 number	 which	 arrive	 at	 the
detector	 in	 a	 certain	 time	 and	 then	 taking	 the	 ratio	 of	 this	 number	 to	 the	 total
number	 that	 hit	 the	 backstop	 during	 that	 time.	 Or,	 if	 we	 assume	 that	 the	 gun
always	shoots	at	the	same	rate	during	the	measurements,	the	probability	we	want
is	just	proportional	to	the	number	that	reach	the	detector	in	some	standard	time
interval.

Figure	6-1	Interference	experiment	with	bullets.

For	 our	 present	 purposes	 we	 would	 like	 to	 imagine	 a	 somewhat	 idealized
experiment	in	which	the	bullets	are	not	real	bullets,	but	are	indestructible	bullets



—they	cannot	break	in	half.	In	our	experiment	we	find	that	bullets	always	arrive
in	 lumps,	 and	when	we	 find	 something	 in	 the	detector,	 it	 is	 always	one	whole
bullet.	If	the	rate	at	which	the	machine	gun	fires	is	made	very	low,	we	find	that	at
any	 given	moment	 either	 nothing	 arrives	 or	 one	 and	 only	 one—exactly	 one—
bullet	 arrives	 at	 the	 backstop.	 Also,	 the	 size	 of	 the	 lump	 certainly	 does	 not
depend	on	the	rate	of	firing	of	the	gun.	We	shall	say:	“Bullets	always	arrive	 in
identical	lumps.”	What	we	measure	with	our	detector	is	the	probability	of	arrival
of	a	lump.	And	we	measure	the	probability	as	a	function	of	x.	The	result	of	such
measurements	with	this	apparatus	(we	have	not	yet	done	the	experiment,	so	we
are	really	imagining	the	result)	is	plotted	in	the	graph	drawn	in	part	(c)	of	Fig.	6-
1.	In	the	graph	we	plot	the	probability	to	the	right	and	x	vertically,	so	that	the	x-
scale	fits	the	diagram	of	the	apparatus.	We	call	the	probability	P12	because	the
bullets	may	have	come	either	through	hole	1	or	through	hole	2.	You	will	not	be
surprised	that	P12	is	large	near	the	middle	of	the	graph	but	gets	small	if	x	is	very
large.	You	may	wonder,	however,	why	P12	has	its	maximum	value	at	x	=	0.	We
can	understand	this	fact	if	we	do	our	experiment	again	after	covering	up	hole	2,
and	once	more	while	 covering	up	hole	1.	When	hole	2	 is	 covered,	bullets	 can
pass	 only	 through	 hole	 1,	 and	we	 get	 the	 curve	marked	P1	 in	 part	 (b)	 of	 the
figure.	As	you	would	expect,	the	maximum	of	P1	occurs	at	the	value	of	x	which
is	on	a	straight	line	with	the	gun	and	hole	1.	When	hole	1	is	closed,	we	get	the
symmetric	 curve	P2	 drawn	 in	 the	 figure.	P2	 is	 the	 probability	 distribution	 for
bullets	that	pass	through	hole	2.	Comparing	parts	(b)	and	(c)	of	Fig.	6-1,	we	find
the	important	result	that

(6.1)
The	probabilities	just	add	together.	The	effect	with	both	holes	open	is	the	sum

of	the	effects	with	each	hole	open	alone.	We	shall	call	this	result	an	observation
of	“no	 interference,”	 for	 a	 reason	 that	you	will	 see	 later.	So	much	 for	bullets.
They	come	in	lumps,	and	their	probability	of	arrival	shows	no	interference.

An	experiment	with	waves



Now	we	 wish	 to	 consider	 an	 experiment	 with	 water	 waves.	 The	 apparatus	 is
shown	diagrammatically	in	Fig.	6-2.	We	have	a	shallow	trough	of	water.	A	small
object	labeled	the	“wave	source”	is	jiggled	up	and	down	by	a	motor	and	makes
circular	waves.	To	the	right	of	the	source	we	have	again	a	wall	with	two	holes,
and	beyond	that	is	a	second	wall,	which,	to	keep	things	simple,	is	an	“absorber,”
so	that	there	is	no	reflection	of	the	waves	that	arrive	there.	This	can	be	done	by
building	a	gradual	sand	“beach.”	In	front	of	the	beach	we	place	a	detector	which
can	be	moved	back	and	forth	in	the	x-direction,	as	before.	The	detector	is	now	a
device	which	measures	 the	“intensity”	of	 the	wave	motion.	You	can	 imagine	a
gadget	 which	 measures	 the	 height	 of	 the	 wave	 motion,	 but	 whose	 scale	 is
calibrated	in	proportion	to	the	square	of	the	actual	height,	so	that	the	reading	is
proportional	to	the	intensity	of	the	wave.	Our	detector	reads,	then,	in	proportion
to	the	energy	being	carried	by	 the	wave—or	rather,	 the	 rate	at	which	energy	 is
carried	to	the	detector.
With	our	wave	apparatus,	the	first	thing	to	notice	is	that	the	intensity	can	have

any	size.	If	the	source	just	moves	a	very	small	amount,	then	there	is	just	a	little
bit	 of	wave	motion	 at	 the	 detector.	When	 there	 is	more	motion	 at	 the	 source,
there	 is	more	 intensity	at	 the	detector.	The	 intensity	of	 the	wave	can	have	any
value	 at	 all.	 We	 would	 not	 say	 that	 there	 was	 any	 “lumpiness”	 in	 the	 wave
intensity.

Figure	6-2	Interference	experiment	with	water	waves.

Now	 let	 us	measure	 the	wave	 intensity	 for	 various	 values	 of	x	 (keeping	 the
wave	source	operating	always	in	the	same	way).	We	get	the	interesting-looking
curve	marked	I12	in	part	(c)	of	the	figure.



We	 have	 already	 worked	 out	 how	 such	 patterns	 can	 come	 about	 when	 we
studied	the	interference	of	electric	waves.	In	this	case	we	would	observe	that	the
original	wave	is	diffracted	at	the	holes,	and	new	circular	waves	spread	out	from
each	hole.	If	we	cover	one	hole	at	a	time	and	measure	the	intensity	distribution	at
the	absorber	we	find	the	rather	simple	intensity	curves	shown	in	part	(b)	of	the
figure.	I1	is	the	intensity	of	the	wave	from	hole	1	(which	we	find	by	measuring
when	hole	2	is	blocked	off)	and	I2	is	the	intensity	of	the	wave	from	hole	2	(seen
when	hole	1	is	blocked).
The	intensity	I12	observed	when	both	holes	are	open	is	certainly	not	the	sum

of	 I1	 and	 I2.	We	 say	 that	 there	 is	 “interference”	 of	 the	 two	 waves.	 At	 some
places	 (where	 the	curve	 I12	has	 its	maxima)	 the	waves	are	“in	phase”	and	 the
wave	 peaks	 add	 together	 to	 give	 a	 large	 amplitude	 and,	 therefore,	 a	 large
intensity.	 We	 say	 that	 the	 two	 waves	 are	 “interfering	 constructively”	 at	 such
places.	There	will	be	such	constructive	interference	wherever	the	distance	from
the	 detector	 to	 one	 hole	 is	 a	whole	 number	 of	wavelengths	 larger	 (or	 shorter)
than	the	distance	from	the	detector	to	the	other	hole.
At	 those	 places	 where	 the	 two	 waves	 arrive	 at	 the	 detector	 with	 a	 phase

difference	of	π	(where	they	are	“out	of	phase”)	the	resulting	wave	motion	at	the
detector	 will	 be	 the	 difference	 of	 the	 two	 amplitudes.	 The	 waves	 “interfere
destructively,”	 and	we	get	 a	 low	value	 for	 the	wave	 intensity.	We	expect	 such
low	 values	wherever	 the	 distance	 between	 hole	 1	 and	 the	 detector	 is	 different
from	 the	 distance	 between	 hole	 2	 and	 the	 detector	 by	 an	 odd	 number	 of	 half-
wavelengths.	The	low	values	of	I12	in	Fig.	6-2	correspond	 to	 the	places	where
the	two	waves	interfere	destructively.
You	will	 remember	 that	 the	quantitative	relationship	between	I1,	 I2,	and	 I12

can	 be	 expressed	 in	 the	 following	way:	The	 instantaneous	 height	 of	 the	water
wave	at	the	detector	for	the	wave	from	hole	1	can	be	written	as	(the	real	part	of)
ĥ1	 eiωt,	 where	 the	 “amplitude”	 ĥ1	 is,	 in	 general,	 a	 complex	 number.	 The
intensity	is	proportional	to	the	mean	squared	height	or,	when	we	use	the	complex
numbers,	to	|ĥ1|2.	Similarly,	for	hole	2	the	height	is	ĥ2eiωt	and	 the	 intensity	 is

proportional	to	|ĥ2|2.	When	both	holes	are	open,	the	wave	heights	add	to	give	the

height	 (ĥ1	 +	 ĥ2)eiωt	 and	 the	 intensity	 |ĥ1	 +	 ĥ2|2.	 Omitting	 the	 constant	 of
proportionality	 for	 our	 present	 purposes,	 the	 proper	 relations	 for	 interfering
waves	are



(6.2)
You	will	notice	that	the	result	is	quite	different	from	that	obtained	with	bullets

(6.1).	If	we	expand	|ĥ1	+	ĥ2|2	we	see	that

(6.3)
where	δ	 is	 the	phase	difference	between	ĥ1	and	ĥ2.	 In	 terms	of	 the	 intensities,
we	could	write

(6.4)
The	last	term	in	(6.4)	is	the	“interference	term.”	So	much	for	water	waves.	The
intensity	can	have	any	value,	and	it	shows	interference.

An	experiment	with	electrons

Now	 we	 imagine	 a	 similar	 experiment	 with	 electrons.	 It	 is	 shown
diagrammatically	 in	 Fig.	 6-3.	 We	 make	 an	 electron	 gun	 which	 consists	 of	 a
tungsten	wire	heated	by	an	electric	current	and	surrounded	by	a	metal	box	with	a
hole	in	it.	If	 the	wire	is	at	a	negative	voltage	with	respect	to	the	box,	electrons
emitted	 by	 the	 wire	 will	 be	 accelerated	 toward	 the	 walls	 and	 some	 will	 pass
through	the	hole.	All	the	electrons	which	come	out	of	the	gun	will	have	(nearly)
the	same	energy.	In	front	of	the	gun	is	again	a	wall	(just	a	thin	metal	plate)	with
two	 holes	 in	 it.	 Beyond	 the	 wall	 is	 another	 plate	 which	 will	 serve	 as	 a
“backstop.”	In	front	of	the	backstop	we	place	a	movable	detector.	The	detector
might	 be	 a	 geiger	 counter	 or,	 perhaps	 better,	 an	 electron	 multiplier,	 which	 is
connected	to	a	loudspeaker.
We	should	say	right	away	that	you	should	not	try	to	set	up	this	experiment	(as



you	could	have	done	with	the	two	we	have	already	described).	This	experiment
has	 never	 been	 done	 in	 just	 this	way.	 The	 trouble	 is	 that	 the	 apparatus	would
have	 to	 be	 made	 on	 an	 impossibly	 small	 scale	 to	 show	 the	 effects	 we	 are
interested	 in.	 We	 are	 doing	 a	 “thought	 experiment,”	 which	 we	 have	 chosen
because	 it	 is	 easy	 to	 think	 about.	We	know	 the	 results	 that	would	 be	 obtained
because	there	are	many	experiments	that	have	been	done,	in	which	the	scale	and
the	proportions	have	been	chosen	to	show	the	effects	we	shall	describe.
The	first	 thing	we	notice	with	our	electron	experiment	 is	 that	we	hear	sharp

“clicks”	 from	 the	detector	 (that	 is,	 from	 the	 loudspeaker).	And	all	 “clicks”	are
the	same.	There	are	no	“half-clicks.”
We	would	also	notice	that	the	“clicks”	come	very	erratically.	Something	like:

click	.....	click-click	...	click	.....	click	....	click-click	......	click	...,	etc.,	just	as	you
have,	no	doubt,	heard	a	geiger	counter	operating.	 If	we	count	 the	clicks	which
arrive	in	a	sufficiently	long	time—say,	for	many	minutes—and	then	count	again
for	another	equal	period,	we	find	that	the	two	numbers	are	very	nearly	the	same.
So	we	can	speak	of	 the	average	rate	 at	which	 the	clicks	are	heard	 (so-and-so-
many	clicks	per	minute	on	the	average).

Figure	6-3	Interference	experiment	with	electrons.

As	we	move	the	detector	around,	the	rate	at	which	the	clicks	appear	is	faster
or	slower,	but	the	size	(loudness)	of	each	click	is	always	the	same.	If	we	lower
the	temperature	of	the	wire	in	the	gun	the	rate	of	clicking	slows	down,	but	still
each	 click	 sounds	 the	 same.	We	would	notice	 also	 that	 if	we	put	 two	 separate
detectors	at	 the	backstop,	one	or	 the	other	would	click,	but	never	both	at	once.
(Except	that	once	in	a	while,	if	there	were	two	clicks	very	close	together	in	time,
our	 ear	might	not	 sense	 the	 separation.)	We	conclude,	 therefore,	 that	whatever



arrives	 at	 the	 backstop	 arrives	 in	 “lumps.”	All	 the	 “lumps”	 are	 the	 same	 size:
only	whole	 “lumps”	 arrive,	 and	 they	 arrive	 one	 at	 a	 time	 at	 the	 backstop.	We
shall	say:	“Electrons	always	arrive	in	identical	lumps.”
Just	 as	 for	 our	 experiment	 with	 bullets,	 we	 can	 now	 proceed	 to	 find

experimentally	the	answer	to	the	question:	“What	is	the	relative	probability	that
an	 electron	 ‘lump’	will	 arrive	 at	 the	 backstop	 at	 various	 distances	 x	 from	 the
center?”	As	before,	we	obtain	 the	 relative	probability	by	observing	 the	 rate	of
clicks,	holding	the	operation	of	the	gun	constant.	The	probability	that	lumps	will
arrive	at	a	particular	x	is	proportional	to	the	average	rate	of	clicks	at	that	x.
The	result	of	our	experiment	is	the	interesting	curve	marked	P12	in	part	(c)	of

Fig.	6-3.	Yes!	That	is	the	way	electrons	go.

The	interference	of	electron	waves

Now	let	us	try	to	analyze	the	curve	of	Fig.	6-3	to	see	whether	we	can	understand
the	 behavior	 of	 the	 electrons.	 The	 first	 thing	we	would	 say	 is	 that	 since	 they
come	 in	 lumps,	 each	 lump,	which	we	may	 as	well	 call	 an	 electron,	 has	 come
either	 through	 hole	 1	 or	 through	 hole	 2.	 Let	 us	 write	 this	 in	 the	 form	 of	 a
“Proposition”:

Proposition	 A:	 Each	 electron	 either	 goes	 through	 hole	 1	 or	 it	 goes
through	hole	2.

Assuming	 Proposition	 A,	 all	 electrons	 that	 arrive	 at	 the	 backstop	 can	 be
divided	into	two	classes:	(1)	those	that	come	through	hole	1,	and	(2)	those	that
come	through	hole	2.	So	our	observed	curve	must	be	the	sum	of	the	effects	of	the
electrons	which	come	through	hole	1	and	the	electrons	which	come	through	hole
2.	Let	us	check	this	idea	by	experiment.	First,	we	will	make	a	measurement	for
those	 electrons	 that	 come	 through	 hole	 1.	We	 block	 off	 hole	 2	 and	make	 our
counts	of	 the	 clicks	 from	 the	detector.	From	 the	 clicking	 rate,	we	get	P1.	 The
result	of	the	measurement	is	shown	by	the	curve	marked	P1	in	part	(b)	of	Fig.	6-
3.	 The	 result	 seems	 quite	 reasonable.	 In	 a	 similar	 way,	 we	 measure	 P2,	 the
probability	distribution	for	the	electrons	that	come	through	hole	2.	The	result	of
this	measurement	is	also	drawn	in	the	figure.
The	result	P12	obtained	with	both	holes	open	is	clearly	not	the	sum	of	P1	and

P2,	 the	 probabilities	 for	 each	 hole	 alone.	 In	 analogy	 with	 our	 water-wave



experiment,	we	say:	“There	is	interference.”

(6.5)
How	can	such	an	interference	come	about?	Perhaps	we	should	say:	“Well,	that

means,	presumably,	that	it	is	not	true	that	the	lumps	go	either	through	hole	1	or
hole	 2,	 because	 if	 they	did,	 the	 probabilities	 should	 add.	Perhaps	 they	go	 in	 a
more	 complicated	 way.	 They	 split	 in	 half	 and	 ...”	 But	 no!	 They	 cannot,	 they
always	arrive	in	lumps	...	“Well,	perhaps	some	of	them	go	through	1,	and	then
they	go	around	through	2,	and	then	around	a	few	more	times,	or	by	some	other
complicated	 path	 ...	 then	 by	 closing	 hole	 2,	 we	 changed	 the	 chance	 that	 an
electron	that	started	out	through	hole	1	would	finally	get	to	the	backstop	...”	But
notice!	 There	 are	 some	 points	 at	 which	 very	 few	 electrons	 arrive	 when	 both
holes	are	open,	but	which	receive	many	electrons	if	we	close	one	hole,	so	closing
one	hole	increased	the	number	from	the	other.	Notice,	however,	that	at	the	center
of	the	pattern,	P12	is	more	than	twice	as	large	as	P1	+	P2.	It	is	as	though	closing
one	hole	decreased	the	number	of	electrons	which	come	through	the	other	hole.
It	 seems	 hard	 to	 explain	both	 effects	 by	 proposing	 that	 the	 electrons	 travel	 in
complicated	paths.
It	is	all	quite	mysterious.	And	the	more	you	look	at	it	the	more	mysterious	it

seems.	Many	 ideas	have	been	concocted	 to	 try	 to	explain	 the	curve	 for	P12	 in
terms	 of	 individual	 electrons	 going	 around	 in	 complicated	 ways	 through	 the
holes.	None	 of	 them	has	 succeeded.	None	 of	 them	 can	 get	 the	 right	 curve	 for
P12	in	terms	of	P1	and	P2.
Yet,	 surprisingly	 enough,	 the	mathematics	 for	 relating	P1	 and	P2	 to	P12	 is

extremely	 simple.	For	P12	 is	 just	 like	 the	 curve	 I12	of	Fig.	6-2,	 and	 that	 was
simple.	 What	 is	 going	 on	 at	 the	 backstop	 can	 be	 described	 by	 two	 complex
numbers	 that	we	 can	 call	 φ̂1	 and	 φ̂2	 (they	 are	 functions	 of	 x,	 of	 course).	 The

absolute	square	of	φ̂1	gives	the	effect	with	only	hole	1	open.	That	is,	P1	=	|φ̂1|2.
The	effect	with	only	hole	2	open	is	given	by	φ̂2	in	the	same	way.	That	is,	P2	=	|

φ̂1|2.	And	 the	 combined	 effect	 of	 the	 two	 holes	 is	 just	P12	 =	 |φ̂1	 +	 φ̂2|.	 The
mathematics	is	the	same	as	what	we	had	for	the	water	waves!	(It	is	hard	to	see
how	one	 could	get	 such	 a	 simple	 result	 from	a	 complicated	game	of	 electrons



going	back	and	forth	through	the	plate	on	some	strange	trajectory.)
We	conclude	the	following:	The	electrons	arrive	in	lumps,	like	particles,	and

the	 probability	 of	 arrival	 of	 these	 lumps	 is	 distributed	 like	 the	 distribution	 of
intensity	of	a	wave.	It	is	in	this	sense	that	an	electron	behaves	“sometimes	like	a
particle	and	sometimes	like	a	wave.”
Incidentally,	 when	 we	 were	 dealing	 with	 classical	 waves	 we	 defined	 the

intensity	as	the	mean	over	time	of	the	square	of	the	wave	amplitude,	and	we	used
complex	 numbers	 as	 a	 mathematical	 trick	 to	 simplify	 the	 analysis.	 But	 in
quantum	 mechanics	 it	 turns	 out	 that	 the	 amplitudes	 must	 be	 represented	 by
complex	numbers.	The	real	parts	alone	will	not	do.	That	is	a	technical	point,	for
the	moment,	because	the	formulas	look	just	the	same.
Since	the	probability	of	arrival	through	both	holes	is	given	so	simply,	although

it	is	not	equal	to	(P1	+	P2),	that	is	really	all	there	is	to	say.	But	there	are	a	large
number	 of	 subtleties	 involved	 in	 the	 fact	 that	 nature	 does	 work	 this	 way.	We
would	 like	 to	 illustrate	 some	 of	 these	 subtleties	 for	 you	 now.	 First,	 since	 the
number	that	arrives	at	a	particular	point	 is	not	equal	 to	 the	number	 that	arrives
through	1	plus	the	number	that	arrives	through	2,	as	we	would	have	concluded
from	Proposition	A,	undoubtedly	we	should	conclude	that	Proposition	A	is	false.
It	 is	 not	 true	 that	 the	 electrons	 go	 either	 through	 hole	 1	 or	 hole	 2.	 But	 that
conclusion	can	be	tested	by	another	experiment.

Watching	the	electrons

We	shall	now	try	the	following	experiment.	To	our	electron	apparatus	we	add	a
very	strong	 light	source,	placed	behind	 the	wall	and	between	 the	 two	holes,	as
shown	 in	 Fig.	 6-4.	 We	 know	 that	 electric	 charges	 scatter	 light.	 So	 when	 an
electron	passes,	however	 it	does	pass,	on	 its	way	 to	 the	detector,	 it	will	 scatter
some	light	to	our	eye,	and	we	can	see	where	the	electron	goes.	If,	for	instance,	an
electron	were	to	take	the	path	via	hole	2	that	is	sketched	in	Fig.	6-4,	we	should
see	a	flash	of	light	coming	from	the	vicinity	of	the	place	marked	A	in	the	figure.
If	 an	 electron	 passes	 through	 hole	 1	we	would	 expect	 to	 see	 a	 flash	 from	 the
vicinity	of	the	upper	hole.	If	it	should	happen	that	we	get	light	from	both	places
at	 the	 same	 time,	 because	 the	 electron	 divides	 in	 half...	 Let	 us	 just	 do	 the
experiment!
Here	 is	 what	 we	 see:	 every	 time	 that	 we	 hear	 a	 “click”	 from	 our	 electron



detector	(at	the	backstop),	we	also	see	a	flash	of	light	either	near	hole	1	or	near
hole	2,	but	never	both	at	once!	And	we	observe	the	same	result	no	matter	where
we	put	the	detector.	From	this	observation	we	conclude	that	when	we	look	at	the
electrons	 we	 find	 that	 the	 electrons	 go	 either	 through	 one	 hole	 or	 the	 other.
Experimentally,	Proposition	A	is	necessarily	true.

Figure	6-4	A	different	electron	experiment.

What,	then,	is	wrong	with	our	argument	against	Proposition	A?	Why	isn’t	P12
just	equal	to	P1	+	P2?	Back	to	experiment!	Let	us	keep	track	of	the	electrons	and
find	out	what	 they	are	doing.	For	each	position	 (x-location)	of	 the	detector	we
will	count	the	electrons	that	arrive	and	also	keep	track	of	which	hole	they	went
through,	 by	 watching	 for	 the	 flashes.	 We	 can	 keep	 track	 of	 things	 this	 way:
whenever	we	hear	a	“click”	we	will	put	a	count	in	Column	1	if	we	see	the	flash
near	hole	1,	and	if	we	see	the	flash	near	hole	2,	we	will	record	a	count	in	Column
2.	Every	electron	which	arrives	 is	 recorded	 in	one	of	 two	classes:	 those	which
come	through	1	and	those	which	come	through	2.	From	the	number	recorded	in
Column	1	we	get	the	probability	P‘1	that	an	electron	will	arrive	at	the	detector
via	 hole	 1;	 and	 from	 the	 number	 recorded	 in	 Column	 2	 we	 get	 P’2,	 the
probability	 that	 an	 electron	 will	 arrive	 at	 the	 detector	 via	 hole	 2.	 If	 we	 now
repeat	such	a	measurement	for	many	values	of	x,	we	get	the	curves	for	P‘1	and
P’2	shown	in	part	(b)	of	Fig.	6-4.
Well,	that	is	not	too	surprising!	We	get	for	P‘1	something	quite	similar	to	what

we	got	before	for	P,	by	blocking	off	hole	2;	and	P’2	is	similar	to	what	we	got	by
blocking	 hole	 1.	 So	 there	 is	 not	 any	 complicated	 business	 like	 going	 through
both	holes.	When	we	watch	them,	the	electrons	come	through	just	as	we	would



expect	them	to	come	through.	Whether	the	holes	are	closed	or	open,	those	which
we	see	come	through	hole	1	are	distributed	 in	 the	same	way	whether	hole	2	 is
open	or	closed.
But	wait!	What	do	we	have	now	for	the	total	probability,	 the	probability	that

an	 electron	 will	 arrive	 at	 the	 detector	 by	 any	 route?	 We	 already	 have	 that
information.	We	 just	pretend	 that	we	never	 looked	at	 the	 light	 flashes,	 and	we
lump	together	the	detector	clicks	which	we	have	separated	into	the	two	columns.
We	must	just	add	the	numbers.	For	the	probability	that	an	electron	will	arrive	at
the	backstop	by	passing	through	either	hole,	we	do	find	P‘12	=	P’1	+	P‘2.	That
is,	although	we	succeeded	in	watching	which	hole	our	electrons	come	through,
we	no	longer	get	the	old	interference	curve	P12,	but	a	new	one,	P’12,	showing
no	interference!	If	we	turn	out	the	light	P12	is	restored.
We	must	conclude	that	when	we	look	at	the	electrons	the	distribution	of	them

on	the	screen	is	different	than	when	we	do	not	look.	Perhaps	it	is	turning	on	our
light	source	that	disturbs	things?	It	must	be	that	the	electrons	are	very	delicate,
and	 the	 light,	when	 it	 scatters	off	 the	 electrons,	 gives	 them	a	 jolt	 that	 changes
their	motion.	We	know	that	the	electric	field	of	the	light	acting	on	a	charge	will
exert	 a	 force	 on	 it.	 So	 perhaps	 we	 should	 expect	 the	 motion	 to	 be	 changed.
Anyway,	the	light	exerts	a	big	influence	on	the	electrons.	By	trying	to	“watch”
the	 electrons	 we	 have	 changed	 their	 motions.	 That	 is,	 the	 jolt	 given	 to	 the
electron	when	 the	photon	 is	 scattered	by	 it	 is	 such	 as	 to	 change	 the	 electron’s
motion	enough	so	that	if	it	might	have	gone	to	where	P12	was	at	a	maximum,	it
will	 instead	land	where	P12	was	a	minimum;	that	is	why	we	no	longer	see	the
wavy	interference	effects.
You	may	 be	 thinking:	 “Don’t	 use	 such	 a	 bright	 source!	Turn	 the	 brightness

down!	The	light	waves	will	then	be	weaker	and	will	not	disturb	the	electrons	so
much.	Surely,	by	making	the	light	dimmer	and	dimmer,	eventually	the	wave	will
be	weak	enough	that	it	will	have	a	negligible	effect.”	OK.	Let’s	try	it.	The	first
thing	we	observe	 is	 that	 the	 flash	of	 light	 scattered	 from	 the	 electrons	 as	 they
pass	by	does	not	 get	weaker.	 It	 is	 always	 the	 same-sized	 flash.	The	only	 thing
that	 happens	 as	 the	 light	 is	made	dimmer	 is	 that	 sometimes	we	hear	 a	 “click”
from	the	detector	but	see	no	flash	at	all.	The	electron	has	gone	by	without	being
“seen.”	What	we	are	observing	is	that	light	also	acts	like	electrons;	we	knew	that
it	was	“wavy,”	but	now	we	find	that	it	is	also	“lumpy.”	It	always	arrives—or	is
scattered—in	lumps	that	we	call	“photons.”	As	we	turn	down	the	intensity	of	the
light	source	we	do	not	change	the	size	of	the	photons,	only	the	rate	at	which	they



are	emitted.	That	explains	why,	when	our	source	is	dim,	some	electrons	get	by
without	being	seen.	There	did	not	happen	to	be	a	photon	around	at	the	time	the
electron	went	through.
This	is	all	a	little	discouraging.	If	it	is	true	that	whenever	we	“see”	the	electron

we	see	the	same-sized	flash,	then	those	electrons	we	see	are	always	the	disturbed
ones.	Let	us	try	the	experiment	with	a	dim	light	anyway.	Now	whenever	we	hear
a	click	in	the	detector	we	will	keep	a	count	in	three	columns:	in	Column	1	those
electrons	 seen	 by	 hole	 1,	 in	Column	 2	 those	 electrons	 seen	 by	 hole	 2,	 and	 in
Column	3	those	electrons	not	seen	at	all.	When	we	work	up	our	data	(computing
the	 probabilities)	 we	 find	 these	 results:	 Those	 “seen	 by	 hole	 1”	 have	 a
distribution	like	P‘1;	those	”seen	by	hole	2”	have	a	distribution	like	P’2	(so	that
those	“seen	by	either	hole	1	or	2”	have	a	distribution	like	P‘12);	and	those	”not
seen	at	all“	have	a”wavy“	distribution	just	like	P12	of	Fig.	6-3!	If	 the	electrons
are	not	seen,	we	have	interference!
That	is	understandable.	When	we	do	not	see	the	electron,	no	photon	disturbs

it,	and	when	we	do	see	 it,	 a	photon	has	disturbed	 it.	There	 is	always	 the	same
amount	 of	 disturbance	 because	 the	 light	 photons	 all	 produce	 the	 same-sized
effects	and	the	effect	of	the	photons	being	scattered	is	enough	to	smear	out	any
interference	effect.
Is	there	not	some	way	we	can	see	the	electrons	without	disturbing	them?	We

learned	 in	 an	 earlier	 chapter	 that	 the	 momentum	 carried	 by	 a	 “photon”	 is
inversely	proportional	to	its	wavelength	(p	=	h/λ).	Certainly	the	jolt	given	to	the
electron	when	the	photon	is	scattered	toward	our	eye	depends	on	the	momentum
that	 photon	 carries.	Aha!	 If	we	want	 to	 disturb	 the	 electrons	 only	 slightly	we
should	not	have	 lowered	 the	 intensity	 of	 the	 light;	we	 should	have	 lowered	 its
frequency	 (the	same	as	 increasing	 its	wavelength).	Let	us	use	 light	of	a	 redder
color.	We	 could	 even	 use	 infrared	 light,	 or	 radiowaves	 (like	 radar),	 and	 “see”
where	the	electron	went	with	the	help	of	some	equipment	that	can	“see”	light	of
these	 longer	 wavelengths.	 If	 we	 use	 “gentler”	 light	 perhaps	 we	 can	 avoid
disturbing	the	electrons	so	much.
Let	 us	 try	 the	 experiment	 with	 longer	 waves.	We	 shall	 keep	 repeating	 our

experiment,	each	time	with	light	of	a	longer	wavelength.	At	first,	nothing	seems
to	 change.	 The	 results	 are	 the	 same.	 Then	 a	 terrible	 thing	 happens.	 You
remember	that	when	we	discussed	the	microscope	we	pointed	out	that,	due	to	the
wave	nature	of	the	light,	there	is	a	limitation	on	how	close	two	spots	can	be	and
still	be	seen	as	two	separate	spots.	This	distance	is	of	the	order	of	the	wavelength



of	 light.	 So	 now,	 when	 we	 make	 the	 wavelength	 longer	 than	 the	 distance
between	our	holes,	we	see	a	big	 fuzzy	 flash	when	 the	 light	 is	 scattered	by	 the
electrons.	We	can	no	longer	tell	which	hole	the	electron	went	through!	We	just
know	it	went	somewhere!	And	it	is	just	with	light	of	this	color	that	we	find	that
the	jolts	given	to	the	electron	are	small	enough	so	that	P‘12	begins	to	look	like
P12—that	 we	 begin	 to	 get	 some	 interference	 effect.	 And	 it	 is	 only	 for
wavelengths	much	longer	than	the	separation	of	the	two	holes	(when	we	have	no
chance	at	all	of	telling	where	the	electron	went)	that	the	disturbance	due	to	the
light	gets	sufficiently	small	that	we	again	get	the	curve	P12	shown	in	Fig.	6-3.
In	our	experiment	we	find	that	 it	 is	 impossible	to	arrange	the	light	 in	such	a

way	that	one	can	tell	which	hole	the	electron	went	through,	and	at	the	same	time
not	disturb	the	pattern.	It	was	suggested	by	Heisenberg	that	the	then-new	laws	of
nature	 could	 only	 be	 consistent	 if	 there	 were	 some	 basic	 limitation	 on	 our
experimental	 capabilities	not	previously	 recognized.	He	proposed,	 as	 a	general
principle,	 his	 uncertainty	 principle,	 which	 we	 can	 state	 in	 terms	 of	 our
experiment	 as	 follows:	 “It	 is	 impossible	 to	 design	 an	 apparatus	 to	 determine
which	hole	the	electron	passes	through,	that	will	not	at	the	same	time	disturb	the
electrons	enough	to	destroy	the	interference	pattern.”	If	an	apparatus	is	capable
of	determining	which	hole	the	electron	goes	through,	it	cannot	be	so	delicate	that
it	 does	 not	 disturb	 the	 pattern	 in	 an	 essential	way.	No	 one	 has	 ever	 found	 (or
even	thought	of)	a	way	around	the	uncertainty	principle.	So	we	must	assume	that
it	describes	a	basic	characteristic	of	nature.
The	 complete	 theory	 of	 quantum	mechanics	which	we	 now	 use	 to	 describe

atoms	 and,	 in	 fact,	 all	 matter	 depends	 on	 the	 correctness	 of	 the	 uncertainty
principle.	Since	quantum	mechanics	is	such	a	successful	theory,	our	belief	in	the
uncertainty	 principle	 is	 reinforced.	 But	 if	 a	 way	 to	 “beat”	 the	 uncertainty
principle	 were	 ever	 discovered,	 quantum	 mechanics	 would	 give	 inconsistent
results	and	would	have	to	be	discarded	as	a	valid	theory	of	nature.
“Well,”	you	say,	“what	about	Proposition	A?	It	is	true,	or	is	it	not	true,	that	the

electron	either	goes	through	hole	1	or	it	goes	through	hole	2?”	The	only	answer
that	can	be	given	is	 that	we	have	found	from	experiment	 that	 there	is	a	certain
special	way	that	we	have	to	think	in	order	that	we	do	not	get	into	inconsistencies.
What	we	must	say	(to	avoid	making	wrong	predictions)	is	the	following:	If	one
looks	at	 the	holes	or,	more	accurately,	 if	one	has	a	piece	of	apparatus	which	is
capable	of	determining	whether	the	electrons	go	through	hole	1	or	hole	2,	then
one	can	say	that	it	goes	either	through	hole	1	or	hole	2.	But,	when	one	does	not



try	to	tell	which	way	the	electron	goes,	when	there	is	nothing	in	the	experiment
to	 disturb	 the	 electrons,	 then	 one	 may	 not	 say	 that	 an	 electron	 goes	 either
through	hole	1	or	hole	2.	If	one	does	say	that,	and	starts	to	make	any	deductions
from	 the	 statement,	 he	 will	 make	 errors	 in	 the	 analysis.	 This	 is	 the	 logical
tightrope	on	which	we	must	walk	if	we	wish	to	describe	nature	successfully.

If	the	motion	of	all	matter—as	well	as	electrons—must	be	described	in	terms	of
waves,	 what	 about	 the	 bullets	 in	 our	 first	 experiment?	Why	 didn’t	 we	 see	 an
interference	pattern	there?	It	turns	out	that	for	the	bullets	the	wavelengths	were
so	tiny	that	the	interference	patterns	became	very	fine.	So	fine,	in	fact,	that	with
any	 detector	 of	 finite	 size	 one	 could	 not	 distinguish	 the	 separate	maxima	 and
minima.	What	we	saw	was	only	a	kind	of	average,	which	is	the	classical	curve.
In	Fig.	6-5	we	have	tried	to	indicate	schematically	what	happens	with	large-scale
objects.	 Part	 (a)	 of	 the	 figure	 shows	 the	 probability	 distribution	 one	 might
predict	for	bullets,	using	quantum	mechanics.	The	rapid	wiggles	are	supposed	to
represent	 the	 interference	pattern	one	gets	 for	waves	of	very	short	wavelength.
Any	 physical	 detector,	 however,	 straddles	 several	 wiggles	 of	 the	 probability
curve,	so	that	the	measurements	show	the	smooth	curve	drawn	in	part	(b)	of	the
figure.

Figure	6-5	Interference	pattern	with	bullets:	(a)	actual	(schematic),	(b)	observed.

First	principles	of	quantum	mechanics



We	will	now	write	a	summary	of	the	main	conclusions	of	our	experiments.	We
will,	 however,	 put	 the	 results	 in	 a	 form	which	makes	 them	 true	 for	 a	 general
class	of	 such	experiments.	We	can	write	our	 summary	more	 simply	 if	we	 first
define	 an	 “ideal	 experiment”	 as	 one	 in	 which	 there	 are	 no	 uncertain	 external
influences,	 i.e.,	 no	 jiggling	 or	 other	 things	 going	 on	 that	 we	 cannot	 take	 into
account.	We	would	be	quite	precise	 if	we	said:	“An	 ideal	experiment	 is	one	 in
which	 all	 of	 the	 initial	 and	 final	 conditions	 of	 the	 experiment	 are	 completely
specified.”	What	 we	 will	 call	 “an	 event”	 is,	 in	 general,	 just	 a	 specific	 set	 of
initial	and	final	conditions.	(For	example:	“An	electron	leaves	the	gun,	arrives	at
the	detector,	and	nothing	else	happens.”)	Now	for	our	summary.

SUMMARY

(1)	The	probability	of	an	event	in	an	ideal	experiment	is	given	by	the	square
of	the	absolute	value	of	a	complex	number	φ	which	is	called	the
probability	amplitude.

(6.6)
(2)	When	an	event	can	occur	in	several	alternative	ways,	the	probability
amplitude	for	the	event	is	the	sum	of	the	probability	amplitudes	for	each
way	considered	separately.	There	is	interference.

(6.7)
(3)	If	an	experiment	is	performed	which	is	capable	of	determining	whether
one	or	another	alternative	is	actually	taken,	the	probability	of	the	event	is
the	sum	of	the	probabilities	for	each	alternative.	The	interference	is	lost.



(6.8)

One	might	still	like	to	ask:	“How	does	it	work?	What	is	the	machinery	behind
the	law?”	No	one	has	found	any	machinery	behind	the	law.	No	one	can	“explain”
any	 more	 than	 we	 have	 just	 “explained.”	 No	 one	 will	 give	 you	 any	 deeper
representation	of	the	situation.	We	have	no	ideas	about	a	more	basic	mechanism
from	which	these	results	can	be	deduced.
We	would	like	to	emphasize	a	very	important	difference	between	classical	and

quantum	mechanics.	We	have	been	talking	about	the	probability	that	an	electron
will	 arrive	 in	 a	 given	 circumstance.	We	have	 implied	 that	 in	 our	 experimental
arrangement	(or	even	in	the	best	possible	one)	it	would	be	impossible	to	predict
exactly	what	would	happen.	We	can	only	predict	the	odds!	This	would	mean,	if
it	were	true,	that	physics	has	given	up	on	the	problem	of	trying	to	predict	exactly
what	will	happen	in	a	definite	circumstance.	Yes!	Physics	has	given	up.	We	do
not	 know	how	 to	 predict	what	would	 happen	 in	 a	 given	 circumstance,	 and	we
believe	now	that	it	is	impossible,	that	the	only	thing	that	can	be	predicted	is	the
probability	of	different	events.	It	must	be	recognized	that	this	is	a	retrenchment
in	our	earlier	 ideal	of	understanding	nature.	 It	may	be	a	backward	step,	but	no
one	has	seen	a	way	to	avoid	it.
We	make	now	a	few	remarks	on	a	suggestion	that	has	sometimes	been	made

to	 try	 to	 avoid	 the	 description	we	have	given:	 “Perhaps	 the	 electron	has	 some
kind	of	 internal	works—some	inner	variables—that	we	do	not	yet	know	about.
Perhaps	that	is	why	we	cannot	predict	what	will	happen.	If	we	could	look	more
closely	at	the	electron	we	would	be	able	to	tell	where	it	would	end	up.”	So	far	as
we	know,	that	is	impossible.	We	would	still	be	in	difficulty.	Suppose	we	were	to
assume	that	inside	the	electron	there	is	some	kind	of	machinery	that	determines
where	it	is	going	to	end	up.	That	machine	must	also	determine	which	hole	it	is
going	 to	go	 through	on	 its	way.	But	we	must	not	 forget	 that	what	 is	 inside	 the
electron	should	not	be	dependent	on	what	we	do,	and	in	particular	upon	whether
we	open	or	close	one	of	the	holes.	So	if	an	electron,	before	it	starts,	has	already
made	up	its	mind	(a)	which	hole	it	is	going	to	use,	and	(b)	where	it	is	going	to
land,	we	should	find	P1	for	those	electrons	that	have	chosen	hole	1,	P2	for	those
that	have	chosen	hole	2,	and	necessarily	 the	sum	P1	+	P2	for	 those	 that	arrive
through	 the	 two	 holes.	 There	 seems	 to	 be	 no	 way	 around	 this.	 But	 we	 have
verified	experimentally	that	 that	 is	not	 the	case.	And	no	one	has	figured	a	way
out	of	this	puzzle.	So	at	the	present	time	we	must	limit	ourselves	to	computing
probabilities.	We	say	“at	the	present	time,”	but	we	suspect	very	strongly	that	it	is



something	that	will	be	with	us	forever—that	it	is	impossible	to	beat	that	puzzle
—that	this	is	the	way	nature	really	is.

The	uncertainty	principle

This	 is	 the	 way	 Heisenberg	 stated	 the	 uncertainty	 principle	 originally:	 If	 you
make	the	measurement	on	any	object,	and	you	can	determine	the	x-component	of
its	momentum	with	an	uncertainty	Δp,	you	cannot,	at	the	same	time,	know	its	x-
position	more	accurately	than	Δx	≥	ħ/2Δp.	The	uncertainties	in	the	position	and
momentum	at	any	instant	must	have	their	product	greater	than	half	the	reduced
Planck	constant.	This	is	a	special	case	of	the	uncertainty	principle	that	was	stated
above	more	generally.	The	more	general	 statement	was	 that	one	cannot	design
equipment	in	any	way	to	determine	which	of	two	alternatives	is	taken,	without,
at	the	same	time,	destroying	the	pattern	of	interference.
Let	 us	 show	 for	 one	 particular	 case	 that	 the	 kind	 of	 relation	 given	 by

Heisenberg	must	be	true	in	order	to	keep	from	getting	into	trouble.	We	imagine	a
modification	 of	 the	 experiment	 of	 Fig.	 6-3,	 in	 which	 the	 wall	 with	 the	 holes
consists	of	a	plate	mounted	on	rollers	so	that	it	can	move	freely	up	and	down	(in
the	 x-direction),	 as	 shown	 in	 Fig.	 6-6.	 By	 watching	 the	 motion	 of	 the	 plate
carefully	we	can	try	 to	 tell	which	hole	an	electron	goes	 through.	Imagine	what
happens	when	the	detector	is	placed	at	x	=	0.	We	would	expect	that	an	electron
which	passes	through	hole	1	must	be	deflected	downward	by	the	plate	to	reach
the	detector.	Since	the	vertical	component	of	the	electron	momentum	is	changed,
the	 plate	must	 recoil	 with	 an	 equal	momentum	 in	 the	 opposite	 direction.	 The
plate	will	get	 an	upward	kick.	 If	 the	electron	goes	 through	 the	 lower	hole,	 the
plate	 should	 feel	 a	 downward	 kick.	 It	 is	 clear	 that	 for	 every	 position	 of	 the
detector,	 the	momentum	received	by	 the	plate	will	have	a	different	value	 for	a
traversal	 via	 hole	 1	 than	 for	 a	 traversal	 via	 hole	 2.	So!	Without	 disturbing	 the
electrons	 at	 all,	 but	 just	 by	 watching	 the	 plate,	 we	 can	 tell	 which	 path	 the
electron	used.



Figure	6-6	An	experiment	in	which	the	recoil	of	the	wall	is	measured.
Now	 in	order	 to	do	 this	 it	 is	 necessary	 to	know	what	 the	momentum	of	 the

screen	is,	before	the	electron	goes	through.	So	when	we	measure	the	momentum
after	 the	electron	goes	by,	we	can	 figure	out	how	much	 the	plate’s	momentum
has	changed.	But	remember,	according	to	the	uncertainty	principle	we	cannot	at
the	same	time	know	the	position	of	 the	plate	with	an	arbitrary	accuracy.	But	 if
we	do	not	know	exactly	where	the	plate	is	we	cannot	say	precisely	where	the	two
holes	are.	They	will	be	in	a	different	place	for	every	electron	that	goes	through.
This	 means	 that	 the	 center	 of	 our	 interference	 pattern	 will	 have	 a	 different
location	 for	 each	 electron.	 The	 wiggles	 of	 the	 interference	 pattern	 will	 be
smeared	 out.	 We	 shall	 show	 quantitatively	 in	 the	 next	 chapter	 that	 if	 we
determine	the	momentum	of	the	plate	sufficiently	accurately	to	determine	from
the	 recoil	 measurement	 which	 hole	 was	 used,	 then	 the	 uncertainty	 in	 the	 x-
position	 of	 the	 plate	will,	 according	 to	 the	 uncertainty	 principle,	 be	 enough	 to
shift	the	pattern	observed	at	the	detector	up	and	down	in	the	x-direction	about	the
distance	 from	a	maximum	 to	 its	nearest	minimum.	Such	a	 random	shift	 is	 just
enough	to	smear	out	the	pattern	so	that	no	interference	is	observed.
The	 uncertainty	 principle	 “protects”	 quantum	 mechanics.	 Heisenberg

recognized	 that	 if	 it	were	possible	 to	measure	 the	momentum	and	 the	position
simultaneously	with	a	greater	accuracy,	the	quantum	mechanics	would	collapse.
So	he	proposed	 that	 it	must	be	 impossible.	Then	people	 sat	 down	and	 tried	 to
figure	out	ways	of	doing	it,	and	nobody	could	figure	out	a	way	to	measure	the
position	and	 the	momentum	of	anything—a	screen,	an	electron,	a	billiard	ball,
anything—with	any	greater	accuracy.	Quantum	mechanics	maintains	its	perilous
but	accurate	existence.
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1
One	can	burn	a	diamond	in	air.
2

The	“strength”	is	a	dimensionless	measure	of	the	coupling	constant	involved	in
each	interaction	(∼	means	“of	the	order”).
3

How	 I’m	 rushing	 through	 this!	 How	 much	 each	 sentence	 in	 this	 brief	 story
contains.	“The	stars	are	made	of	the	same	atoms	as	the	earth.”	I	usually	pick	one
small	topic	like	this	to	give	a	lecture	on.	Poets	say	science	takes	away	from	the
beauty	of	the	stars—mere	globs	of	gas	atoms.	Nothing	is	“mere.”	I	too	can	see
the	stars	on	a	desert	night,	and	feel	them.	But	do	I	see	less	or	more?	The	vastness
of	 the	 heavens	 stretches	my	 imagination—stuck	 on	 this	 carousel	my	 little	 eye
can	 catch	 one-million-year-old	 light.	 A	 vast	 pattern—of	 which	 I	 am	 a	 part—
perhaps	my	stuff	was	belched	from	some	forgotten	star,	as	one	is	belching	there.
Or	 see	 them	 with	 the	 greater	 eye	 of	 Palomar,	 rushing	 all	 apart	 from	 some
common	starting	point	when	they	were	perhaps	all	together.	What	is	the	pattern,
or	the	meaning,	or	the	why?	It	does	not	do	harm	to	the	mystery	to	know	a	little
about	 it.	 For	 far	 more	 marvelous	 is	 the	 truth	 than	 any	 artists	 of	 the	 past
imagined!	Why	do	the	poets	of	the	present	not	speak	of	it?	What	men	are	poets
who	can	speak	of	Jupiter	if	he	were	like	a	man,	but	if	he	is	an	immense	spinning
sphere	of	methane	and	ammonia	must	be	silent?
4

Our	point	here	 is	not	 so	much	 the	 result,	 (4.3),	which	 in	 fact	you	may	already
know,	as	the	possibility	of	arriving	at	it	by	theoretical	reasoning.
5

Counting	antibaryons	as—1	baryon.
6

A	radius	vector	is	a	line	drawn	from	the	sun	to	any	point	in	a	planet’s	orbit.
7

That	is,	how	far	the	circle	of	the	moon’s	orbit	falls	below	the	straight	line	tangent
to	it	at	the	point	where	the	moon	was	one	second	before.
8

The	proof	is	not	given	in	this	course.
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